Search results

Search for "remediation" in Full Text gives 71 result(s) in Beilstein Journal of Nanotechnology.

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • photocatalysts, upgrading the photocatalytic ability, and understanding essential reactions of the photocatalytic process. This paper provides insights into the characteristics of Bi-based photocatalysts, making them a promising future nanomaterial for environmental remediation. The current review discusses the
  • of Bi-based photocatalysts. Keywords: bismuth-based nanomaterials; environmental remediation; heterojunction formation; photocatalysis; Introduction Nanomaterials photocatalysis is a “green” integrative technique that combines physics, chemistry, and materials science with chemical engineering to
  • synthesizing and applying a semiconductor photocatalyst have been published in recent years. A survey on bismuth-based nanocomposites with the search keywords "Bismuth-based nanoparticles for environmental remediation" from 2011 to 2021 yields roughly 15,995 articles. This data illustrates the interest of the
PDF
Album
Review
Published 11 Nov 2022

Rapid fabrication of MgO@g-C3N4 heterojunctions for photocatalytic nitric oxide removal

  • Minh-Thuan Pham,
  • Duyen P. H. Tran,
  • Xuan-Thanh Bui and
  • Sheng-Jie You

Beilstein J. Nanotechnol. 2022, 13, 1141–1154, doi:10.3762/bjnano.13.96

Graphical Abstract
  • simple way to synthesize photocatalytic heterojunction materials with high reusability and the potential of heterojunction photocatalysts in the field of environmental remediation. Keywords: g-C3N4; MgO; nitric oxide; photocatalyst; visible light; Introduction The rapid development of industrialization
  • pollutants with light under ambient conditions [10]. Due to its unique properties, such as high chemical stability and low synthesis cost, graphitic carbon nitride has attracted considerable attention in the realm of environmental remediation [11][12][13]. It is an organic semiconductor that effectively
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • , wheat straw, and rice straw by Ding et al. These CDs were utilized to detect Fe3+, which could be useful in areas of environmental remediation and medical diagnosis [77]. A hydrothermal technique employing near-critical water has been utilized recently to develop a simple, cost-effective, and
PDF
Album
Review
Published 05 Oct 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • functional specific nanosized additives to be used in various water remediation membrane techniques. The adsorption, filtration, photocatalytic, and bactericidal capabilities of the hybrid membranes in removing common major water pollutants such as metal ions, dyes, oils, and biological pollutants have been
  • discussed. Finally, an outlook on the future research pathways to fill the gaps existing in water remediation have been suggested. Keywords: electrospinning; environmental remediation; membrane technologies; nanohybrids; water purification; Review 1 Introduction Nanotechnology is a technique that exploits
  • regulation of parameters has made the electrospun nanofibers find its applications in various areas such as the health sector, food, energy and textile industries, and environmental remediation. Electrospun nanohybrids (ENHs) produced by immobilization of function-specific nanoparticles or mixtures of
PDF
Album
Review
Published 31 Jan 2022

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • nanomaterials in CO2 mitigation and climate change control [20][21][22]. Several other studies reported novel environmental remediation approaches based on nanomaterials [23][24]. Deep eutectic solvents (DESs) are a class of nascent sustainable, non-aqueous solvents, comparable to room-temperature ionic liquids
PDF
Album
Review
Published 18 Aug 2021

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • Micro- and nanorobots (MNRs) present challenges and prospects in the field of nanotechnology. MNRs have been a major direction of technological development and will be widely used in many fields such as biomedicine, electronic technology and sensing, and environmental remediation [1][2][3][4]. Therefore
  • avoid the reassembly of the chains. Doherty et al. [38] pointed out that superparamagnetic nanofibers could prevent the uncontrolled agglomeration of particles because the residual magnetization of this material is almost zero. They applied this technology to sensing and environmental remediation and
  • with different magnetisms with applications in, for example, energy-saving logic, sensors, environmental remediation, and data storage [52]. Chen et al. [53] studied compensated magnetic heterostructures containing ferrimagnetic CoGd alloys and antiferromagnetic IrMn layers. The terahertz emission from
PDF
Album
Review
Published 19 Jul 2021

Boosting of photocatalytic hydrogen evolution via chlorine doping of polymeric carbon nitride

  • Malgorzata Aleksandrzak,
  • Michalina Kijaczko,
  • Wojciech Kukulka,
  • Daria Baranowska,
  • Martyna Baca,
  • Beata Zielinska and
  • Ewa Mijowska

Beilstein J. Nanotechnol. 2021, 12, 473–484, doi:10.3762/bjnano.12.38

Graphical Abstract
  • hydrogen [1][2][3][4], environmental remediation [5][6], decomposition of organic pollutants [7], CO2 reduction into hydrocarbon fuels [8][9][10], disinfection [11][12], and selective organic transformations [13][14]. One of the most studied catalysts is polymeric carbon nitride (PCN). This graphite-like
PDF
Album
Full Research Paper
Published 19 May 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • ][34][35][36], wastewater remediation [37][38], and catalysis [39][40][41][42][43], to name a few. The success of nanotechnology has been established and the promising outcomes cannot be overlooked; however, the main principles behind the production of nanomaterials are yet to be examined more closely
PDF
Album
Review
Published 25 Jan 2021

Preparation, characterization and photocatalytic performance of heterostructured CuO–ZnO-loaded composite nanofiber membranes

  • Wei Fang,
  • Liang Yu and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 631–650, doi:10.3762/bjnano.11.50

Graphical Abstract
  • three times, and the degradation rate remained above 90%. Keywords: electrospinning; composite nanofibers; heterostructured CuO–ZnO; hydrothermal synthesis; photocatalysis; semiconductor oxide; Introduction Water remediation is one of the main scientific research subjects regarding environmental
PDF
Album
Full Research Paper
Published 15 Apr 2020

Nanoarchitectonics: bottom-up creation of functional materials and systems

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2020, 11, 450–452, doi:10.3762/bjnano.11.36

Graphical Abstract
  • ], environmental remediation with sensitive pollutant detection [3][4], and biological and biomedical applications [5][6] is a crucial matter. In addition to the intrinsic functionality of bulk materials, control of their internal structure on the nanometer-scale is realized to be increasingly important to obtain
PDF
Album
Editorial
Published 12 Mar 2020

Advanced hybrid nanomaterials

  • Andreas Taubert,
  • Fabrice Leroux,
  • Pierre Rabu and
  • Verónica de Zea Bermudez

Beilstein J. Nanotechnol. 2019, 10, 2563–2567, doi:10.3762/bjnano.10.247

Graphical Abstract
  • .10.247 Keywords: colloidal chemistry; environmental remediation; hybrid nanomaterials; nanocomposite; nanofillers; nanomedicine; nanostructures; polymer fillers; pore templating; smart materials; The Maya blue pigment that was used in Mexico during the VIIIth century is often given as a prototypical
  • photosensitizers for biological applications. In this work, it was found that the photodynamic efficacy of the system depends on the substituent at the porphyrin phosphinate groups. Environmental Hybrid nanomaterials may play a key role in the field of environmental research, in which environmental remediation and
  • material exhibiting both micro- and mesopores [37]. The material is efficient in adsorbing water micropollutants, as well as the pathogen E. coli., lending itself for application in water remediation. For the same application, a silica matrix, onto which the conjugated β-ketoenol–pyridine–furan ligand is
PDF
Editorial
Published 20 Dec 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • detection of various risks [9][10][11], environmental remediation including pollution problems [12][13][14], energy production [15][16][17], energy and electricity storage [18][19][20], device technologies [21][22][23], and biomedical treatment [24][25][26][27], and the targets must be detected with high
PDF
Album
Review
Published 16 Oct 2019

Layered double hydroxide/sepiolite hybrid nanoarchitectures for the controlled release of herbicides

  • Ediana Paula Rebitski,
  • Margarita Darder and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2019, 10, 1679–1690, doi:10.3762/bjnano.10.163

Graphical Abstract
  • palygorskite has increased, yielding nanoplatforms useful in a large number of applications from catalysis, environmental remediation, energy production and storage to biomedicine [14][18]. The co-assembly of particles can be reached through several methods, from the direct assembly of the clay to diverse
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2019

BiOCl/TiO2/diatomite composites with enhanced visible-light photocatalytic activity for the degradation of rhodamine B

  • Minlin Ao,
  • Kun Liu,
  • Xuekun Tang,
  • Zishun Li,
  • Qian Peng and
  • Jing Huang

Beilstein J. Nanotechnol. 2019, 10, 1412–1422, doi:10.3762/bjnano.10.139

Graphical Abstract
  • , low-cost and ease of application, which are superior to other approaches of environmental remediation [8][9]. However, the application of photocatalysis is still hindered due to the agglomeration of photocatalyst particles, the difficulty of photocatalyst recovery and low photocatalytic performance
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2019

Construction of a 0D/1D composite based on Au nanoparticles/CuBi2O4 microrods for efficient visible-light-driven photocatalytic activity

  • Weilong Shi,
  • Mingyang Li,
  • Hongji Ren,
  • Feng Guo,
  • Xiliu Huang,
  • Yu Shi and
  • Yubin Tang

Beilstein J. Nanotechnol. 2019, 10, 1360–1367, doi:10.3762/bjnano.10.134

Graphical Abstract
  • , enhancing photoresponse and providing more active sites. Our work shows a possible design of efficient photocatalysts for environmental remediation. Keywords: Au nanoparticles; 0D/1D composite; CuBi2O4 microrods; photocatalysis; photocatalytic degradation; Introduction Heterogeneous semiconductor
  • work suggests a rational structure design of efficient photocatalysts for environmental remediation. Synthesis of Au/CBO composite. (a) XRD patterns of CBO and 2.5 wt % Au/CBO; (b) UV–vis diffuse reflectance spectra of as-prepared composites. (a, b) SEM images and (c) EDX spectrum of the 2.5 wt % Au
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2019

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  • Eduardo Ruiz-Hitzky,
  • Pilar Aranda,
  • Marwa Akkari,
  • Nithima Khaorapapong and
  • Makoto Ogawa

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

Graphical Abstract
  • semiconductors such as ZnO are increasingly investigated for processes concerning environmental remediation, antibacterial activity and chemical technologies for hydrogen production and synthesis of organic compounds [22]. Anyway, according to WoS, in the given period TiO2 NPs appear to be cited ten times more
  • often than ZnO NPs regarding their use as photocatalysts. One of the main applications of clay–semiconductor materials is the mineralization of organic pollutants, which represents an ideal solution for the remediation of wastewater contaminated with diverse organic species. This process consists in the
PDF
Album
Review
Published 31 May 2019

Removal of toxic heavy metals from river water samples using a porous silica surface modified with a new β-ketoenolic host

  • Said Tighadouini,
  • Smaail Radi,
  • Abderrahman Elidrissi,
  • Khadija Haboubi,
  • Maryse Bacquet,
  • Stéphanie Degoutin,
  • Mustapha Zaghrioui and
  • Yann Garcia

Beilstein J. Nanotechnol. 2019, 10, 262–273, doi:10.3762/bjnano.10.25

Graphical Abstract
  • cycles of adsorption/desorption. Compared to literature results, this material can be considered a high-performing remediation adsorbent for the extraction of Zn(II) from natural real water solution. Keywords: heavy metals; hybrid materials; β-ketoenol–pyridine–furan ligands; polluted media; porous
  • silica; remediation; Introduction Nowadays, pollution by a large number of heavy metals in water sources is commonly observed due the constant economical growth of our modern society. This environmental issue is being seriously considered by different circles [1][2], given that heavy metal ions are
  • removal of heavy metals from real aqueous solutions – a topic which bears enormous importance in environmental remediation. FTIR spectra of SiG, SiNH2 and SiNL. SEM images of free silica (SiG), SiNH2 and SiNL. Thermogravimetric profiles of free silica SiG, SiNH2 and SiNL. Nitrogen adsorption–desorption
PDF
Album
Full Research Paper
Published 23 Jan 2019

New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water

  • Emmanuel I. Unuabonah,
  • Robert Nöske,
  • Jens Weber,
  • Christina Günter and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2019, 10, 119–131, doi:10.3762/bjnano.10.11

Graphical Abstract
  • matter. The new composite is stable up to 900 °C and is an efficient adsorbent for the removal of a water micropollutant, 4-nitrophenol, and a pathogen, E. coli, from an aqueous medium, suggesting applications in water remediation are feasible. Keywords: 4-nitrophenol; Carica papaya seeds; clay; E. coli
  • ; micro/mesoporous; nanocomposite; water remediation; Introduction Porous carbon-based materials and carbon/inorganic hybrid materials have extensively been used for the adsorption of pollutants, such as heavy metals or aromatic hydrocarbons, from water in developing countries [1][2][3][4]. The removal
  • overcome these issues. When water remediation in developing countries is considered, the price of the materials and not their performance is unfortunately the key aspect to take into account. Current technologies such as activated carbon or silica-based materials are still too expensive for these
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
  • many other sustainable functional nanomaterials, nanocellulose is drawing increasing interest for use in environmental remediation technologies due to its numerous unique properties and functionalities. Nanocellulose is usually derived from the disintegration of naturally occurring polymers or produced
  • by the action of bacteria. In this review, some invigorating perspectives on the challenges, future direction, and updates on the most relevant uses of nanocellulose in environmental remediation are discussed. The reported applications and properties of nanocellulose as an adsorbent, photocatalyst
  • , flocculant, and membrane are reviewed in particular. However, additional effort will be required to implement and commercialize nanocellulose as a viable nanomaterial for remediation technologies. In this regard, the main challenges and limitations in working with nanocellulose-based materials are identified
PDF
Album
Review
Published 19 Sep 2018

Block copolymers for designing nanostructured porous coatings

  • Roberto Nisticò

Beilstein J. Nanotechnol. 2018, 9, 2332–2344, doi:10.3762/bjnano.9.218

Graphical Abstract
  • many separation processes of complex matrices, such as in the clarification of beverages (i.e., milk, beer, and juices), the remediation of polluted water, or in the selective removal of bacteria and viruses from bloods. The main advantage of this technique is that membrane technology is a simple
PDF
Album
Review
Published 29 Aug 2018

Hierarchical heterostructures of Bi2MoO6 microflowers decorated with Ag2CO3 nanoparticles for efficient visible-light-driven photocatalytic removal of toxic pollutants

  • Shijie Li,
  • Wei Jiang,
  • Shiwei Hu,
  • Yu Liu,
  • Yanping Liu,
  • Kaibing Xu and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 2297–2305, doi:10.3762/bjnano.9.214

Graphical Abstract
  • environmental remediation [3][4][5][6]. Crucial to photocatalysis is to obtain high-performance photocatalysts [7][8]. Obtaining excellent photocatalysts that can be excited by visible light (43% of the solar energy spectrum) is very important for practical applications [9][10][11][12][13][14]. Bi2MoO6 has been
  • efficient VLD photocatalyst with promising applications in environmental remediation. Experimental Materials Bi(NO3)3·5H2O, NaHCO3, NH3·H2O, Na2MoO4·2H2O, rhodamine B (RhB), methyl blue (MB), tetracycline hydrochloride (TC), methyl orange (MO), isopropanol (IPA), AgNO3, p-benzoquinone (BQ), and ammonium
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
  • industrial processes pose threat to aquatic life and downstream users. Various treatment techniques, such as chemical reduction, ion exchange, bacterial degradation, adsorption and photocatalysis, have been exploited for remediation of Cr(VI) from wastewater. Among these, photocatalysis has recently gained
  • practical applications in remediation of Cr(VI) from wastewater were addressed in the Conclusion section as well. The future perspectives of the field presented in this review are focused on the development of whole-solar-spectrum responsive, TiO2-coupled photocatalysts which provide efficient
PDF
Album
Review
Published 16 May 2018

Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

  • Mengyuan Zhang,
  • Jiaqian Qin,
  • Pengfei Yu,
  • Bing Zhang,
  • Mingzhen Ma,
  • Xinyu Zhang and
  • Riping Liu

Beilstein J. Nanotechnol. 2018, 9, 789–800, doi:10.3762/bjnano.9.72

Graphical Abstract
  • well as the high specific area. Keywords: BiOI; photocatalytic degradation; p–n heterojunction; ZnO; Introduction The development of semiconductor photocatalysis has opened a new horizon for environmental pollution remediation and provides a potential solution to the global energy problem given the
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2018

Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices

  • T. Anh Thu Do,
  • Truong Giang Ho,
  • Thu Hoai Bui,
  • Quang Ngan Pham,
  • Hong Thai Giang,
  • Thi Thu Do,
  • Duc Van Nguyen and
  • Dai Lam Tran

Beilstein J. Nanotechnol. 2018, 9, 771–779, doi:10.3762/bjnano.9.70

Graphical Abstract
  • are expected to serve as a potential photocatalysts with highly effective performance. For instance, plasmonic Au NP/vertically aligned ZnO nanorod structures were proposed for water splitting, solar cells, and environmental remediation [17][18][19]. Ag/ZnO nanohybrid structures were synthesized and
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2018

Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation

  • Ashish Kumar,
  • Christian Schuerings,
  • Suneel Kumar,
  • Ajay Kumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2018, 9, 671–685, doi:10.3762/bjnano.9.62

Graphical Abstract
  • degradation of pollutants has been proposed and discussed. Keywords: CaTiO3; graphitic carbon nitride (g-C3N4); heterojunction photocatalyst; pollutant degradation; Introduction Photocatalysis is recognized as an attractive approach for environmental remediation and energy generation applications due to its
  • earth-abundant carbon and nitrogen elements and the low cost of the initial precursors promotes it as a promising photocatalytic material for diverse applications, such as energy generation [17][18][19], sensor [20], and fuel cell applications [21], as well as environmental remediation [22]. The band
  • attributed to the exact positions of energy band offsets of the coupled materials, which facilitates the photogenerated charge transfer and effectively suppresses their recombination. Moreover, perovskite materials are also potential candidates for environmental remediation applications and are well-explored
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2018
Other Beilstein-Institut Open Science Activities