Search results

Search for "stiffness" in Full Text gives 268 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

New design of operational MEMS bridges for measurements of properties of FEBID-based nanostructures

  • Bartosz Pruchnik,
  • Krzysztof Kwoka,
  • Ewelina Gacka,
  • Dominik Badura,
  • Piotr Kunicki,
  • Andrzej Sierakowski,
  • Paweł Janus,
  • Tomasz Piasecki and
  • Teodor Gotszalk

Beilstein J. Nanotechnol. 2024, 15, 1273–1282, doi:10.3762/bjnano.15.103

Graphical Abstract
  • . The silicon edges under the opMEMS bridge bases were defined to be vertical and precisely located, thanks to the lattice orientation. The opMEMS were 600 μm long, 100 μm wide, and 80 nm thick, with 40 nm of silicon nitride body and 40 nm of platinum paths on top. To reduce the stiffness of the opMEMS
  • analyser to assess the properties of the active device. The measured level of vibration of the MEMS bridge at a known temperature allows its stiffness to be determined with an accuracy of 5% [38]. First, the thermomechanical noise of the structure vibration was measured, then the displacement of the
  • spectral analysis of vibrations [49]. The thermomechanical noise analysis approximates the bridge as a simple harmonic oscillator with one DOF, as has been used for determining the spring constant of AFM cantilevers [50]. This approach provides an approximation for the stiffness k in terms of the measured
PDF
Album
Full Research Paper
Published 23 Oct 2024

Functional morphology of cleaning devices in the damselfly Ischnura elegans (Odonata, Coenagrionidae)

  • Silvana Piersanti,
  • Gianandrea Salerno,
  • Wencke Krings,
  • Stanislav Gorb and
  • Manuela Rebora

Beilstein J. Nanotechnol. 2024, 15, 1260–1272, doi:10.3762/bjnano.15.102

Graphical Abstract
  • nanoindentation tests, discovered that the tibial comb of honeybees exhibits a resilin gradient with a stiffness variation spanning nearly two orders of magnitude, ranging from approximately 25 MPa at the tip to around 645 MPa at the base. This gradient enhances the catapult effect, allowing the comb to produce
  • increased inertia that counteracts the initially dominant adhesion, effectively dislodging attached pollen and dust. The same authors also developed an elastomeric bioinspired stiffness-gradient catapult and demonstrated its potential in practical applications, thus confirming that studies on the functional
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2024

Beyond biomimicry – next generation applications of bioinspired adhesives from microfluidics to composites

  • Dan Sameoto

Beilstein J. Nanotechnol. 2024, 15, 965–976, doi:10.3762/bjnano.15.79

Graphical Abstract
  • degree of controllability or even its ability to self-support under gravitational loads; thus, there is a major interest in stiffness-tunable materials for soft robotic systems [15]. This stiffness tuning in many cases relies on the temporary bonding of composite layers or materials to change effective
  • stiffness. While soft robotics have shown a need for stiffness-tunable materials, the ability for composites in and of themselves to be reversibly bonded potentially opens up a far greater industrial impact and applications in adaptable, smart materials. Even improved sustainability could be achieved if
  • laminates and composites could be reformed and reused. The secret to improve use cases of reversible adhesives and to improve applications in the above three subfields is to use biomimetic materials to manufacture composites which, in turn, have the capacity to change their stiffness, shape, or other
PDF
Album
Supp Info
Perspective
Published 05 Aug 2024

The effect of age on the attachment ability of stick insects (Phasmatodea)

  • Marie Grote,
  • Stanislav N. Gorb and
  • Thies H. Büscher

Beilstein J. Nanotechnol. 2024, 15, 867–883, doi:10.3762/bjnano.15.72

Graphical Abstract
  • increased stiffness are accompanied by the decreased ability to climb an incline [5][16]. Zhou et al. [17] found stiffer and darker “scars” on the pads of aged cockroaches, most likely due to accumulated damage, resulting in the pads not being as compliant as in younger cockroaches. Slifer [18] made similar
  • stiffness of the cuticle of these organs and the internal pressure are important for the functionality and likely susceptible to decay during ageing [42][43]. We investigated the change in attachment ability and tarsal morphology in the species Sungaya aeta Hennemann, 2023 (Heteropterygidae). Members of
  • surface in younger adult individuals. This effect vanished for older adult animals, as attachment forces became more similar on all three substrates. No change of nub morphology was observed in older animals (Figure 7G,I), but a change of stiffness of the nubs could potentially affect their functionality
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2024

Elastic modulus of β-Ga2O3 nanowires measured by resonance and three-point bending techniques

  • Annamarija Trausa,
  • Sven Oras,
  • Sergei Vlassov,
  • Mikk Antsov,
  • Tauno Tiirats,
  • Andreas Kyritsakis,
  • Boris Polyakov and
  • Edgars Butanovs

Beilstein J. Nanotechnol. 2024, 15, 704–712, doi:10.3762/bjnano.15.58

Graphical Abstract
  • the length of the NW. Three-point bending tests Three-point bending tests were performed by AFM (Dimension Edge, Bruker) using noncontact mode cantilevers with nominal stiffness of 42 N/m (NCHR-50, Nanosensors, Figure 6b). The NW lengths and widths for three-point bending were measured by SEM (Nova
PDF
Album
Supp Info
Full Research Paper
Published 18 Jun 2024

Enhancing higher-order modal response in multifrequency atomic force microscopy with a coupled cantilever system

  • Wendong Sun,
  • Jianqiang Qian,
  • Yingzi Li,
  • Yanan Chen,
  • Zhipeng Dou,
  • Rui Lin,
  • Peng Cheng,
  • Xiaodong Gao,
  • Quan Yuan and
  • Yifan Hu

Beilstein J. Nanotechnol. 2024, 15, 694–703, doi:10.3762/bjnano.15.57

Graphical Abstract
  • . More details about the derivation process can be found in [19]. The final result for the transfer function G of the infinite product expansion is obtained as: where s is the (complex) Laplace variable, and m is the mass per unit length. EI and c are the flexural stiffness and the damping coefficient
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2024

Functional fibrillar interfaces: Biological hair as inspiration across scales

  • Guillermo J. Amador,
  • Brett Klaassen van Oorschot,
  • Caiying Liao,
  • Jianing Wu and
  • Da Wei

Beilstein J. Nanotechnol. 2024, 15, 664–677, doi:10.3762/bjnano.15.55

Graphical Abstract
  • [113]. Intriguingly, even after attachment, having motile flagella still matters for the cell as it appears to enable sensing of substrate stiffness [114]. In addition to flagella, other hairs of E. coli include the type-I pili (frimbriae) and type-IV pili [113]. Collaboration between these hairs also
  • –channel protein complex may provide mechanical gating to sense deflections of the mastigonemes caused by fluid flow [112]. Additionally, for bacteria, E. coli, their passive flagella have been linked to sensing the material stiffness of surfaces they attach to [114]. Clusters of hairs, or hair plates, on
PDF
Album
Review
Published 06 Jun 2024

Stiffness calibration of qPlus sensors at low temperature through thermal noise measurements

  • Laurent Nony,
  • Sylvain Clair,
  • Daniel Uehli,
  • Aitziber Herrero,
  • Jean-Marc Themlin,
  • Andrea Campos,
  • Franck Para,
  • Alessandro Pioda and
  • Christian Loppacher

Beilstein J. Nanotechnol. 2024, 15, 580–602, doi:10.3762/bjnano.15.50

Graphical Abstract
  • to perform frequency shift spectroscopy to quantitatively evaluate the tip–sample interaction forces and potentials above individual atoms or molecules. The stiffness of the probe, k, is then required to perform the frequency shift-to-force conversion. However, this quantity is generally known with
  • little precision. An accurate stiffness calibration is therefore mandatory if accurate force measurements are targeted. In nc-AFM, the probe may either be a silicon cantilever, a quartz tuning fork (QTF), or a length extensional resonator (LER). When used in ultrahigh vacuum (UHV) and at low temperature
  • stiffness calibration of a particular type of qPlus sensor in UHV and at 9.8 K by means of thermal noise measurements. The stiffness calibration of such high-k sensors, featuring high quality factors (Q) as well, requires to master both the acquisition parameters and the data post-processing. Our approach
PDF
Album
Supp Info
Full Research Paper
Published 23 May 2024

Modulated critical currents of spin-transfer torque-induced resistance changes in NiCu/Cu multilayered nanowires

  • Mengqi Fu,
  • Roman Hartmann,
  • Julian Braun,
  • Sergej Andreev,
  • Torsten Pietsch and
  • Elke Scheer

Beilstein J. Nanotechnol. 2024, 15, 360–366, doi:10.3762/bjnano.15.32

Graphical Abstract
  • stiffness, the dipolar stray field, and the anisotropy field caused by the spin–orbit interaction [34]. Since the magnetization of layer 1 () and layer 3 () are both parallel to the applied magnetic field (here: positive), the exchange stiffness as well as the dipolar stray field on layer 2 point in the
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2024

Controllable physicochemical properties of WOx thin films grown under glancing angle

  • Rupam Mandal,
  • Aparajita Mandal,
  • Alapan Dutta,
  • Rengasamy Sivakumar,
  • Sanjeev Kumar Srivastava and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2024, 15, 350–359, doi:10.3762/bjnano.15.31

Graphical Abstract
  • measurements, a conductive tip (Ti/Pt coated) having a resonance frequency of approx. 70 kHz, a stiffness of approx. 2 N·m−1, and a radius of curvature of approx. 30 nm was used for KPFM measurements. To examine the uniformity in work function values of each film, different regions on the sample surface were
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • transducer, converting the tip–surface force to changes in its sinusoidal motion as the tip oscillates above the surface with amplitude A ≃ 1 nm, the typical range of tip–surface forces. Furthermore, we desire that the stiffness of the mechanical mode is k ≃ 100 N/m, the typical change in tip–surface force
  • fabricated on the same Si-N layer. By increasing the thickness of the Si-N plate, we increase the surface strain for the same curvature of the cantilever, giving larger values of which also increases the stiffness of the bending mode. We can compensate for the latter by increasing the length and reducing
PDF
Album
Full Research Paper
Published 15 Feb 2024

Exploring disorder correlations in superconducting systems: spectroscopic insights and matrix element effects

  • Vyacheslav D. Neverov,
  • Alexander E. Lukyanov,
  • Andrey V. Krasavin,
  • Alexei Vagov,
  • Boris G. Lvov and
  • Mihail D. Croitoru

Beilstein J. Nanotechnol. 2024, 15, 199–206, doi:10.3762/bjnano.15.19

Graphical Abstract
  • order parameter, and the superfluid stiffness, were elucidated in a prior study [49]. In the present study, we further explore the effects caused by correlated disorder and specifically elucidate the results related to the quasi-particle DOS, an aspect that has so far been overlooked in our earlier
PDF
Album
Full Research Paper
Published 12 Feb 2024

Modification of graphene oxide and its effect on properties of natural rubber/graphene oxide nanocomposites

  • Nghiem Thi Thuong,
  • Le Dinh Quang,
  • Vu Quoc Cuong,
  • Cao Hong Ha,
  • Nguyen Ba Lam and
  • Seiichi Kawahara

Beilstein J. Nanotechnol. 2024, 15, 168–179, doi:10.3762/bjnano.15.16

Graphical Abstract
  • particles on the GO surface, providing the stiffness for DPNR/GO-VTES. Furthermore, tensile strength for DPNR/GO-VTES(a) was slightly higher than that of DPNR/GO-VTES(b), which suggested that GO-VTES(a) may have better interaction with NR than GO-VTES(b). The silica particles on the GO layer may hinder the
PDF
Album
Full Research Paper
Published 05 Feb 2024

Determination of the radii of coated and uncoated silicon AFM sharp tips using a height calibration standard grating and a nonlinear regression function

  • Perawat Boonpuek and
  • Jonathan R. Felts

Beilstein J. Nanotechnol. 2023, 14, 1200–1207, doi:10.3762/bjnano.14.99

Graphical Abstract
  • nanostructured materials, for example, graphene, carbon nanotubes, nanoscale semiconductors, biomaterials, and molecules. Mechanical properties such as surface stiffness, adhesion, friction, electrostatics, and electrowetting can be measured [1][2][3][4]. In contact mode scanning, the contact area between the
  • AFM tip and the sample, which depends on the tip radius, defines how accurately the AFM tip determines those properties and the shape of fabricated micro- and nanostructures. The contact radius of the tip is a key variable for calculating the stiffness and Young’s modulus of the material by fitting
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2023

Spatial variations of conductivity of self-assembled monolayers of dodecanethiol on Au/mica and Au/Si substrates

  • Julian Skolaut,
  • Jędrzej Tepper,
  • Federica Galli,
  • Wulf Wulfhekel and
  • Jan M. van Ruitenbeek

Beilstein J. Nanotechnol. 2023, 14, 1169–1177, doi:10.3762/bjnano.14.97

Graphical Abstract
  • applied method uses conductive atomic force microscopy (CAFM). In this technique, a conductive probe is used in an AFM, which allows for imaging the surface topography (and other characteristics such as adhesion and stiffness) with lateral resolution while simultaneously being able to measure current
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2023

Elasticity, an often-overseen parameter in the development of nanoscale drug delivery systems

  • Agnes-Valencia Weiss and
  • Marc Schneider

Beilstein J. Nanotechnol. 2023, 14, 1149–1156, doi:10.3762/bjnano.14.95

Graphical Abstract
  • properties of drug carriers. Keywords: atomic force microscopy; drug delivery; elasticity; mechanical properties; nanomedicine; nanoparticles; stiffness measurement; tissue/body distribution; Introduction Drug delivery systems are developed with the aim to transport a given drug to the site of action
  • properties of nanoparticles, it nearly impossible to compare studies from different labs and pick a value to aim for during the development of a drug delivery system. This is due to the variety of possibilities to examine and express the mechanical properties of these systems (e.g., stiffness, elasticity
  • particles showed better cellular uptake if no mucus layer was present. In contrast to this, the cellular uptake for semielastic particles was not significantly affected by the presence of a mucus layer [38]. Liposomes with PLGA cores were used by Yu et al. to increase the stiffness in combination with
PDF
Album
Perspective
Published 23 Nov 2023

Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination

  • Zeinab Eftekhari,
  • Nasim Rezaei,
  • Hidde Stokkel,
  • Jian-Yao Zheng,
  • Andrea Cerreta,
  • Ilka Hermes,
  • Minh Nguyen,
  • Guus Rijnders and
  • Rebecca Saive

Beilstein J. Nanotechnol. 2023, 14, 1059–1067, doi:10.3762/bjnano.14.87

Graphical Abstract
  • -right corner of each color map. The expected bulging shape is observed for samples B and C shown in Figure 4b and c, respectively. The smallest sample (D) nonetheless shows a relatively uniform displacement, which can arise from the increased stiffness of the membrane as a result of its minuscule
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2023

Exploring internal structures and properties of terpolymer fibers via real-space characterizations

  • Michael R. Roenbeck and
  • Kenneth E. Strawhecker

Beilstein J. Nanotechnol. 2023, 14, 1004–1017, doi:10.3762/bjnano.14.83

Graphical Abstract
  • nano- and microscale topography, stiffness, and transverse elastic modulus (ET) maps of internal structural features and local mechanical responses in real space. (See the Experimental section for additional details.) As Technora® has often been compared to Kevlar® K29 fibers, we focus further on
  • ®, both the topography and stiffness maps (Figure 2) revealed a consistent microstructure across the fiber diameter at this length scale. Complementing topography and stiffness maps, lateral line profiles (e.g., dashed line, Figure 2a) quantified both topography and stiffness variations across the
  • diameter. Topography and stiffness (Figure 2c) were remarkably uniform across the diameter as well. Only two notable features deviate from our consistent topography and stiffness measurements: (i) slopes from the outer edges inward and (ii) a sudden jump at a lateral position of ca. 5 μm. It should be
PDF
Album
Full Research Paper
Published 05 Oct 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • linkers have been used, many of which contain rigid backbones that have been substituted with multiple carboxylate groups for metal coordination. As linkers in MOFs, organic compounds with fused π rings and strong conjugation are frequently used. Due to their stiffness, they are frequently both very
PDF
Album
Review
Published 01 Jun 2023

Suspension feeding in Copepoda (Crustacea) – a numerical model of setae acting in concert

  • Alexander E. Filippov,
  • Wencke Krings and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 603–615, doi:10.3762/bjnano.14.50

Graphical Abstract
  • of the process, which allows us to make some conclusions about the efficiency of the feeding process at different properties of the setae. The segments were provided with longitudinal (K∥) and transverse (K⟂) stiffness, K∥ = K⟂. The transverse stiffness tends to hold the angle between the neighboring
  • segments close to 180°. According to the goals of this study, we varied the stiffness from segment to segment depending on the hypothetical particular structure. A deformation of the setae produced elastic forces proportional to the seta stiffness. The forces were described by the following equations (see
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2023

Transferability of interatomic potentials for silicene

  • Marcin Maździarz

Beilstein J. Nanotechnol. 2023, 14, 574–585, doi:10.3762/bjnano.14.48

Graphical Abstract
  • symmetry implies isotropy of the stiffness tensor, that is, there are only two distinct elastic constants and they satisfy, in Voigt notation, such conditions that C11 = C22, C33 = (C11 − C12)/2. Structural and mechanical characteristics that were determined from DFT computations, namely lattice parameters
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • as stiffness and abrasion resistance to help the growth of the entrapped cells. In addition, control of the porosity of the involved inorganic materials is key to control efficiently the exchange of metabolites and nutrients with the surrounding environment. In this context, the present contribution
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

Laser-processed antiadhesive bionic combs for handling nanofibers inspired by nanostructures on the legs of cribellate spiders

  • Sebastian Lifka,
  • Kristóf Harsányi,
  • Erich Baumgartner,
  • Lukas Pichler,
  • Dariya Baiko,
  • Karsten Wasmuth,
  • Johannes Heitz,
  • Marco Meyer,
  • Anna-Christin Joel,
  • Jörn Bonse and
  • Werner Baumgartner

Beilstein J. Nanotechnol. 2022, 13, 1268–1283, doi:10.3762/bjnano.13.105

Graphical Abstract
  • the case for these reasons: (1) Due to the smaller radius, the fiber also becomes softer. In consequence, the easier deflection can increase the contact area, resulting in larger forces. The van der Waals force is proportional to the root of the radius, μ ∼ √R, and the materials stiffness, expressed
  • surface. The point of detachment of the fiber from the surface is defined as the detachment point x0. This point can parametrize the curve and is initially assumed to be known. The fiber is assumed to have a certain bending stiffness and, thus, it can be modelled according to the linear elastic (Hookean
  • parameters and some constants such as the Hamaker constant and the elastic modulus of the fiber. These free parameters are the amplitude a and the spatial period Λ = 2λ of the sinusoidal surface, as well as the bending stiffness and the radius of the fiber in the case of S = 0. While finding the minimum of
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2022

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • are usually prepared from ceramic materials, silicon, or metal, they display higher stiffness than polymer-based systems. The risk of clogging the internal canals of the needles upon application is mentioned in the literature as a possible drawback of these systems [142]. Dissolving microneedles are
PDF
Album
Review
Published 24 Oct 2022

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • obtained by using cantilever-based AFM instruments, where cantilevers with stiffness of the order of few tens of newtons per meter were oscillated with amplitudes of a few nanometers [4][5][6][7]. Atomic resolution is achieved if the tip–sample distance is sufficiently reduced, such that short-ranged
  • macroscopic wire tip to the free prong. Compared to the typically used microscopic AFM cantilevers, the tuning fork sensor has a rather high stiffness, k ≈ 2 kN/m. This facilitates AFM operation with small oscillation amplitudes (A < 100 pm) because a snap-to-contact or instabilities of the phase-locked loop
  • tip–sample interaction. However, because of the macroscopic size of the tuning fork, the high stiffness of the sensor goes together with a low resonance frequency typically around 30 kHz. This substantially limits the minimally measurable tip–sample interaction force gradients such that very small AFM
PDF
Album
Full Research Paper
Published 11 Oct 2022
Other Beilstein-Institut Open Science Activities