Search results

Search for "dielectric" in Full Text gives 442 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

A distributed active patch antenna model of a Josephson oscillator

  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2023, 14, 151–164, doi:10.3762/bjnano.14.16

Graphical Abstract
  • analysis by introducing the total quality factor, Qtot, of the cavity mode with parallel dissipative and radiative channels, Here, Qdis is associated with all possible dissipative losses, such as QP resistance in the JJ as well as surface resistance in electrodes and dielectric losses while Qrad represents
  • and dielectric losses in the junction barrier and surface resistance in electrodes. According to Equation 37, Rdis is defined via the effective quality factor, Qdis, which can be written as: where QQP, Qsurf and Qdiel are determined by QP, surface, and dielectric losses, respectively. QP and surface
  • , Rsurf ≪ ωL*, and , we obtain Dielectric losses in the AlOx barrier of a JJ were estimated in [43]. At f ≃ 10 GHz, Qdiel ≈ 104. Although it should decrease at f = 400 GHz, we anticipate that it is still in the range of ca. 103. Therefore, dielectric losses are negligible, compared to QP and surface loses
PDF
Album
Full Research Paper
Published 26 Jan 2023

Batch preparation of nanofibers containing nanoparticles by an electrospinning device with multiple air inlets

  • Dong Wei,
  • Chengwei Ye,
  • Adnan Ahmed and
  • Lan Xu

Beilstein J. Nanotechnol. 2023, 14, 141–150, doi:10.3762/bjnano.14.15

Graphical Abstract
  • density of spinning solution (kg/m3), g is the gravitational acceleration (m/s2), h is the fluctuation height of the polymer spinning solution (m), γ is the surface tension coefficient of the spinning solution (N/m), ε0 is vacuum dielectric constant, E0 is the edge electric field intensity (V/m), Ep is
  • the electric field intensity of the thin liquid surface (V/m), εα is the dielectric constant of the polymer, and k is the amount of radial fluctuations on the spinning solution surface. In addition, the centripetal force F1 at point B is generated by the horizontal component of the viscous force (τ
PDF
Album
Full Research Paper
Published 23 Jan 2023

Characterisation of a micrometer-scale active plasmonic element by means of complementary computational and experimental methods

  • Ciarán Barron,
  • Giulia Di Fazio,
  • Samuel Kenny,
  • Silas O’Toole,
  • Robin O’Reilly and
  • Dominic Zerulla

Beilstein J. Nanotechnol. 2023, 14, 110–122, doi:10.3762/bjnano.14.12

Graphical Abstract
  • polaritons (SPPs) are mixed states of photons and electron density waves propagating along the interface between a conductor and a dielectric. As a result of this phenomenon, an electric field strongly confined in the z-direction is produced at the interface. As direct excitation of a smooth metallic surface
  • presence of an optically denser dielectric material with which the light interacts before reaching the metal. Light–matter interactions which give rise to the formation of SPPs can be classified into a sub-field of photonics known as plasmonics [8]. Investigations into SPPs provide vital insights into
  • ) investigating the changes in the reflectivity induced by a modulated electric current. The acquisition of a surface plasmon resonance (SPR) curve is a common method to characterise a plasmonic far-field response [31] which is highly sensitive to small changes in the refractive index of the metal and dielectric
PDF
Album
Full Research Paper
Published 16 Jan 2023

Solvent-induced assembly of mono- and divalent silica nanoparticles

  • Bin Liu,
  • Etienne Duguet and
  • Serge Ravaine

Beilstein J. Nanotechnol. 2023, 14, 52–60, doi:10.3762/bjnano.14.6

Graphical Abstract
  • Instruments). The dielectric constant of water was set to 80.4 and the Smoluchowsky constant f(ka) was 1.5. Synthetic route for the preparation of 1-PSN with a controlled patch-to-particle size ratio. TEM images of the silica/PS monopods after (a) 0, (b) 1, (c) 2, (d) 4, (e) 9, and (f) 14 iterative silica
PDF
Album
Full Research Paper
Published 06 Jan 2023

Induced electric conductivity in organic polymers

  • Konstantin Y. Arutyunov,
  • Anatoli S. Gurski,
  • Vladimir V. Artemov,
  • Alexander L. Vasiliev,
  • Azat R. Yusupov,
  • Danfis D. Karamov and
  • Alexei N. Lachinov

Beilstein J. Nanotechnol. 2022, 13, 1551–1557, doi:10.3762/bjnano.13.128

Graphical Abstract
  • conditions, PDP is a wide-gap dielectric material and is characterized by the following parameters: band gap ≈4.3 eV, electronic work function ≈4.2 eV, electron affinity ≈2 eV, first ionization potential ≈6.2 eV. Experimental evaluations of the electronic parameters of PDP have been made earlier by various
  • solution of specified concentration was applied onto the dielectric substrate fixed on a centrifuge holder. The rotation speed was typically 2000 rpm. The resulting polymer film was dried in air for about 45–60 min at room temperature. Then the final drying was carried out to remove solvent residues at a
  • the voltage corresponding to the transition point from linear to parabolic dependency of the I–V’s, n0 is the equilibrium concentration of charge carriers, ε and ε0 dielectric constants of the polymer and vacuum, respectively, and μ is the maximum mobility of charge carriers. According to this model
PDF
Album
Full Research Paper
Published 19 Dec 2022

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • Mott–Schottky relationship involving the apparent capacitance as a function of the potential under depletion conditions [54]: where C, ε, ε0, N, A, Va, Vfb, k, and T are the capacitance of the space charge region, the dielectric constant of the semiconductor, the vacuum permittivity, the donor density
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • with silver paste (Hans Wolbring GmbH) to form electrodes. IS measurements were performed using a Novocontrol AlphaA Broadband Dielectric/Impedance Spectrometer (Novocontrol GmbH) at room temperature. Measurements were carried out in the frequency range from 1 Hz to 1 MHz with an oscillation voltage of
PDF
Album
Full Research Paper
Published 07 Dec 2022

Coherent amplification of radiation from two phase-locked Josephson junction arrays

  • Mikhail A. Galin,
  • Vladimir M. Krasnov,
  • Ilya A. Shereshevsky,
  • Nadezhda K. Vdovicheva and
  • Vladislav V. Kurin

Beilstein J. Nanotechnol. 2022, 13, 1445–1457, doi:10.3762/bjnano.13.119

Graphical Abstract
  • working similar to lasers is discussed in more detail in [8]. The resonator can be a cavity of the JJs itself [2], an electrode with embedded JJs [9], or the dielectric substrate on which the JJ array is arranged [10]. Coherent superradiant amplification of emitted power is caused by a constructive
  • dielectric permittivity of silicon). Under this condition, the fundamental resonant mode can be excited in the substrate between the arrays. This condition is beneficial for inter-array coupling. Numerical Calculations The experimental results presented above show that phase locking of two large JJ arrays is
  • contains two identical JJ arrays arranged on a common substrate with a dielectric permittivity of ε = 12, close to that of silicon. The lateral dimensions of the substrate are 2 × 0.6 mm while the thickness is 0.3 mm. We chose such a narrow substrate to avoid excitation of transverse resonant modes inside
PDF
Album
Full Research Paper
Published 06 Dec 2022

Double-layer symmetric gratings with bound states in the continuum for dual-band high-Q optical sensing

  • Chaoying Shi,
  • Jinhua Hu,
  • Xiuhong Liu,
  • Junfang Liang,
  • Jijun Zhao,
  • Haiyan Han and
  • Qiaofen Zhu

Beilstein J. Nanotechnol. 2022, 13, 1408–1417, doi:10.3762/bjnano.13.116

Graphical Abstract
  • resonance. We find that the artificial bound states in the continuum (BIC) and Fabry–Pérot BIC (FP-BIC) can be induced by optimizing structural parameters of DLSG. Interestingly, the artificial BIC is governed by the spacing between the two rectangular dielectric gratings, while the FP-BIC is achieved by
  • researchers have focused their interests on the single high-Q resonance of various structures and proposed different types of structures to achieve high-Q-factors, such as metallic structures based on surface plasmon resonances [5][6], Mie resonance-based dielectric structures [7][8], and high-contrast
  • infinite structure or in extreme values of the parameters [25][26]. The structures that are commonly used to induce the BIC include metasurfaces [27][28], dielectric gratings [29][30], photonic crystals [31], and whispering-gallery resonators [32]. In 2016, Wang et al. investigated a symmetry-protected BIC
PDF
Album
Full Research Paper
Published 25 Nov 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • –Schottky analysis through the following equations [28][31][32]. where Csc, e, A, ε, ε0, kB, and T indicate the capacitance of the space charge region, charge of an electron, active area of the electrode, dielectric constant, permittivity of free space, Boltzmann’s constant, and absolute temperature
PDF
Album
Full Research Paper
Published 22 Nov 2022

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • vacuum, εav = 1.95 is the averaged relative permittivity of the SiO2/air interface of the FET [19][29]. Also, w = 550 nm, t = 50 nm, and L = 5.97 µm are the diameter of the nanostructure, the thickness of the nanostructure, and the length of the FET channel, respectively. The thickness of the dielectric
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

A super-oscillatory step-zoom metalens for visible light

  • Yi Zhou,
  • Chao Yan,
  • Peng Tian,
  • Zhu Li,
  • Yu He,
  • Bin Fan,
  • Zhiyong Wang,
  • Yao Deng and
  • Dongliang Tang

Beilstein J. Nanotechnol. 2022, 13, 1220–1227, doi:10.3762/bjnano.13.101

Graphical Abstract
  • field at the subwavelength scale [16][17][18][19][20][21][22]. Compared with metallic metasurfaces, all-dielectric metasurfaces are characterized by high amplitude transmittance, which is important for super-oscillatory lenses with comparatively low focusing efficiency. Generally, for all-dielectric
PDF
Album
Full Research Paper
Published 28 Oct 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • cylindrical, the potential change (ΔV) is given by [10]: where ε is the dielectric constant of the fluid, ε0 is the vacuum permittivity, R is the flow resistance of the channel, ζ is the zeta potential of the ionic double layer on the channel surfaces, η is the liquid viscosity, C is the ionic concentration
  • resistance and surface potential, directly contribute to the flow potential. At the same time, the parameters of the fluid in the nanochannel, such as dielectric constant and ion concentration, are directly related to the magnitude of the flow potential. In the nanochannel, the flow velocity ν of the fluid
  • interaction. The actual charge transfer is much more complicated, involving the contact angle, dielectric function, temperature, and ion concentration [15][16][17]. In MEGs, compared to bulk materials, nanoarchitectonics yields a higher specific surface area to the active material, which makes the contact
PDF
Album
Review
Published 25 Oct 2022

Analytical and numerical design of a hybrid Fabry–Perot plano-concave microcavity for hexagonal boron nitride

  • Felipe Ortiz-Huerta and
  • Karina Garay-Palmett

Beilstein J. Nanotechnol. 2022, 13, 1030–1037, doi:10.3762/bjnano.13.90

Graphical Abstract
  • the desired shape. A natural extension to the development of polymer photonic structures consists of the fabrication of hybrid (i.e., metal-dielectric) resonant structures [15] with the potential to enhance the light–matter interactions of such SPEs. This work will focus on finding an optimal design
  • known as the q-parameters for the Gaussian beams, where z2 = L2 − Lp, z1 = L1 and zR,1,2 is the Rayleigh length for each beam. For a Gaussian beam passing through a plane dielectric interface, we have A = B = C = 0, and D = n2/n1, where n1 = 1 is the refractive index of the air gap, therefore, by
  • + DBR system a L(HL)15 dielectric stack. A transfer matrix model [24] was used to calculate the electric field distribution inside the hBN + DBR system (Figure 6). The full transfer matrix S of our microcavity is defined as: where L and I represent the transfer and interface matrix, respectively, of the
PDF
Album
Full Research Paper
Published 27 Sep 2022

Numerical study on all-optical modulation characteristics of quantum cascade lasers

  • Biao Wei,
  • Haijun Zhou,
  • Guangxiang Li and
  • Bin Tang

Beilstein J. Nanotechnol. 2022, 13, 1011–1019, doi:10.3762/bjnano.13.88

Graphical Abstract
  • physics in QCL’s gain medium which consists of multiple of dielectric nanostructures with high refractive index under light injection, we modified the 1½-period model to calculate values of electron population and lifetime in each subband which is separated by the nanostructures, optical gain, current and
  • optimizing its use and dielectric nanostructure design. Keywords: all-optical modulation; dielectric nanostructures; high refractive index materials; numerical study; quantum cascade lasers; Introduction The quantum cascade laser (QCL) was invented nearly 30 years ago [1], and its cavity consists of
  • simulation, it would be very helpful for optimizing its use and dielectric nanostructure design. Although there has been much research on all-optical modulation of QCLs, only optical injection locking [14] and quenching [15][16] can currently provide one-sided numerical support. Based on the classical 1
PDF
Album
Full Research Paper
Published 23 Sep 2022

Theoretical investigations of oxygen vacancy effects in nickel-doped zirconia from ab initio XANES spectroscopy at the oxygen K-edge

  • Dick Hartmann Douma,
  • Lodvert Tchibota Poaty,
  • Alessio Lamperti,
  • Stéphane Kenmoe,
  • Abdulrafiu Tunde Raji,
  • Alberto Debernardi and
  • Bernard M’Passi-Mabiala

Beilstein J. Nanotechnol. 2022, 13, 975–985, doi:10.3762/bjnano.13.85

Graphical Abstract
  • which is being currently employed in ultra-scaled electronics for its high dielectric constant [24][25] have received significant attention because of its practical applications. Thus, recently, exploiting first principles simulations and X-ray absorption near edge spectroscopy (XANES) in high magnetic
PDF
Album
Full Research Paper
Published 15 Sep 2022

Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water

  • Jason I. Kilpatrick,
  • Emrullah Kargin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2022, 13, 922–943, doi:10.3762/bjnano.13.82

Graphical Abstract
  • dielectric media and do not consider additional properties such as electrodynamics or the effect of the tip–sample position relative to the position of the double layer. (3) We only compare frequency responses off resonance, ωoff, and for the first two eigenmodes of the cantilever and combinations thereof
PDF
Full Research Paper
Published 12 Sep 2022

Ultrafast signatures of magnetic inhomogeneity in Pd1−xFex (x ≤ 0.08) epitaxial thin films

  • Andrey V. Petrov,
  • Sergey I. Nikitin,
  • Lenar R. Tagirov,
  • Amir I. Gumarov,
  • Igor V. Yanilkin and
  • Roman V. Yusupov

Beilstein J. Nanotechnol. 2022, 13, 836–844, doi:10.3762/bjnano.13.74

Graphical Abstract
  • dielectric permittivity tensor of a medium proportional to its magnetization. Therefore, any of the real θK (rotation angle) or imaginary ηK (ellipticity) parts of the complex Kerr angle ΘK = θK + iηK provide a measure of the magnetization of a medium. An ability to track modifications of these quantities on
PDF
Album
Full Research Paper
Published 25 Aug 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • demonstrated in millimeter-sized superstructures formed by ZIF-8 or UiO-66 [131]. Owing to the porous structure of the monocrystalline coordination polymers. The dielectric constant of the particles may be changed upon adsorption of molecules such as organic vapor. This can lead to a change of the structural
PDF
Album
Review
Published 12 Aug 2022

Tunable high-quality-factor absorption in a graphene monolayer based on quasi-bound states in the continuum

  • Jun Wu,
  • Yasong Sun,
  • Feng Wu,
  • Biyuan Wu and
  • Xiaohu Wu

Beilstein J. Nanotechnol. 2022, 13, 675–681, doi:10.3762/bjnano.13.59

Graphical Abstract
  • /bjnano.13.59 Abstract A tunable graphene absorber, composed of a graphene monolayer and a substrate spaced by a subwavelength dielectric grating, is proposed and investigated. Strong light absorption in the graphene monolayer is achieved due to the formation of embedded optical quasi-bound states in the
  • continuum in the subwavelength dielectric grating. The physical origin of the absorption with high quality factor is examined by investigating the electromagnetic field distributions. Interestingly, we found that the proposed absorber possesses high spatial directivity and performs similar to an antenna
  • , which can also be utilized as a thermal emitter. Besides, the spectral position of the absorption peak can not only be adjusted by changing the geometrical parameters of dielectric grating, but it is also tunable by a small change in the Fermi level of the graphene sheet. This novel scheme to tune the
PDF
Album
Full Research Paper
Published 19 Jul 2022

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • first to report that glycerol can serve as an effective green solvent for BBR NP formation. Being non-toxic, renewable, and biodegradable, and having a suitable dielectric constant to dissolve various compounds such as BBR, glycerol is a promising candidate to replace toxic organic solvents. The effect
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Detection and imaging of Hg(II) in vivo using glutathione-functionalized gold nanoparticles

  • Gufeng Li,
  • Shaoqing Li,
  • Rui Wang,
  • Min Yang,
  • Lizhu Zhang,
  • Yanli Zhang,
  • Wenrong Yang and
  • Hongbin Wang

Beilstein J. Nanotechnol. 2022, 13, 549–559, doi:10.3762/bjnano.13.46

Graphical Abstract
  • , caused by a change in the local dielectric environment and the plasmonic absorption bands of GSH and GSH-Rh6G2-modified GNPs [43][44]. The maximum fluorescence absorption peak of GNPs-GSH-Rh6G2 is at 536 nm, whereas the emission peak is at 560 nm (Figure 1d). The excitation of GNPs-GSH-Rh6G2 was examined
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • polyols, such as high boiling point (up to 320 °C) and dielectric constant, the solubility of simple metal salt precursors, and coordinating properties for surface functionalization preventing agglomeration [27]. The ZnO NPs obtained from polyol synthesis showed excellent crystalline quality and
PDF
Album
Review
Published 27 May 2022

The role of sulfonate groups and hydrogen bonding in the proton conductivity of two coordination networks

  • Ali Javed,
  • Felix Steinke,
  • Stephan Wöhlbrandt,
  • Hana Bunzen,
  • Norbert Stock and
  • Michael Tiemann

Beilstein J. Nanotechnol. 2022, 13, 437–443, doi:10.3762/bjnano.13.36

Graphical Abstract
  • Novocontrol broadband dielectric spectrometer (Alpha-A High Performance Frequency Analyzer). The samples were mounted between two Novocontrol BDS1200 based blocking gold-plated electrodes, and two-wire mode measurements were made, as described in earlier studies [21][29]. The impedance data was recorded in
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2022

Electrostatic pull-in application in flexible devices: A review

  • Teng Cai,
  • Yuming Fang,
  • Yingli Fang,
  • Ruozhou Li,
  • Ying Yu and
  • Mingyang Huang

Beilstein J. Nanotechnol. 2022, 13, 390–403, doi:10.3762/bjnano.13.32

Graphical Abstract
  • effect The pull-in effect is a common phenomenon occurring in magnetostatic actuators, dielectric elastomer actuators, and electrostatic actuators, which can cause failure [1]. Electrostatic pull-in is a nonlinear effect caused by intensive electromechanical coupling, a unique characteristic for MEMS
  • tear of the switches, especially for CNT [16] and GR [29] switches. Permanent adhesion caused by the dielectric charging [52][53] and chemical bonding [24] are the focus of the research on improving the life cycles. At present, it is mainly solved by reducing the electrode contact area [14] or
  • charges, forming a dielectric charging effect. Molinero et al. [52][53] characterized the dielectric charging when the switch electrodes were contacted and proved that the surface dielectric charging caused by friction would lead to a shift of the switch voltage and shorten the life cycles of the switch
PDF
Album
Review
Published 12 Apr 2022
Other Beilstein-Institut Open Science Activities