Search results

Search for "composite materials" in Full Text gives 124 result(s) in Beilstein Journal of Nanotechnology.

The nanoscaled metal-organic framework ICR-2 as a carrier of porphyrins for photodynamic therapy

  • Jan Hynek,
  • Sebastian Jurík,
  • Martina Koncošová,
  • Jaroslav Zelenka,
  • Ivana Křížová,
  • Tomáš Ruml,
  • Kaplan Kirakci,
  • Ivo Jakubec,
  • František Kovanda,
  • Kamil Lang and
  • Jan Demel

Beilstein J. Nanotechnol. 2018, 9, 2960–2967, doi:10.3762/bjnano.9.275

Graphical Abstract
  • identical conditions (e.g., irradiation wavelength, time, dose). We can compare the activity of nanoICR-2/TPPPi(Ph) with the activity of previously studied PCN-222 nanoparticles where both systems display comparable activity [22]. Conclusion In the context of photodynamic therapy, we present composite
  • materials based on nanoparticles of the ICR-2 metal-organic framework decorated with phosphinic acid-substituted porphyrins. These substituted porphyrins showed superior affinity towards the Fe-MOF ICR-2 in comparison with the well-known tetracarboxyphenyl porphyrin, and this feature allows for superior
PDF
Album
Supp Info
Full Research Paper
Published 30 Nov 2018

Graphene-enhanced metal oxide gas sensors at room temperature: a review

  • Dongjin Sun,
  • Yifan Luo,
  • Marc Debliquy and
  • Chao Zhang

Beilstein J. Nanotechnol. 2018, 9, 2832–2844, doi:10.3762/bjnano.9.264

Graphical Abstract
  • turn leads to a high specific surface area. Graphene enhances the conductivity of the composite materials, enabling the composite sensors to achieve a high response at low operating temperatures. Moreover, the introduction of graphene provides more adsorption sites at the surface of the composite so
PDF
Album
Review
Published 09 Nov 2018

Nanostructured liquid crystal systems and applications

  • Alexei R. Khokhlov and
  • Alexander V. Emelyanenko

Beilstein J. Nanotechnol. 2018, 9, 2644–2645, doi:10.3762/bjnano.9.245

Graphical Abstract
  • . There have also been reports of some very interesting experiments with nanocomposites where the solid nanoparticles are dissolved in liquid crystals. Composite materials and mixtures of liquid crystals usually possess better properties than their pure liquid crystal counterparts. Many challenges could
PDF
Editorial
Published 05 Oct 2018

Hydrothermal-derived carbon as a stabilizing matrix for improved cycling performance of silicon-based anodes for lithium-ion full cells

  • Mirco Ruttert,
  • Florian Holtstiege,
  • Jessica Hüsker,
  • Markus Börner,
  • Martin Winter and
  • Tobias Placke

Beilstein J. Nanotechnol. 2018, 9, 2381–2395, doi:10.3762/bjnano.9.223

Graphical Abstract
  • morphology and structure of the composite materials, as well as the resilience of the hydrothermal carbon against the volumetric changes of Si, in order to examine the opportunities and limitations of the applied matrix approach. Compared to a physical mixture of Si-NPs and the pure carbon matrix, the
  • -type) was used to investigate the morphology of the synthesized composite materials. Cycled electrodes were analyzed after washing with DMC and drying in an argon filled glovebox. Multiple areas per sample were analyzed using an Auriga CrossBeam workstation from Zeiss at an acceleration voltage of 3 kV
  • . Energy-dispersive X-ray spectroscopy (EDX) measurements were used to investigate the elemental composition of the composite materials using an acceleration voltage of 20 kV. The EDX signal was detected by an X-Max 80 mm2 detector and evaluated with the INCA software, both from Oxford Instruments. Cross
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • electrospun nanofibers as the sensing layer. These materials include: metal oxide (MOx) semiconductors (e.g., SnO2, TiO2, SiO2) [83][84], doped MOx semiconductors [4][5][6][7][8][9][10][11], composite materials made of MOx semiconducting materials (e.g., ZnO-In2O3) [86], conducting polymer-based gas sensors
PDF
Album
Supp Info
Review
Published 13 Aug 2018

A scanning probe microscopy study of nanostructured TiO2/poly(3-hexylthiophene) hybrid heterojunctions for photovoltaic applications

  • Laurie Letertre,
  • Roland Roche,
  • Olivier Douhéret,
  • Hailu G. Kassa,
  • Denis Mariolle,
  • Nicolas Chevalier,
  • Łukasz Borowik,
  • Philippe Dumas,
  • Benjamin Grévin,
  • Roberto Lazzaroni and
  • Philippe Leclère

Beilstein J. Nanotechnol. 2018, 9, 2087–2096, doi:10.3762/bjnano.9.197

Graphical Abstract
  • illumination. The result aimed at demonstrating the absence of light-induced artefact during the recording of topography, as well as the negligibility of the photovoltaic effect at the TiO2/ITO interface. Acknowledgements The authors are grateful to R. Di Ciuccio (Laboratory of Polymeric and Composite
  • Materials, University of Mons) for the synthesis of P3HT-COOH. The nanoporous TiO2 layers were synthesized by J. Delvaux (Laboratory of Plasma-Surface Interactions Chemistry, University of Mons). This work was supported by the Action de Recherche Concertée program (MADSSCELLS project), the Science Policy
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2018

Defect formation in multiwalled carbon nanotubes under low-energy He and Ne ion irradiation

  • Santhana Eswara,
  • Jean-Nicolas Audinot,
  • Brahime El Adib,
  • Maël Guennou,
  • Tom Wirtz and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2018, 9, 1951–1963, doi:10.3762/bjnano.9.186

Graphical Abstract
  • defect production in SWCNTs [26], the characterisation of composite materials containing MWCNTs [27], the implantation of Si and C ions into DWCNTs [28], and to differentiate between carbon materials with different sp2 environment [29]. The latter study focused on graphene, highly oriented pyrolytic
PDF
Album
Supp Info
Full Research Paper
Published 09 Jul 2018

Uniform cobalt nanoparticles embedded in hexagonal mesoporous nanoplates as a magnetically separable, recyclable adsorbent

  • Can Zhao,
  • Yuexiao Song,
  • Tianyu Xiang,
  • Wenxiu Qu,
  • Shuo Lou,
  • Xiaohong Yin and
  • Feng Xin

Beilstein J. Nanotechnol. 2018, 9, 1770–1781, doi:10.3762/bjnano.9.168

Graphical Abstract
  • composite materials are expected to show excellent performance in the preparation of TM-MCNs. Here we report a facile approach for the preparation of novel hexagonal nanoplates (NPLs) containing magnetic Co nanoparticles (in CoAl2O4 phase) and porous carbon by carbonizing PDA-coated CoAl LDH, which can be
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2018

Photoluminescence of CdSe/ZnS quantum dots in nematic liquid crystals in electric fields

  • Margarita A. Kurochkina,
  • Elena A. Konshina and
  • Daria Khmelevskaia

Beilstein J. Nanotechnol. 2018, 9, 1544–1549, doi:10.3762/bjnano.9.145

Graphical Abstract
  • nanocrystals. These nanoparticles (NPs) of spherical shape are unique luminophores due to the dimensional dependence of the optical properties. The small dimensions of QDs (of the order of 1–10 nm) make it possible to integrate QDs relatively easily into hybrid structures and composite materials. Quantum dots
PDF
Album
Full Research Paper
Published 23 May 2018

Preparation and morphology-dependent wettability of porous alumina membranes

  • Dmitry L. Shimanovich,
  • Alla I. Vorobjova,
  • Daria I. Tishkevich,
  • Alex V. Trukhanov,
  • Maxim V. Zdorovets and
  • Artem L. Kozlovskiy

Beilstein J. Nanotechnol. 2018, 9, 1423–1436, doi:10.3762/bjnano.9.135

Graphical Abstract
  • [10][11], and the development of new nanoporous composite materials based on PAA [12][13]. Both of these are commercially available. Porous silicon formed by electrochemical anodizing [14], zeolites [15], porous mica [16], nanoporous polymer glasses [17] and other materials [18] have also been studied
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2018

The electrical conductivity of CNT/graphene composites: a new method for accelerating transmission function calculations

  • Olga E. Glukhova and
  • Dmitriy S. Shmygin

Beilstein J. Nanotechnol. 2018, 9, 1254–1262, doi:10.3762/bjnano.9.117

Graphical Abstract
  • of methods for accelerating the calculation of the transmission function without a significant loss in the accuracy of calculations has particular relevance and significance for research of the electrical conductive properties of new composite materials. At present, such accelerating techniques are
  • especially critical at considering new carbon composite materials such as pillared graphene and other varieties of graphene–nanotube structures. The purpose of this work is to propose an alternative approach to the calculation of transmission function and electrical conductance of composite nanomaterials
  • a diameter of 1.23 nm (tubes of diameter 1–1.5 nm are typical for such composite materials). The distance between the tubes was equal to 2.1 nm, the length of the tubes (i.e., the distance between the layers of graphene) ranged from 1.1 to 2.4 nm. The graphene sheet had a length of 2.45 nm along the
PDF
Album
Full Research Paper
Published 20 Apr 2018

Facile phase transfer of gold nanorods and nanospheres stabilized with block copolymers

  • Yaroslav I. Derikov,
  • Georgiy A. Shandryuk,
  • Raisa V. Talroze,
  • Alexander A. Ezhov and
  • Yaroslav V. Kudryavtsev

Beilstein J. Nanotechnol. 2018, 9, 616–627, doi:10.3762/bjnano.9.58

Graphical Abstract
  • positioning in host matrices. Control over the size, shape and surface of nanoparticles is an effective tool that can be used in bottom up approaches for the fabrication of composite materials [1][2]. An optimal strategy of nanoparticle synthesis should account for their target application. For example, block
PDF
Album
Full Research Paper
Published 16 Feb 2018

Electron interactions with the heteronuclear carbonyl precursor H2FeRu3(CO)13 and comparison with HFeCo3(CO)12: from fundamental gas phase and surface science studies to focused electron beam induced deposition

  • Ragesh Kumar T P,
  • Paul Weirich,
  • Lukas Hrachowina,
  • Marc Hanefeld,
  • Ragnar Bjornsson,
  • Helgi Rafn Hrodmarsson,
  • Sven Barth,
  • D. Howard Fairbrother,
  • Michael Huth and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2018, 9, 555–579, doi:10.3762/bjnano.9.53

Graphical Abstract
  • ligands can be cleaved more efficiently by low energy electrons than other ligands such as allyl and halides [37][49]. Therefore the investigation of Ru carbonyls as potential FEBID precursors is a promising route. Presently, deposition of heterometallic or composite materials containing more than one
PDF
Album
Supp Info
Full Research Paper
Published 14 Feb 2018

Ultralight super-hydrophobic carbon aerogels based on cellulose nanofibers/poly(vinyl alcohol)/graphene oxide (CNFs/PVA/GO) for highly effective oil–water separation

  • Zhaoyang Xu,
  • Huan Zhou,
  • Sicong Tan,
  • Xiangdong Jiang,
  • Weibing Wu,
  • Jiangtao Shi and
  • Peng Chen

Beilstein J. Nanotechnol. 2018, 9, 508–519, doi:10.3762/bjnano.9.49

Graphical Abstract
  • history of using plant cellulose fibers as reinforcements in polymer composite materials [13][14]. However, the use of nanoscale cellulose fibers to reinforce polymers is a relatively recent effort [15][16]. Despite the challenges described below, CNFs have been combined with various polymer matrices
PDF
Album
Full Research Paper
Published 12 Feb 2018

Engineering of oriented carbon nanotubes in composite materials

  • Razieh Beigmoradi,
  • Abdolreza Samimi and
  • Davod Mohebbi-Kalhori

Beilstein J. Nanotechnol. 2018, 9, 415–435, doi:10.3762/bjnano.9.41

Graphical Abstract
  • , they are considered by some as the preferred technique for engineering of oriented CNTs. This review focuses on recent progress in the improvement of the orientation and alignment of CNTs in composite materials. Moreover, the advantages and disadvantages of the processes are discussed as well as their
  • future outlook. Keywords: arrangement and alignment; carbon nanotubes; composite materials; orientation; Review Introduction Carbon is one of the most abundant elements comprising the world around us. Before 1985 graphite and diamond were the only known structural forms of carbon [1]. In 1991, Iijima
  • a MWCNT consists of many coaxial single-walled tubes nested inside each other. Considering the excellent mechanical and electrical characteristics of CNTs, interest in using them in industry is increasing every day. Various industrial applications of produced CNT composite materials, especially
PDF
Album
Review
Published 05 Feb 2018

Design of polar self-assembling lactic acid derivatives possessing submicrometre helical pitch

  • Alexej Bubnov,
  • Cyril Vacek,
  • Michał Czerwiński,
  • Terezia Vojtylová,
  • Wiktor Piecek and
  • Věra Hamplová

Beilstein J. Nanotechnol. 2018, 9, 333–341, doi:10.3762/bjnano.9.33

Graphical Abstract
  • derivatives demonstrate their high ability to be used as smart and functional dopants for the design and tailoring of the advanced multicomponent LC mixtures [21][22][23][24][25] and LC composite materials [25][26][27][28][29][30][31][32] and tuning their properties. It is quite obvious that the weakening of
PDF
Album
Full Research Paper
Published 29 Jan 2018

Advances in nanocarbon composite materials

  • Sharali Malik,
  • Arkady V. Krasheninnikov and
  • Silvia Marchesan

Beilstein J. Nanotechnol. 2018, 9, 20–21, doi:10.3762/bjnano.9.3

Graphical Abstract
  • Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany, University of Trieste, Department of Chemical and Pharmaceutical Sciences, Via L. Giorgieri 1, Trieste 34127, Italy 10.3762/bjnano.9.3 Keywords: nano-augmented composite materials; Materials have always been crucial to human
  • entering the Composite Age. In particular, nanocarbons display unique properties to innovate in practically all technological sectors and branches of industry. This cutting-edge use of nano-augmented composite materials has the potential to reduce environmental pollution, to conserve resources, to save
  • , Moldova, Korea, China, Japan, Australia and New Zealand. This Thematic Series highlights virtually all subfields of advanced nanocarbon materials research, from the longer established fields of carbon nanofibers, graphene oxide (GO) and multiwalled carbon nanotubes (MWCNTs) in composite materials, to the
PDF
Editorial
Published 03 Jan 2018

Magnetic field induced orientational transitions in liquid crystals doped with carbon nanotubes

  • Danil A. Petrov,
  • Pavel K. Skokov and
  • Alexander N. Zakhlevnykh

Beilstein J. Nanotechnol. 2017, 8, 2807–2817, doi:10.3762/bjnano.8.280

Graphical Abstract
  • ferronematics have been published [4][5], which indicates the interest in this kind of composite materials. Along with ferri- or ferromagnetic particles it is also possible to use carbon nanotubes (CNTs) in order to increase the magneto-orientational response of the LC matrix [6][7]. Due to the highly elongated
PDF
Album
Full Research Paper
Published 29 Dec 2017

Exploring wear at the nanoscale with circular mode atomic force microscopy

  • Olivier Noel,
  • Aleksandar Vencl and
  • Pierre-Emmanuel Mazeran

Beilstein J. Nanotechnol. 2017, 8, 2662–2668, doi:10.3762/bjnano.8.266

Graphical Abstract
  • . Finally, we describe the advantages of this method and we report a relevant application example addressing a Cu/Al2O3 nanocomposite material used in industrial applications. Keywords: circular mode atomic force microscopy; composite materials; image processing; nanowear; wear mechanisms; Introduction
PDF
Album
Full Research Paper
Published 11 Dec 2017

Synthesis of metal-fluoride nanoparticles supported on thermally reduced graphite oxide

  • Alexa Schmitz,
  • Kai Schütte,
  • Vesko Ilievski,
  • Juri Barthel,
  • Laura Burk,
  • Rolf Mülhaupt,
  • Junpei Yue,
  • Bernd Smarsly and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2017, 8, 2474–2483, doi:10.3762/bjnano.8.247

Graphical Abstract
  • important technical applications [15][16][17][18][19][20][21][22]. They can be used as composite materials [23][24], in chemical sensors [25], electrodes for fuel cells [26][27][28], for catalysis [29][30][31][32] or for hydrogen storage [33]. Because of their high ionic charge, polarity and dielectric
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2017

Laser-assisted fabrication of gold nanoparticle-composed structures embedded in borosilicate glass

  • Nikolay Nedyalkov,
  • Mihaela Koleva,
  • Nadya Stankova,
  • Rosen Nikov,
  • Mitsuhiro Terakawa,
  • Yasutaka Nakajima,
  • Lyubomir Aleksandrov and
  • Reni Iordanova

Beilstein J. Nanotechnol. 2017, 8, 2454–2463, doi:10.3762/bjnano.8.244

Graphical Abstract
  • glass; laser nanostructuring; optical properties of composite materials; Introduction The unique optical properties of noble-metal nanoparticles continue to attract the attention of researchers, especially in view of the potential industrial applications. The basic characteristics of the interaction of
  • mainly directed at studying and describing the properties of single nanoparticles and their two-dimensional ensembles, in recent years, research has tended to deal with more complex systems, including three-dimensional architectures, composite materials consisting of nanoparticles, and three-dimensional
PDF
Album
Full Research Paper
Published 21 Nov 2017

High-stress study of bioinspired multifunctional PEDOT:PSS/nanoclay nanocomposites using AFM, SEM and numerical simulation

  • Alfredo J. Diaz,
  • Hanaul Noh,
  • Tobias Meier and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 2069–2082, doi:10.3762/bjnano.8.207

Graphical Abstract
  • dimensions and geometry of the tip. Nevertheless, the measured nanoclay dimensions are in both cases near the expected range (25 ± 4 nm [11]). Composite materials based on nanoclays have a distinctive fractured surface morphology. One way of verifying the layered structure of the nanocomposites is to image
  • can be estimated using models for composite materials’ Young’s modulus and stress behavior (σ = Eε). When the yield strength is considered as the limit of the linear response, the modified Pukánszky model [65] describes the stress. This model has been optimized for describing the yield strength of
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2017

A systematic study of the controlled generation of crystalline iron oxide nanoparticles on graphene using a chemical etching process

  • Peter Krauß,
  • Jörg Engstler and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2017, 8, 2017–2025, doi:10.3762/bjnano.8.202

Graphical Abstract
  • detail and analyzed different parameters determining the etching outcome. Interestingly we could pinpoint conditions which allow control of the iron oxide particle formation on graphene. With that, we were able to devise a method for graphene/metal oxide composite materials by controlling the Faradaic
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2017

Enhancement of mechanical and electrical properties of continuous-fiber-reinforced epoxy composites with stacked graphene

  • Naum Naveh,
  • Olga Shepelev and
  • Samuel Kenig

Beilstein J. Nanotechnol. 2017, 8, 1909–1918, doi:10.3762/bjnano.8.191

Graphical Abstract
  • of graphene, along with the high electrical conductivity, promote percolation thresholds much lower than with metallic powders, carbon fibers or carbon black [13]. Epoxy resins are used as a matrix in high-performance composite materials for aerospace structures, coatings and adhesives for a variety
  • formulation (by weight) was as follows: epoxy: 100 parts; SAA: 1 pph; expanded graphite (EG): 2.5 pph (or 2.1 wt %); hardener TETA: 14.1 pph. Fabrication of composite materials Composite laminates were prepared using carbon fiber (CF) fabric, Kevlar fabric alone or a combination of CF/Kevlar combinations, and
  • surface and volume, was determined with an electrometer (Keithley 6517D). Typically, the characterization comprised five specimens with standard deviations of 5–8%. Morphology of the composite materials was characterized with high-resolution scanning electron microscopy (Zeiss). Specimens were cut from
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2017

Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): a spectroscopic and electrochemical study

  • İlknur Gergin,
  • Ezgi Ismar and
  • A. Sezai Sarac

Beilstein J. Nanotechnol. 2017, 8, 1616–1628, doi:10.3762/bjnano.8.161

Graphical Abstract
  • micrometers and exhibit a high surface area and a high electrical conductivity. Also, nanofibers can be used with polymeric structures to generate composite materials to improve the electrochemical properties of polymeric structures [1][2][3]. Nanofiber-reinforced polymeric structures present improved
PDF
Album
Full Research Paper
Published 07 Aug 2017
Other Beilstein-Institut Open Science Activities