Search results

Search for "electrostatic forces" in Full Text gives 90 result(s) in Beilstein Journal of Nanotechnology.

Combined scanning probe electronic and thermal characterization of an indium arsenide nanowire

  • Tino Wagner,
  • Fabian Menges,
  • Heike Riel,
  • Bernd Gotsmann and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2018, 9, 129–136, doi:10.3762/bjnano.9.15

Graphical Abstract
  • -range electrostatic forces between the cantilever and sample structures, force-gradient sensitive detection is required [7][19]. In our setup, this is assured by direct demodulation of the sidebands that appear upon electrical modulation of the tip–sample electrostatic force [20]. Figure 2b shows the
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2018

Interface conditions of roughness-induced superoleophilic and superoleophobic surfaces immersed in hexadecane and ethylene glycol

  • Yifan Li,
  • Yunlu Pan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2017, 8, 2504–2514, doi:10.3762/bjnano.8.250

Graphical Abstract
  • colloidal AFM tip. Then the probe was driven towards the surface immersed in liquid at a certain driving velocity. By analyzing the force exerted on the probe, which mainly includes hydrodynamic forces, electrostatic forces, van der Waals force and Stokes force, the boundary slip can be calculated [12][18
PDF
Album
Full Research Paper
Published 27 Nov 2017

A comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively or negatively charged nanodiamonds

  • Colin K. Curtis,
  • Antonin Marek,
  • Alex I. Smirnov and
  • Jacqueline Krim

Beilstein J. Nanotechnol. 2017, 8, 2045–2059, doi:10.3762/bjnano.8.205

Graphical Abstract
  • electrostatic forces? As will be reported, beneficial tribological behaviors were observed for immersion of stainless steel or alumina samples in −ND suspensions, while either neutral (alumina) or detrimental (stainless steel) behaviors were observed for immersion in +ND suspensions. This yields an exceptional
  • study employed an aqueous dispersion of positively charged NDs, the silica surface is expected to be charged negatively at normal pH (IEP = 3.9, [50]) providing the same short-range electrostatic forces responsible for the ND surface self-assembly. The EIP of SS304 surfaces, however, is somewhat acidic
  • deposits on stainless steel and/or alumina surfaces that are both readily replenished by the surrounding suspensions and also glide through it with a relatively low resistance to shear, potentially because of the repulsive electrostatic forces between the individual particles. In summary, this study
PDF
Album
Full Research Paper
Published 29 Sep 2017

Characterization of ferrite nanoparticles for preparation of biocomposites

  • Urszula Klekotka,
  • Magdalena Rogowska,
  • Dariusz Satuła and
  • Beata Kalska-Szostko

Beilstein J. Nanotechnol. 2017, 8, 1257–1265, doi:10.3762/bjnano.8.127

Graphical Abstract
  • set of particles. In particular, noncovalent interactions are the most important in terms of biological aspects [5]. A drawback of applying magnetic nanoparticles is that they possess a strong tendency to agglomerate due to not only van der Waals or electrostatic forces but also magnetic interactions
PDF
Album
Full Research Paper
Published 13 Jun 2017

Analysis and modification of defective surface aggregates on PCDTBT:PCBM solar cell blends using combined Kelvin probe, conductive and bimodal atomic force microscopy

  • Hanaul Noh,
  • Alfredo J. Diaz and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 579–589, doi:10.3762/bjnano.8.62

Graphical Abstract
  • tip and feature material. Although the source of the attractive forces is not well understood, it could be attributed to either electrostatic forces due to localized charges in the features or to electrophoresis of the material due to the electric field gradient. In Figure 3, a set of first- and last
PDF
Album
Supp Info
Full Research Paper
Published 08 Mar 2017

Modelling of ‘sub-atomic’ contrast resulting from back-bonding on Si(111)-7×7

  • Adam Sweetman,
  • Samuel P. Jarvis and
  • Mohammad A. Rashid

Beilstein J. Nanotechnol. 2016, 7, 937–945, doi:10.3762/bjnano.7.85

Graphical Abstract
  • model also incorporate the effect of electrostatics via introduction of the Hartree potential, which has been shown to have important consequences for the imaging of certain classes of molecules [15]. In our simulations the effect of the Hartree potential is not included, primarily as electrostatic
  • forces are not expected to result in significant differences in contrast due to the small variation in electrostatic force over the different atoms of the Si(111)-7×7 unit cell [16]. In the simulations the probe particle is subject to forces from three sources: 1) a L-J-like interaction due to the tip
PDF
Album
Supp Info
Full Research Paper
Published 29 Jun 2016
Graphical Abstract
  • [19]. Frequently, but not always, relatively large molecules are involved and their cohesive energy is governed by dispersion (van der Waals) and electrostatic forces, which are generally weaker than those generated by stretched covalent bonds or electrostatic interactions in ionic crystals, and which
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2016

Surface coating affects behavior of metallic nanoparticles in a biological environment

  • Darija Domazet Jurašin,
  • Marija Ćurlin,
  • Ivona Capjak,
  • Tea Crnković,
  • Marija Lovrić,
  • Michal Babič,
  • Daniel Horák,
  • Ivana Vinković Vrček and
  • Srećko Gajović

Beilstein J. Nanotechnol. 2016, 7, 246–262, doi:10.3762/bjnano.7.23

Graphical Abstract
  • provided an enhanced electrostatic repulsion against the agglomeration of metallic NPs in DMEM. The BSA has negative charges above its isoelectric point (pH 4.78) [59] and the electrostatic forces dominate over hydrophobic interactions. Accordingly, the attractive forces between the positively charged
PDF
Album
Full Research Paper
Published 15 Feb 2016

Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

  • Urs Gysin,
  • Thilo Glatzel,
  • Thomas Schmölzer,
  • Adolf Schöner,
  • Sergey Reshanov,
  • Holger Bartolf and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2015, 6, 2485–2497, doi:10.3762/bjnano.6.258

Graphical Abstract
  • materials), separated (e.g., electrostatic forces from magnetic forces), or be dynamically compensated (e.g., by tuning the bias voltage in Kelvin probe force microscopy (KPFM)) and measured together with the topological information. For all these properties various experimental approaches have been
  • detection of electrostatic forces and the determination of local work function values was intensively discussed and models combining large scale influences with atomistic simulations have been developed [1][2][3][4]. As early as in the late 1980s H. Wickramasinghe proposed several SPM based methods for the
  • VCPD to nullify the electrostatic force acting between them [9][36]. A very sensitive way to measure, separate, and compensate the electrostatic forces is the so-called amplitude modulated KPFM (AM-KPFM) which uses the second eigenmode of the cantilever [17][37]. By applying an ac voltage Vac to the
PDF
Album
Full Research Paper
Published 28 Dec 2015

Kelvin probe force microscopy for local characterisation of active nanoelectronic devices

  • Tino Wagner,
  • Hannes Beyer,
  • Patrick Reissner,
  • Philipp Mensch,
  • Heike Riel,
  • Bernd Gotsmann and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2015, 6, 2193–2206, doi:10.3762/bjnano.6.225

Graphical Abstract
  • established technique that allows for the mapping of local electrostatic potentials with an atomic force microscope (AFM) [1][2][3]. In contrast to electrostatic force microscopy (EFM), which measures merely the effect of electrostatic forces on the oscillation of the tip, a feedback loop nullifies the
  • the main reason for the notoriously low lateral resolution and poor potential accuracy in this mode. When comparing AM and FM modes, one should note that in lift-mode AM-KFM the cantilever is not oscillating anymore when the electrostatic forces are nullified, whereas the mechanical oscillation
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2015

Electrospray deposition of organic molecules on bulk insulator surfaces

  • Antoine Hinaut,
  • Rémy Pawlak,
  • Ernst Meyer and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2015, 6, 1927–1934, doi:10.3762/bjnano.6.195

Graphical Abstract
  • distributed all over the surface and appear up to 3 nm high. However, no clear organization of the molecules was observed. Large electrostatic forces have been observed and measured via frequency shift versus voltage curves df(V) [40] after the deposition process. These could not be compensated during
  • measurements by applying a bias voltage of up to ±10 V, which is the limit of the AFM system. These large electrostatic forces induced difficult scan conditions and we were not able to study the organization of the molecules in more detail. Indeed, surfaces charges of bulk insulator samples have already been
  • studied in detail [41][42]. Due to cleavage many charges can be created resulting in large electrostatic forces. Sample preparation with soft annealing is well-established and leads to only a few remaining isolated charges [42]. Since the sample was prepared with such procedure before UHV-ESI deposition
PDF
Album
Full Research Paper
Published 18 Sep 2015

PLGA nanoparticles as a platform for vitamin D-based cancer therapy

  • Maria J. Ramalho,
  • Joana A. Loureiro,
  • Bárbara Gomes,
  • Manuela F. Frasco,
  • Manuel A. N. Coelho and
  • M. Carmo Pereira

Beilstein J. Nanotechnol. 2015, 6, 1306–1318, doi:10.3762/bjnano.6.135

Graphical Abstract
  • electrostatic forces due to the PLGA carboxylate groups at the NP surface, and the surfactant behavior that also plays a crucial role in maintaining nanosuspension stabilization. During particle formation, the Pluronic®F127 is adsorbed onto the NP surface, providing steric and thermodynamic stabilization
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2015

Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates

  • Omar F. Farhat,
  • Mohd M. Halim,
  • Mat J. Abdullah,
  • Mohammed K. M. Ali and
  • Nageh K. Allam

Beilstein J. Nanotechnol. 2015, 6, 720–725, doi:10.3762/bjnano.6.73

Graphical Abstract
  • active, while the E and TO are forbidden. Due to the long-range electrostatic forces, the phonons with A1 and E symmetry are polar and hence exhibit different frequencies for the TO and LO phonons. Every mode corresponds to a band in the Raman spectrum, with the A1 phonon vibration polarized parallel to
PDF
Album
Full Research Paper
Published 12 Mar 2015

Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes

  • Gemma Rius,
  • Matteo Lorenzoni,
  • Soichiro Matsui,
  • Masaki Tanemura and
  • Francesc Perez-Murano

Beilstein J. Nanotechnol. 2015, 6, 215–222, doi:10.3762/bjnano.6.20

Graphical Abstract
  • –sample direct mechanical contact or long range interactions, such as based on van der Waals or electrostatic forces. Because of this, AFM-based SPL can be achieved through oxidation, indentation, as well as various other implementations such as dip-pen nanolithography [5]. Early works on AFM-based SPL
PDF
Album
Full Research Paper
Published 19 Jan 2015

Kelvin probe force microscopy in liquid using electrochemical force microscopy

  • Liam Collins,
  • Stephen Jesse,
  • Jason I. Kilpatrick,
  • Alexander Tselev,
  • M. Baris Okatan,
  • Sergei V. Kalinin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2015, 6, 201–214, doi:10.3762/bjnano.6.19

Graphical Abstract
  • a role in shifting the measured CPD of the Au surface outside of the bias range studied. In order to investigate the possibility that the CPD of Au was shifted in liquid, and to further investigate the dependence of electrostatic forces at larger biases, Aω and A2ω were probed under increasing bias
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2015

Intake of silica nanoparticles by giant lipid vesicles: influence of particle size and thermodynamic membrane state

  • Florian G. Strobl,
  • Florian Seitz,
  • Christoph Westerhausen,
  • Armin Reller,
  • Adriano A. Torrano,
  • Christoph Bräuchle,
  • Achim Wixforth and
  • Matthias F. Schneider

Beilstein J. Nanotechnol. 2014, 5, 2468–2478, doi:10.3762/bjnano.5.256

Graphical Abstract
  • realistic scenario are significantly stronger than those that are necessary for an uptake in our model system (see Figure 4). In the case of anionic or neutral particles, electrostatic forces will, of course, not be sufficient for an uptake. However, binding of proteins can provide strong adhesion
PDF
Album
Full Research Paper
Published 23 Dec 2014

Aquatic versus terrestrial attachment: Water makes a difference

  • Petra Ditsche and
  • Adam P. Summers

Beilstein J. Nanotechnol. 2014, 5, 2424–2439, doi:10.3762/bjnano.5.252

Graphical Abstract
  • substantial variability and we cannot calculate a reasonable attachment force for the whole animal from measurements of a single seta, tube foot or sucker. Adhesion A variety of different mechanisms contributes to adhesion: (i) mechanical interlocking on a very small scale, (ii) electrostatic forces, (iii
PDF
Album
Review
Published 17 Dec 2014

Liquid-phase exfoliated graphene: functionalization, characterization, and applications

  • Mildred Quintana,
  • Jesús Iván Tapia and
  • Maurizio Prato

Beilstein J. Nanotechnol. 2014, 5, 2328–2338, doi:10.3762/bjnano.5.242

Graphical Abstract
  • the interplay of electrostatic forces and π-electron clouds on graphene. The proximity of the Ru4POM to the graphene surface in the arylation reaction leads to a tight immobilization. Imaging on graphene Finally, the optical properties of graphene for the high contrast imaging of the two previously
PDF
Album
Review
Published 04 Dec 2014

Sequence-dependent electrical response of ssDNA-decorated carbon nanotube, field-effect transistors to dopamine

  • Hari Krishna Salila Vijayalal Mohan,
  • Jianing An and
  • Lianxi Zheng

Beilstein J. Nanotechnol. 2014, 5, 2113–2121, doi:10.3762/bjnano.5.220

Graphical Abstract
  • electrostatic forces; thereby the neutral mixture fails to produce any effect on the SWCNT [23]. Thus, detecting DA in the presence of UA is a challenge because of the electrical neutrality of the mixture and the hydrophobic nature of the SWCNT. This discourages the attachment of polar molecules onto the
  • could be because of strong interactions such as hydrogen bonding, or mutual association of the hydrophobic regions between DA and ssDNA, or weak electrostatic attractions. According to earlier reports [33], the electrostatic forces are the dominant forces of interaction between ssDNA and DA. Since DA is
PDF
Album
Full Research Paper
Published 13 Nov 2014

Controlling the dispersion of supported polyoxometalate heterogeneous catalysts: impact of hybridization and the role of hydrophilicity–hydrophobicity balance and supramolecularity

  • Gijo Raj,
  • Colas Swalus,
  • Eglantine Arendt,
  • Pierre Eloy,
  • Michel Devillers and
  • Eric M. Gaigneaux

Beilstein J. Nanotechnol. 2014, 5, 1749–1759, doi:10.3762/bjnano.5.185

Graphical Abstract
  • POM, respectively, the total height of the hybrid assembly nearly doubles. This is also an indication that the organic–inorganic hybridization is largely dependent on the strength of electrostatic forces. In order to further understand the hybrid materials, we were motivated to identify the POM anions
PDF
Album
Supp Info
Full Research Paper
Published 10 Oct 2014

Hydrophobic interaction governs unspecific adhesion of staphylococci: a single cell force spectroscopy study

  • Nicolas Thewes,
  • Peter Loskill,
  • Philipp Jung,
  • Henrik Peisker,
  • Markus Bischoff,
  • Mathias Herrmann and
  • Karin Jacobs

Beilstein J. Nanotechnol. 2014, 5, 1501–1512, doi:10.3762/bjnano.5.163

Graphical Abstract
  • , yet it is unclear up to now which forces are governing this process. Alongside long-ranged van der Waals and electrostatic forces, short-ranged hydrophobic interaction plays an important role. To characterize the forces involved during approach and retraction of an individual bacterium to and from a
  • bacterium, the surrounding medium, the surface chemistry, and the material composition reflecting the influence of the main interacting forces [12][13]: van der Waals forces, hydrophobic interaction and electrostatic forces. In addition, specific interactions amplify bacterial adhesion whenever
  • ), which explains the present results. What is the difference of bacterial adhesion to hydrophilic or hydrophobic surfaces? Adhesion is the sum of all forces between the interacting partners. In our case, van der Waals and electrostatic forces as well as forces due to the hydrophobic interaction are
PDF
Album
Full Research Paper
Published 10 Sep 2014

The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review

  • Yunlu Pan,
  • Bharat Bhushan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2014, 5, 1042–1065, doi:10.3762/bjnano.5.117

Graphical Abstract
PDF
Album
Review
Published 15 Jul 2014

Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

  • Adam Sweetman and
  • Andrew Stannard

Beilstein J. Nanotechnol. 2014, 5, 386–393, doi:10.3762/bjnano.5.45

Graphical Abstract
  • electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the ‘on-minus-off’ method for extracting site-specific forces to a
PDF
Album
Full Research Paper
Published 01 Apr 2014

Effect of contaminations and surface preparation on the work function of single layer MoS2

  • Oliver Ochedowski,
  • Kolyo Marinov,
  • Nils Scheuschner,
  • Artur Poloczek,
  • Benedict Kleine Bussmann,
  • Janina Maultzsch and
  • Marika Schleberger

Beilstein J. Nanotechnol. 2014, 5, 291–297, doi:10.3762/bjnano.5.32

Graphical Abstract
  • resonance frequency of f = 300 kHz (Vistaprobe T300) were utilized. During KPFM measurements an AC voltage is applied to the tip (UAC = 1 V and fAC = 1 kHz) and the built in lock-in amplifier of the PLL Pro 2 is used to apply a DC voltage which minimizes the resulting electrostatic forces between tip and
PDF
Album
Full Research Paper
Published 13 Mar 2014

Influence of the adsorption geometry of PTCDA on Ag(111) on the tip–molecule forces in non-contact atomic force microscopy

  • Gernot Langewisch,
  • Jens Falter,
  • André Schirmeisen and
  • Harald Fuchs

Beilstein J. Nanotechnol. 2014, 5, 98–104, doi:10.3762/bjnano.5.9

Graphical Abstract
  • electrostatic forces or Pauli repulsion is reached. These forces most likely lead to the barbell-like structure as shown in Figure 3b at z = 0.65 nm with higher attractive forces at the end groups. While the physical origin of this contrast is not clear, a likely explanation for the structure that illustrated
PDF
Album
Full Research Paper
Published 27 Jan 2014
Other Beilstein-Institut Open Science Activities