Tetrathiafulvalene is a fascinating system: it is quite rare to find a synthetic molecule endowed with such a simple architecture that is capable of concentrating intense interest from various communities of chemists. This success results from the conjunction of intrinsic structural and electronic properties: structurally, this sulfur-rich bicyclic compound is essentially planar (at least in the radical cation state) and therefore presents, as with most of its substituted derivatives, a good propensity to stack in the solid state. This parameter is favorable for efficient charge delocalization in the solid-state and it is this feature that gave birth to the first conducting and superconducting organic salts. This non-aromatic 14 π-electron system is readily oxidized through a reversible process to the corresponding aromatic cation radical and dication species. This excellent π-donating ability, coupled to the high stability of both oxidized species, has contributed to the establishment of this unit as a key contemporary building block for the construction of redoxactive molecular and supramolecular systems.
Graphical Abstract
Figure 1: Chemical structure of the TTF analogues and TCNQ.
Figure 2: Oxidation states of TTF.
Figure 3: 1,4-Dithiin and thiophene fused TTF analogues from 1,8-diketone.
Scheme 1: Reaction mechanism of fused 1,4-dithiin and thiophene ring systems.
Scheme 2: Reaction conditions (i) LR, toluene, reflux, overnight; (ii) P4S10, toluene, reflux, 3 h.
Scheme 3: Proposed mechanism for side products.
Scheme 4: Reaction conditions (i) Hg(OAc)2, AcOH/CHCl3, rt, 1h; (ii) (EtO)3P, N2, 3 h, 110 °C.
Scheme 5: Reaction conditions (i) iPr2NEt, MEMCl, THF, rt, 12 h; (ii) LiAlH4, dry ether, rt, 24 h; (iii) tosy...
Scheme 6: Reagents and conditions (i) P4S10, toluene, reflux, dark, 3 h; (ii) P4S10, toluene, reflux, 3 h; (i...
Scheme 7: Reagents and conditions (i) Hg(OAc)2–AcOH, CHCl3, 3 h, rt; (ii) (EtO)3P, 110 °C, N2, 2 h.
Scheme 8: Charge transfer complex of 5,5',6,6'-tetraphenyl-2,2'-bi([1,3]dithiolo[4,5-b][1,4]dithiinylidene) 52...
Scheme 9: Reaction conditions (i) (EtO)3P, 110 °C, N2, 2 h.
Scheme 10: Reaction conditions (i) EtOH, reflux, overnight; (ii) diisopropylethylamine in CH2Cl2, room tempera...
Scheme 11: Reaction and conditions (i) P4S10, NaHCO3, toluene, reflux, 3 h; (ii) P4S10, p-TSA, toluene, reflux...
Graphical Abstract
Scheme 1: Molecular diagrams of α-tbtdt (1) and α-mtdt (2), and related TTF-type donors.
Scheme 2: Synthetic route for compounds 1 and 2.
Figure 1: Cyclic voltammogram of α-tbtdt (1) and α-mtdt (2) (10−3 M) in dichloromethane versus Ag/AgNO3, with ...
Figure 2: ORTEP view and atomic numbering scheme of I with thermal ellipsoids at 50% probability level.
Figure 3: Molecular herringbone bi-chains in the crystal structure of I: a) view along the molecular planes a...
Figure 4: Crystal structure of I a) view along the b axis, b) Partial view of one layer of bi-chains in the a...
Figure 5: ORTEP views and atomic numbering scheme of α-tbtdt (1) with thermal ellipsoids at 50% probability l...
Figure 6: Crystal structure of 1 a) view along the b axis; b) Partial view of one chain in the b,c plane (top...
Figure 7: ORTEP views and atomic numbering scheme of a) (α-mtdt)+ and b) [Au(mnt)2 ]− in compound 3, with the...
Figure 8: Crystal structure of 3 a) viewed along the b axis and b) partial view showing the alternated A–D–A–...
Figure 9: Detail of the crystal structure of 3 showing the short contacts between stacks.
Graphical Abstract
Scheme 1: Mesomeric forms of 1,3-dithiole rings substituted with EWG.
Scheme 2: Investigated TTF derivatives bearing EWG.
Scheme 3: Synthetic procedures to the CF3-substituted 4bc, 1c and 2ac molecules.
Scheme 4: Synthetic procedure to 3bc.
Figure 1: Correlation between the first oxidation potential E1/2 and the sum of the Hammet σmeta parameters. ...
Figure 2: Calculated frontier orbitals of geometry-optimized [B3LYP/6-31G(d)] model compounds TTF, TTF-CF3, T...
Figure 3: View of the 2ac molecule. Thermal ellipsoids are shown at the 50% probability level.
Figure 4: View of the 2bc molecule. Thermal ellipsoids are shown at the 50% probability level.
Figure 5: View of the two crystallographically independent 4bc molecules. Thermal ellipsoids are shown at the...
Figure 6: View of the 3bc molecule. Note the disordered CF3 groups as well as the CO2Me group orthogonal to t...
Figure 7: A view of the alternated stacks along the b axis in (1c)2(TCNQ).
Figure 8: Detail of the overlap between donor and acceptor molecules in (1c)2(TCNQ).
Figure 9: Projection view along the a axis of the unit cell of (1c+•)(FeCl4−).
Graphical Abstract
Scheme 1: Chemical structures of arylthio-substituted tetrathiafulvalenes (1–7).
Figure 1: Crystal structure of 1·CuBr4: a) unit cell contents with the typical bond lengths shown (in Å); b) ...
Figure 2: Crystal structure of 3·(CuBr4)0.5·CuBr3·THF: a) unit cell contents with the typical bond lengths sh...
Figure 3: Crystal structure of 4·CuBr4: a) unit cell contents with the typical bond lengths shown (Å); b) vie...
Figure 4: Crystal structure of 5·Cu2Br6: a) unit cell contents with the numeric data indicate the angles and ...
Figure 5: Crystal structure of 6·CuBr2·CH3CN: a) unit cell contents with the typical bond lengths shown (Å); ...
Figure 6: Temperature dependent magnetic susceptibility for the typical salts: a) 1·CuBr4 with the insert pan...
Graphical Abstract
Figure 1: Molecular structures of tetrathiafulvalenes 1, bis-pyrrolotetrathiafulvalenes 2 and monopyrrolotetr...
Scheme 1: The two synthetic approaches used for the preparation of arylated monopyrrolotetrathiafulvalenes 1.
Scheme 2: Synthesis of arylated monopyrrolotetrathiafulvalenes 4a–f.
Figure 2: Copper(I) ligands 9a and 9b.
Figure 3: UV–vis spectra of compounds 4a,c–f (CH2Cl2, c = 4 × 10−5 M).
Figure 4: Cyclic voltammograms of compounds 4a,c [22] and 4d–f (plotted vs SCE; CH2Cl2/0.1 M Bu4NClO4).
Figure 5: Crystal packing of 4a viewed along the a axis and showing one layer of molecules. Short S···S conta...
Figure 6: Crystal packing of 4b showing a group of four molecules interconnected by multiple weak hydrogen bo...
Figure 7: Crystal packing of 4d viewed along the b axis. Molecules of 4d form layers parallel to the (001) pl...
Figure 8: Crystal packing of 4e showing a group of four molecules interconnected by multiple weak hydrogen bo...
Graphical Abstract
Figure 1: TTF dimers with linearly or cross-conjugated bridging units, acyclic or cyclic bridging units.
Scheme 1: Synthesis of TTF dimers with alkyne bridges. TMEDA = N,N,N’,N’-tetramethylethylenediamine. MS = mol...
Scheme 2: Synthesis of TTF dimers with TEE and diethynylpyridine bridges.
Scheme 3: Synthesis of TTF dimer with radiaannulene core.
Figure 2: Molecular structure of 8 (top) and packing diagram (bottom). Crystals were grown from CH2Cl2/MeOH. ...
Figure 3: Bond angles for the cyclic core of 8 (X-ray crystal structure data).
Figure 4: Cyclic voltammograms obtained for the oxidation of compounds 1a ([10]), 2a ([10]), and 3b–8 (this work, ca....
Figure 5: Selected bis-TTFs from literature [20-23].
Figure 6: Cyclic voltammograms obtained for the reduction of compounds 1a, 2a, 6, and 8 in CH2Cl2 (0.1 M Bu4N...
Figure 7: One possible resonance form of the radical anion of 8 with a 14 πz aromatic core.
Scheme 4: Spin–spin interactions resulting from oxidation of TTFdimers.
Figure 8: In situ EPR−UV–vis–NIR cyclic voltammetry of 2b (1 mM) (a) potential dependence of difference vis–N...
Figure 9: In situ EPR−UV–vis–NIR cyclic voltammetry of 4 (0.4 mM): (a) potential dependence of difference vis...
Figure 10: Vis–NIR spectral changes observed during anodic oxidation of each TTF unit to cation radical within...
Figure 11: UV–vis–NIR absorptions of 1b (2.4 mM), 4 (3.5 mM), 5 (2.9 mM), and 8 (1.9 mM) in CH2Cl2 + 0.1 M Bu4...
Figure 12: In situ EPR−UV–vis–NIR cyclic voltammetry of 2b (1 mM) in the cathodic region: (a) potential depend...
Graphical Abstract
Scheme 1: Synthesis of cyanobenzene-ethylenedithio-tetrathiafulvalene (CNB-EDT-TTF) 3.
Figure 1: ORTEP diagrams of compound 3 drawn at 30% probability level with the atomic numbering scheme.
Figure 2: Crystal structure of compound 3 viewed along the b axis.
Figure 3: View of three neighbouring molecular stacks in 3.
Figure 4: Cyclic voltammogram of 3.
Graphical Abstract
Scheme 1: Redox-induced conformational switching of diphenyl-TTFV 1.
Scheme 2: Synthesis of carboxylated TTFV 6 and DTF 7.
Scheme 3: Complexation of compounds 6 and 7 with Zn(II) ions.
Figure 1: UV–vis spectra of TTFVs 5 and 6 (solid lines) and DTF 4 and 7 (dashed lines). Compounds 4 and 5 wer...
Figure 2: Cyclic voltammograms of compounds 4–9. Experimental conditions: supporting electrolyte: Bu4NBF4 (0....
Figure 3: FTIR spectra of compounds 6–9.
Figure 4: PXRD patterns of the Zn-TTFV coordination polymer 8 (red line) in comparison with the diffraction d...
Figure 5: (A) Nitrogen adsorption isotherm of coordination polymer 8 measured at 77 K. Inset: pore size distr...
Figure 6: DSC traces of compounds 6–9 measured under a nitrogen atmosphere. Scan range: 25–400 °C, scan rate:...
Graphical Abstract
Scheme 1: Synthesis of ligand L1, self-assemblies M4L2 and M6L3.
Figure 1: X-ray crystal structures of: (a) ligand L1, (b) self-assembly M4L2. For clarity, H atoms and TfO− c...
Figure 2: 1H NMR, downfield region (α and β signals correspond respectively to α and β pyridyl protons): (a) ...
Figure 3: X-ray crystal structure of self-assembly M6L3. For clarity, H atoms and TfO− counteranions have bee...
Figure 4: Geometry (from XRD) around two Pd centers in M4L2 (a) and M6L3 (b). The exTTF moieties have been cu...
Figure 5: Cyclic voltammogram of L1 (c = 10−3 M, CH3CN/CH2Cl2 (v/v 50/50), 0.1 M n-Bu4NPF6, 100 mV·s−1, Pt), M...
Graphical Abstract
Figure 1: TTF-substituted allenes 1–3.
Scheme 1: Synthesis of 3.
Figure 2: (a) ECD spectra of (R)-(−)-3 (3.5 × 10−5 M), (S)-(+)-3 (3.8 × 10−5 M), (R)-(−)-9 (3.0 × 10−5 M), an...
Scheme 2: Synthesis of chiral (R)-PTDPA and (S)-PTDPA.
Figure 3: (a) UV–vis absorption spectra of 3 and PTDTA in CH2Cl2. (b) Normalized ECD spectra of (R)-PTDPA, (S...
Figure 4: CV of 3 (7.8 × 10−4 M) and PTDPA in PhCN.
Figure 5: Electronic spectra of (a) 3 and its cationic species, and (b) PTDPA and its cationic states of PTDP...
Graphical Abstract
Figure 1: Structures of molecular clips 1–4.
Scheme 1: Different routes developed for the synthesis of molecular clips 1–4.
Scheme 2: Reaction between diphenylglycoluril with 4,5-bis(bromomethyl)-2-thioxo-1,3-dithiole.
Figure 2: Intramolecular distances between TTF moieties from X-ray analysis for clips 2 and 3 and theoretical...
Figure 3: Cyclic voltammograms of molecular clips 1, 2, 3, 4 and F4-TCNQ at 10−3 M in 0.1 M TBAPF6/CH2Cl2/CH3...
Figure 4: Cyclic voltammograms of molecular clip 2 at different concentrations (left: 10−5 M; middle: 10−4 M;...
Scheme 3: Graphical representation of the stepwise oxidation of molecular clips 1, 2 and 3.
Scheme 4: Electrochemical mechanism used to simulate the CVs of molecular clips 1, 2 and 3.
Figure 5: Chemical oxidation of molecular clip 1 (10−4 M, CH2Cl2) using aliquots of NOSbF6 oxidizing reagent ...
Figure 6: Spectroelectrochemical experiment of molecular clip 1 during the first oxidation step at different ...
Figure 7: Molecular structure of molecular clip 15 and representation of its stepwise oxidation processes pro...
Figure 8: Molecular packing diagram of clips 2 (left) and 3 (right) obtained from X-ray analysis. A molecule ...
Figure 9: Left: Job plot analysis for DNB vs molecular clip 3 ([3 + DNB] = 10−3 M in o-C6H4Cl2 at 800 nm) at ...
Figure 10: UV–visible absorption spectra of F4-TCNQ (CH2Cl2, 10−5 M) upon titration with molecular clip 3 (CH2...
Figure 11: Redox interaction (left) and complexation (right) of F4-TCNQ with molecular clips 3 and 4.
Graphical Abstract
Scheme 1: Chemical structures of Ar-S-TTFs 1–8.
Figure 1: Crystal structure of 5·C70. a) Unit cell contents viewed along the short axis of 5; b) Interactions...
Figure 2: Crystal structure of 1·(C60)2·(CS2)2. a) Interactions of C60 molecule A with 1, where the blue and ...
Figure 3: Packing motifs of C60 molecules A (a) and B (b) of 1·(C60)2·(CS2)2 in the crystallographic ab-plane...
Figure 4: Crystal structure of 2·(C70)4·(PhCl)2. a) Interactions between C70 molecule A and 2; b) Interaction...
Graphical Abstract
Figure 1: Chemical structures of the target dyes 1 and 2.
Scheme 1: Synthetic routes to the target dyes 1 (top) and 2 (bottom).
Figure 2: Cyclic voltammograms of 1 (blue line), 2 (red line) and 6 (black line) in CH2Cl2 (0.1 M Bu4NPF6; Pt...
Figure 3: Electronic absorption spectra of 1 (blue line) and 2 (red line) in CH2Cl2 solutions.
Figure 4: Photovoltaic performance of the two sensitizers. Photocurrent density (J) as a function of voltage ...
Graphical Abstract
Figure 1: Depictions of 9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene (exTTF) in the (a) neutral for...
Scheme 1: Synthetic route to the target exTTF-based molecular wire 5.
Figure 2: Cyclic voltammograms of compound 5 and pristine exTTF (at concentrations of approximately 0.2 mM) u...
Figure 3: 2D histograms resulting from break junction experiments on an unmodified gold sample (a), OPE3-dith...
Figure 4: 2D histograms corresponding to compound 5 after exposing a gold substrate to the solution of the co...
Figure 5: 2D histograms corresponding to compound 5 after exposing a gold substrate to a solution of the comp...
Figure 6: a) Examples of individual G(z) traces showing clear conductance plateaus. b–e) 2D histograms corres...
Figure 7: Frontier orbitals of compound 5 in the gas phase.
Figure 8: Top a) and hollow b) binding geometries of 5 to a gold cluster in metal–molecule–metal junctions.
Figure 9: Transmission as a function of energy for the top and hollow binding geometries.
Graphical Abstract
Scheme 1: BEDT-TTF and chiral derivatives.
Scheme 2: Synthesis of the chiral sulfones (S,S)-1 and (R,R)-1.
Figure 1: Molecular structure of (R,R)-1 (left) and (S,S)-1 (right) together with atom numbering scheme (H at...
Figure 2: Packing of (R,R)-1 in the bc plane (left) and detailed S···S interactions (only S3···S7 (−1+x, y, z...
Figure 3: Packing of (S,S)-1 in the ab plane (left) and detailed S···S intermolecular interactions within (hi...
Graphical Abstract
Figure 1: The sequential, reversible oxidation of TTF (1) to its stable radical cation (2) and dication (3) s...
Figure 2: Structures and possible substitution positions of MPTTFs (4) and BPTTFs (5).
Scheme 1: Large-scale synthesis of 6. Reagents and conditions: a) PhMe, reflux, 19 h, 74%; b) LiBr, NaBH4, TH...
Scheme 2: Preparation of 7. Reagents and conditions: a) TsCl, Et3N, DMAP, MeCN, rt → reflux, 3.5 h, 82%; b) (...
Scheme 3: Homo and cross-coupling reactions of 6 or 7 afford BPTTFs and MPTTFs, respectively. Reagents and co...
Scheme 4: Deprotection and methylation of cyanoethyl-protected thiol moieties on MPTTFs as reported by Jeppes...
Scheme 5: Deprotection and alkylation of cyanoethyl-protected thiol moieties on MPTTFs using CsOH·H2O or DBU....
Scheme 6: Deprotection and N-arylation of tosylated MPTTFs. Reagents and conditions: a) NaOMe, THF, MeOH, ref...
Scheme 7: Deprotection and N,N-diarylation of tosylated BPTTFs. Reagents and conditions: a) NaOMe, THF, MeOH,...
Graphical Abstract
Figure 1: Chemical structures of 1–9 and TTP.
Scheme 1: Synthesis of 5–9.
Figure 2: Molecular orbitals of 5a (trans isomer).
Figure 3: Molecular orbitals of 6a (trans isomer).
Figure 4: Molecular orbitals of 8a (trans isomer).
Figure 5: Deconvoluted cyclic voltammograms of (a) 5d, (b) 7d and (c) 9d.
Scheme 2: Plausible redox processes of 5d and 7d.
Scheme 3: Plausible redox process of 9d.
Figure 6: (a) Galvanostatic charge-discharge curves of (a) 5c/Li and (b) 6b/Li cells.
Figure 7: Cycle-life performances for 5b/Li, 5c/Li and 6b/Li cells.
Figure 8: (a) Galvanostatic charge–discharge curves, and (b) cycle-life performances for a 8c/Li cell.
Figure 9: Molecular structures of 20 and 21.
Graphical Abstract
Figure 1: Compounds 1–3.
Scheme 1: Synthesis of compound 4.
Scheme 2: Synthesis of compounds 1 and 2.
Figure 2: UV–vis absorption spectra of 10−5 M solutions of compounds 1 (black) and 2 (red) in dichloromethane....
Figure 3: Cyclic voltammograms showing the reduction (left) and oxidation (right) of compounds 1 (top) and 2 ...
Figure 4: Optimised structures of 1 (left), 2 (centre) and 3 (right).
Figure 5: Output characteristics of OFETs fabricated using compound 2 in CHCl3 with OTS (top) and PFBT/OTS (b...
Figure 6: AFM images of OFET devices fabricated using compound 2 in CHCl3 with OTS (left) and PFBT/OTS (right...
Graphical Abstract
Scheme 1: Multifunctional TTF-appended azine ligands.
Scheme 2: Synthetic scheme for TTF-based azine ligands L1 and L2.
Figure 1: Crystal structure of ligand L1 with atom numbering scheme (top) and a side view of the molecule (bo...
Figure 2: Partial crystal packing of ligand L1 with formation of head to tail dimers that stack along a-axis ...
Figure 3: Packing diagram of L1 showing the orientation of the columns of head to tail dimers.
Figure 4: UV–visible absorption spectra of ligands L1 and L2 (c 2.5 × 10−5 M in (dichloromethane/acetonitrile...
Figure 5: HOMO–LUMO Frontier orbitals representation for ligands L1 and L2.
Figure 6: Cyclic voltammograms of ligands L1 and L2 (2 × 10−5 M) in CH2Cl2/CH3CN (9:1, v/v) at 100 mV·s−1 on ...
Figure 7: UV–visible spectral changes of ligand L2 (2 × 10−5 M in CH2Cl2/CH3CN, 9/1) upon addition of TBAF.
Figure 8: 1H NMR spectra of ligand L2 (4·10−3 M in DMSO-d6) upon addition of successive aliquots of TBAF (DMS...
Figure 9: Crystal structure of complex 3 with atom numbering scheme (top) and a side view of the molecule (bo...
Figure 10: Pattern of intramolecular and intermolecular contacts in 3. Two molecules are linked by pairs of st...
Figure 11: Layered structure of complex 3 viewed along the a-axis. The dimers are linked together through hydr...
Graphical Abstract
Figure 1: Molecular structures of trans-vic-(hydroxymethyl)(methyl)-BEDT-TTF (1), trans-vic-bis(hydroxymethyl...
Scheme 1: Synthesis of donor trans-1.
Scheme 2: Synthesis of enantiopure donor (S,S)-2.
Figure 2: (a) Crystal structure, (b) θ21-type donor arrangement of molecules A and A’ [(S,S) and (R,R)-2 indi...
Figure 3: Crystal structure (a) viewed along the a-axis, (b) donor arrangement, (c) viewed along the b-axis, ...
Figure 4: Temperature dependences of electrical resistivities for (a) achiral charge transfer salt θ21-[(S,S)-...
Graphical Abstract
Figure 1: Radially expanded TTF oligomers 1 and 2a,b.
Figure 2: TTF-calix[4]pyrrole 3 and its TNT and C60 complexes 4 and 5.
Figure 3: C3-symmetric TTF derivatives 6a,b and 7a–c.
Figure 4: Radially expanded TTF derivatives 8, 9, and 10a,b.
Figure 5: Amphiphilic TTFs 11–14 and 15a,b.
Figure 6: TTF dimers linked by σ-bond (16) and conjugated π-systems (17–19).
Scheme 1: Synthesis of star-shaped TTF trimers 22 and 23.
Figure 7: Projections of the molecular array of 22 in crystal structure (a) along with the c axis and (b) fro...
Figure 8: UV–vis/NIR spectra of 23, 23•+, 233+, and 236+.
Scheme 2: Synthesis of tris(TTF)[12]annulenes 28 and 29 and tris(TTF)[18]annulenes 30 and 31, together with h...
Figure 9: TTF-fused annulene 33 and radiannulenes 34 and 35.
Figure 10: Colors of 30 solutions a–d in toluene (0.025 mM) at various temperatures. (a) λmax: 511 nm, (b) λmax...
Figure 11: Solutions of 33. (a) In CS2, λmax: 608 nm. (b) In CH2Cl2, λmax: 577 nm. Reprinted with permission f...
Figure 12: Optical micrographs (1000× magnified) of fibers, prepared from 30 in THF–H2O 1:1, on a glass plate ...
Scheme 3: Star-shaped TTF oligomers 38–43.
Figure 13: Star-shaped TTF 10-mer 44.
Figure 14: Cyclic voltammograms of 38, 40, and 42 (0.1 mM) in benzonitrile with 0.1 M n-Bu4PF6 as a supporting...
Figure 15: Stepwise oxidation of (a) 38 (0.02 mM), (b) 40 (0.05 mM), and (c) 42 (0.03 mM) with incremental add...
Scheme 4: Pyridazine-3,6-diol-TTF 45 and its trimer 46.
Figure 16: CT-complex of 47 with TCNQF4.
Figure 17: (a) Star-shaped TTF hexamer 48. (b) Optical image of 48 fiber with a hexagonal structure. (c) Optic...
Graphical Abstract
Scheme 1: The synthesis of PT based conjugated systems with the TTF unit incorporated within the polymer back...
Scheme 2: PT with pendant TTF units, prepared by electropolymerisation.
Figure 1: Cyclic voltammograms of copolymers electrodeposited from nitrobenzene solutions of TTF modified mon...
Scheme 3: PT with pendant TTF units prepared by electropolymerisation and post-modification of polymerised PT...
Scheme 4: Synthesis of PT with pendant TTF by post-modification of the polymer prepared by direct arylation.
Scheme 5: Retrosynthetic scheme for the synthesis of the monomer building block which is required for the pre...
Scheme 6: Synthesis of bisfunctionalised derivatives of vinylene trithiocarbonate 21 and 25c required for syn...
Scheme 7: Retrosynthetic scheme for the synthesis of the building block which is required for the preparation...
Scheme 8: The monomers 14a, 14c and electropolymerisation of 28a.
Figure 2: Cyclic voltammograms of a thin film of 34 at various scan rates (25 mV, 50 × n mV/s, n = 1–10). Ada...
Scheme 9: Chemical polymerisation of 14b into polymers 35, 37 and 39.
Figure 3: Spectroelectrochemistry of polymers 37 (a) and 34 (b) as thin films deposited on the working electr...
Scheme 10: Photoinduced charge transfer from the TTF of polymer 39 to PC61BM.
Scheme 11: Electropolymerisation of 40 and 41 into polymers 45 and 46, respectively, and Stille polymerisation...
Scheme 12: The synthesis of polymer 48.
Figure 4: Tapping mode AFM height images of polymer 48 film spin-coated from chlorobenzene (left) and chlorof...
Scheme 13: The synthesis of TTF-sexithiophene system 51 and the structure of the parent sexithiophene 53.
Scheme 14: The synthesis of TTF-oligothiophene H-shaped systems 54 (n = 0–2).
Scheme 15: The oxidation of a fused TTF-oligothiophene system.
Figure 5: Molecular structure and packing arrangement of compound 54 (n = 2). Adapted by permission from [92]. Co...
Figure 6: AFM tapping mode images of the compound 54 (n = 1) film cast on an untreated SiO2 substrate surface...
Graphical Abstract
Scheme 1: Synthesis of 2-N,N-dialkylamino-4-([2.2]paracyclophan-4-yl)-1,3-dithiol-2-ylium perchlorates 5.
Figure 1: Molecular structure of compound 4a. Ellipsoids represent 30% probability levels. Selected molecular...
Scheme 2: Synthesis of tetrathiafulvalenes 7.
Figure 2: Molecular structure of compound 6 (two independent molecules). Ellipsoids represent 30% probability...
Graphical Abstract
Figure 1: Molecular structure of TTF derivatives T1 and T2.
Scheme 1: The synthetic routes of compounds T1 and T2.
Figure 2: SEM images of T1 (a) and T2 (b) films on glass substrates (drop-coated from diluted T1 or T2 soluti...
Figure 3: The UV–vis spectra of T1 (a) and T2 (b) at different concentrations in ethyl acetate.
Figure 4: IR spectra of (a) T1, (b) T2, (c) TCNQ, (d) T2/TCNQ, and (e) T1/TCNQ.
Figure 5: (a) UV–vis spectra of T1 solutions TCNQ and T1/TCNQ in ethyl acetate (1 × 10−3 M). (b) UV–vis spect...
Figure 6: Cyclic voltammograms of T1 and T2 in DCM. Conditions: 0.1 M tetrabutylammonium hexafluorophosphate,...
Figure 7: Cyclic voltammograms of T1 and TCNQ in DCM. Conditions: 0.1 M tetrabutylammonium hexafluorophosphat...