Search results

Search for "highly sensitive" in Full Text gives 157 result(s) in Beilstein Journal of Nanotechnology.

Evaluation of click chemistry microarrays for immunosensing of alpha-fetoprotein (AFP)

  • Seyed Mohammad Mahdi Dadfar,
  • Sylwia Sekula-Neuner,
  • Vanessa Trouillet,
  • Hui-Yu Liu,
  • Ravi Kumar,
  • Annie K. Powell and
  • Michael Hirtz

Beilstein J. Nanotechnol. 2019, 10, 2505–2515, doi:10.3762/bjnano.10.241

Graphical Abstract
  • chemistry in the building of highly sensitive protein detection sensors needed, for example, in cancer biomarker detection. Experimental Chemicals Table 1 lists the most important materials used in this study. All other materials were of analytical grade and were used as-received without extra purification
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2019

Label-free highly sensitive probe detection with novel hierarchical SERS substrates fabricated by nanoindentation and chemical reaction methods

  • Jingran Zhang,
  • Tianqi Jia,
  • Yongda Yan,
  • Li Wang,
  • Peng Miao,
  • Yimin Han,
  • Xinming Zhang,
  • Guangfeng Shi,
  • Yanquan Geng,
  • Zhankun Weng,
  • Daniel Laipple and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2019, 10, 2483–2496, doi:10.3762/bjnano.10.239

Graphical Abstract
  • highly sensitive way. The characteristic Raman peaks of malachite green molecules were identified at 1172, 1219, 1364, 1394, 1586, and 1614 cm−1 on the different hierarchical substrates, as shown in Figure 11. The incident optical power was 0.148 mW (1%) in the experiment. In this section, the structure
  • . The feasibility of the hierarchical SERS substrate is verified using R6G molecules. Finally, the enhancement factor using malachite green molecules was found to reach 5.089 × 109, which demonstrates that the production method is a simple, reproducible and low-cost method for machining a highly
  • sensitive, hierarchical SERS substrate. Keywords: Ag nanoparticles; hierarchical substrates; malachite green molecules; nanoindentation; nanostructures; R6G; SERS; Introduction Surface-enhanced Raman scattering (SERS) has triggered significant research interest due to its suitability as an analytical tool
PDF
Album
Full Research Paper
Published 13 Dec 2019

Mobility of charge carriers in self-assembled monolayers

  • Zhihua Fu,
  • Tatjana Ladnorg,
  • Hartmut Gliemann,
  • Alexander Welle,
  • Asif Bashir,
  • Michael Rohwerder,
  • Qiang Zhang,
  • Björn Schüpbach,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2019, 10, 2449–2458, doi:10.3762/bjnano.10.235

Graphical Abstract
  • determination of apparent heights of islands from STM data is somewhat indirect, the conductivities of the patterned areas were determined directly by means of highly sensitive current measurements, where the conductive tip of the AFM is used as a top electrode. This setup allows determining the topography and
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2019

Adsorption and desorption of self-assembled L-cysteine monolayers on nanoporous gold monitored by in situ resistometry

  • Elisabeth Hengge,
  • Eva-Maria Steyskal,
  • Rupert Bachler,
  • Alexander Dennig,
  • Bernd Nidetzky and
  • Roland Würschum

Beilstein J. Nanotechnol. 2019, 10, 2275–2279, doi:10.3762/bjnano.10.219

Graphical Abstract
  • -/desorption of SAMs on nanoporous gold (npAu), based on our experience on in situ resistometry as a highly sensitive diagnosis tool for ad-/desorption processes [9]. The selected SAM material for this study is cysteine, due to its beneficial properties such as the short carbon backbone, the solubility in
  • be suitable for sensitively detecting even small amounts of SAMs on npAu. In conclusion, in situ resistometry proved to be a highly sensitive tool for dynamically monitoring the formation process of self-assembled monolayers, exemplarily using cysteine. The assembly takes place with a total
PDF
Album
Letter
Published 18 Nov 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • that the delicate modulation of nanoarchitectures can improve chemical sensor capabilities. As an example of nanoarchitectonics effects between multiple components in sensing materials, Chen, Shi, and co-workers demonstrated highly sensitive resistance-based NOx gas sensors incorporating a dispersed
  • -loaded CeO2–ZrO2–ZnO catalyst has a small heat capacity and dramatically increases the temperature of the Pt coil, resulting in a highly sensitive sensor signal. On the other hand, the n-type Sm2CuO4-loaded CeO2–ZrO2–ZnO catalyst is advantageous when rapid response and low temperature operation are
  • -driven actuation material for a triboelectric nanogenerator device to realize a highly sensitive humidity sensor [99] (Figure 5). The reaction of the sensing materials to humidity results in electrical changes for sensing. The perfluorosulfonic acid ionomer membrane has perpendicularly extended
PDF
Album
Review
Published 16 Oct 2019

Magnetic properties of biofunctionalized iron oxide nanoparticles as magnetic resonance imaging contrast agents

  • Natalia E. Gervits,
  • Andrey A. Gippius,
  • Alexey V. Tkachev,
  • Evgeniy I. Demikhov,
  • Sergey S. Starchikov,
  • Igor S. Lyubutin,
  • Alexander L. Vasiliev,
  • Vladimir P. Chekhonin,
  • Maxim A. Abakumov,
  • Alevtina S. Semkina and
  • Alexander G. Mazhuga

Beilstein J. Nanotechnol. 2019, 10, 1964–1972, doi:10.3762/bjnano.10.193

Graphical Abstract
  • , respectively. However, small single-domain MNPs with a diameter of less than 10 nm are highly sensitive to thermal energy. Even room temperature is sufficient to destabilize the magnetic moment of the entire nanoparticle and transfer it to a paramagnetic state. The 57Fe Mössbauer spectra of iron oxide
  • identified in the Mössbauer spectrum of magnetite. Mössbauer spectroscopy is a highly sensitive method with respect to the valence of iron ions in these bulk oxides, since the hyperfine parameters corresponding to Fe3+ and Fe2+ ions are well distinguishable in the spectra. For the processing of the low
PDF
Album
Full Research Paper
Published 02 Oct 2019

Selective gas detection using Mn3O4/WO3 composites as a sensing layer

  • Yongjiao Sun,
  • Zhichao Yu,
  • Wenda Wang,
  • Pengwei Li,
  • Gang Li,
  • Wendong Zhang,
  • Lin Chen,
  • Serge Zhuivkov and
  • Jie Hu

Beilstein J. Nanotechnol. 2019, 10, 1423–1433, doi:10.3762/bjnano.10.140

Graphical Abstract
  • % Mn3O4/WO3 composite gas sensor showed the best sensing performance with the highest response and selectivity. Our results indicate that highly sensitive and selective Mn3O4/WO3 composites can be an effective material for the recognition and detection of noxious gases. Results and Discussion Structural
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2019

A silver-nanoparticle/cellulose-nanofiber composite as a highly effective substrate for surface-enhanced Raman spectroscopy

  • Yongxin Lu,
  • Yan Luo,
  • Zehao Lin and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2019, 10, 1270–1279, doi:10.3762/bjnano.10.126

Graphical Abstract
  • . This low-cost, highly sensitive, and biocompatible paper-based SERS substrate holds considerable potentials for the detection and analyses of chemical and biomolecular species. Keywords: cellulose nanofiber; composites; nanoarchitectonics; silver nanoparticle; surface-enhanced Raman spectroscopy
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2019

Direct growth of few-layer graphene on AlN-based resonators for high-sensitivity gravimetric biosensors

  • Jimena Olivares,
  • Teona Mirea,
  • Lorena Gordillo-Dagallier,
  • Bruno Marco,
  • José Miguel Escolano,
  • Marta Clement and
  • Enrique Iborra

Beilstein J. Nanotechnol. 2019, 10, 975–984, doi:10.3762/bjnano.10.98

Graphical Abstract
  • scientific community due to their extraordinary prospects for novel applications, such as highly sensitive biosensors that may offer continuous label-free measurement of key bio-active cell molecules [10]. Few-layer graphene grown on top of gravimetric transducers offers, a priori, one of the most versatile
PDF
Album
Full Research Paper
Published 29 Apr 2019

Experimental study of an evanescent-field biosensor based on 1D photonic bandgap structures

  • Jad Sabek,
  • Francisco Javier Díaz-Fernández,
  • Luis Torrijos-Morán,
  • Zeneida Díaz-Betancor,
  • Ángel Maquieira,
  • María-José Bañuls,
  • Elena Pinilla-Cienfuegos and
  • Jaime García-Rupérez

Beilstein J. Nanotechnol. 2019, 10, 967–974, doi:10.3762/bjnano.10.97

Graphical Abstract
  • development of integrated lab-on-a-chip (LOC) devices for the highly sensitive and label-free detection of target analytes is one of the fields arousing high interest over the recent years [1][2]. These devices aim at overcoming some of the drawbacks of the methodologies commonly used today, such as ELISA
PDF
Album
Full Research Paper
Published 26 Apr 2019

In situ AFM visualization of Li–O2 battery discharge products during redox cycling in an atmospherically controlled sample cell

  • Kumar Virwani,
  • Younes Ansari,
  • Khanh Nguyen,
  • Francisco José Alía Moreno-Ortiz,
  • Jangwoo Kim,
  • Maxwell J. Giammona,
  • Ho-Cheol Kim and
  • Young-Hye La

Beilstein J. Nanotechnol. 2019, 10, 930–940, doi:10.3762/bjnano.10.94

Graphical Abstract
  • /bjnano.10.94 Abstract The in situ observation of electrochemical reactions is challenging due to a constantly changing electrode surface under highly sensitive conditions. This study reports the development of an in situ atomic force microscopy (AFM) technique for electrochemical systems, including the
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2019

Fabrication of silver nanoisland films by pulsed laser deposition for surface-enhanced Raman spectroscopy

  • Bogusław Budner,
  • Mariusz Kuźma,
  • Barbara Nasiłowska,
  • Bartosz Bartosewicz,
  • Malwina Liszewska and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2019, 10, 882–893, doi:10.3762/bjnano.10.89

Graphical Abstract
  • is the use of SERS as a method for highly sensitive detection of hazardous materials such as chemical and biological agents or explosive materials [4][5]. However, despite many studies SERS remains mainly a laboratory technique. To bring it closer to real-life applications there is a need to develop
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2019

Biomimetic synthesis of Ag-coated glasswing butterfly arrays as ultra-sensitive SERS substrates for efficient trace detection of pesticides

  • Guochao Shi,
  • Mingli Wang,
  • Yanying Zhu,
  • Yuhong Wang,
  • Xiaoya Yan,
  • Xin Sun,
  • Haijun Xu and
  • Wanli Ma

Beilstein J. Nanotechnol. 2019, 10, 578–588, doi:10.3762/bjnano.10.59

Graphical Abstract
  • concentration of 10−11 M, which further revealed that the Ag-G.b.-20 substrate was highly sensitive with a LOD of 10−11 M for CV, which is promising for the application in chemical sensing and food security. Linear relationships between the integrated Raman intensities of two characteristic peaks (1172 cm−1 and
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2019

Wearable, stable, highly sensitive hydrogel–graphene strain sensors

  • Jian Lv,
  • Chuncai Kong,
  • Chao Yang,
  • Lu Yin,
  • Itthipon Jeerapan,
  • Fangzhao Pu,
  • Xiaojing Zhang,
  • Sen Yang and
  • Zhimao Yang

Beilstein J. Nanotechnol. 2019, 10, 475–480, doi:10.3762/bjnano.10.47

Graphical Abstract
  • 21500, P. R. China Research institute of Xi'an Jiaotong University, Hangzhou, Zhejiang, 311215, P. R. China 10.3762/bjnano.10.47 Abstract A stable and highly sensitive graphene/hydrogel strain sensor is designed by introducing glycerol as a co-solvent in the formation of a hydrogel substrate and then
  • sensor to be used in a real working scenario. Conclusion We have demonstrated a wearable, stable, and highly sensitive strain sensor, based on a binary solvent, graphene/WG-hydrogel composite material, synthesized using a two-step process. The long-term water-retention properties of the graphene/WG
PDF
Album
Supp Info
Letter
Published 14 Feb 2019

A comparison of tarsal morphology and traction force in the two burying beetles Nicrophorus nepalensis and Nicrophorus vespilloides (Coleoptera, Silphidae)

  • Liesa Schnee,
  • Benjamin Sampalla,
  • Josef K. Müller and
  • Oliver Betz

Beilstein J. Nanotechnol. 2019, 10, 47–61, doi:10.3762/bjnano.10.5

Graphical Abstract
  • (CSM Instruments, Peseux, Switzerland) equipped with a dual-beam cantilever STH-001 as previously described [19]. This cantilever features a highly sensitive dual-beam spring able to measure forces in the x-direction (Ft, stiffness = 4.8139 mN/µm) and z-direction (Fn, stiffness = 0.5122 mN/µm) with a
PDF
Album
Full Research Paper
Published 04 Jan 2019

A new bioinspired method for pressure and flow sensing based on the underwater air-retaining surface of the backswimmer Notonecta

  • Matthias Mail,
  • Adrian Klein,
  • Horst Bleckmann,
  • Anke Schmitz,
  • Torsten Scherer,
  • Peter T. Rühr,
  • Goran Lovric,
  • Robin Fröhlingsdorf,
  • Stanislav N. Gorb and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2018, 9, 3039–3047, doi:10.3762/bjnano.9.282

Graphical Abstract
  • , we provide a biomimetic proof of principle to validate our hypothesis. The suggested sensory principle has never been documented before and is not only of interest for sensory biologists but can also be used for the development of highly sensitive underwater acoustic or seismographic sensory systems
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2018

Graphene-enhanced metal oxide gas sensors at room temperature: a review

  • Dongjin Sun,
  • Yifan Luo,
  • Marc Debliquy and
  • Chao Zhang

Beilstein J. Nanotechnol. 2018, 9, 2832–2844, doi:10.3762/bjnano.9.264

Graphical Abstract
  • composites. The ZnO–rGO sensor exhibited a response of 1.2 to NH3 with ultra-fast response/recovery times of 78 s/188 s, which was much better than that of a pure rGO sensor (low response and endless recovery time). The composite sensor with the optimal amount of GO (1.5 mL) was highly sensitive to low
PDF
Album
Review
Published 09 Nov 2018

Magnetic and luminescent coordination networks based on imidazolium salts and lanthanides for sensitive ratiometric thermometry

  • Pierre Farger,
  • Cédric Leuvrey,
  • Mathieu Gallart,
  • Pierre Gilliot,
  • Guillaume Rogez,
  • João Rocha,
  • Duarte Ananias,
  • Pierre Rabu and
  • Emilie Delahaye

Beilstein J. Nanotechnol. 2018, 9, 2775–2787, doi:10.3762/bjnano.9.259

Graphical Abstract
  • ). The emission of Eu3+ is highly sensitive to slight changes in the first coordination sphere of the metal, and because of this it is widely used as a local probe [61]. For [Eu(L)(ox)(H2O)], the emission spectra recorded at 297 K and 12 K show i) a single 5D0→7F0 transition and a local-field splitting
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2018

Nanostructured liquid crystal systems and applications

  • Alexei R. Khokhlov and
  • Alexander V. Emelyanenko

Beilstein J. Nanotechnol. 2018, 9, 2644–2645, doi:10.3762/bjnano.9.245

Graphical Abstract
  • well as in food production. The molecules of the human body (e.g., DNA, proteins) can also form liquid crystal phases. Many applications of liquid crystals require the manipulation of structures on the nanometer scale. For example, these highly sensitive materials are capable of changing their
PDF
Editorial
Published 05 Oct 2018

Effective sensor properties and sensitivity considerations of a dynamic co-resonantly coupled cantilever sensor

  • Julia Körner

Beilstein J. Nanotechnol. 2018, 9, 2546–2560, doi:10.3762/bjnano.9.237

Graphical Abstract
  • of highly sensitive cantilevers with state-of-the-art equipment. Therefore, new concepts which access the high sensitivity of a nanocantilever but at the same time preserve the ease of oscillation detection need to be explored. One approach is a recently introduced co-resonant measurement principle
  • cantilevers. Thus, any interaction applied at the highly sensitive nanocantilever alters the oscillatory state of the coupled system as a whole and can be detected by measuring the coupled system’s amplitude response curve at the microcantilever [13][14]. Details about the basic underlying sensing principle
PDF
Album
Supp Info
Full Research Paper
Published 25 Sep 2018

Directional light beams by design from electrically driven elliptical slit antennas

  • Shuiyan Cao,
  • Eric Le Moal,
  • Quanbo Jiang,
  • Aurélien Drezet,
  • Serge Huant,
  • Jean-Paul Hugonin,
  • Gérald Dujardin and
  • Elizabeth Boer-Duchemin

Beilstein J. Nanotechnol. 2018, 9, 2361–2371, doi:10.3762/bjnano.9.221

Graphical Abstract
  • angular spread of the emitted beam depends on the length of the ellipse axes and not on its eccentricity. In addition, light beaming is robust to amplitude inhomogeneities of the scattered field from the slit (which becomes more inhomogeneous as the eccentricity increases) but is highly sensitive to its
PDF
Album
Supp Info
Full Research Paper
Published 03 Sep 2018

Influence of the thickness of an antiferromagnetic IrMn layer on the static and dynamic magnetization of weakly coupled CoFeB/IrMn/CoFeB trilayers

  • Deepika Jhajhria,
  • Dinesh K. Pandya and
  • Sujeet Chaudhary

Beilstein J. Nanotechnol. 2018, 9, 2198–2208, doi:10.3762/bjnano.9.206

Graphical Abstract
  • to the oblique deposition geometry [39]. Since CoFeB is highly sensitive to this induced anisotropic stress (owing to their large positive saturation magnetostriction coefficient λs [40]), the deposition geometry effectively results in the observed UMA [41]. The UMA in films is found to be directly
PDF
Album
Full Research Paper
Published 20 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • important active materials for gas sensing applications. Such highly sensitive and selective elements can be embedded in sensor nodes for internet-of-things applications or in mobile systems for continuous monitoring of air pollutants and greenhouse gases as well as for monitoring the well-being and health
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Self-assembled quasi-hexagonal arrays of gold nanoparticles with small gaps for surface-enhanced Raman spectroscopy

  • Emre Gürdal,
  • Simon Dickreuter,
  • Fatima Noureddine,
  • Pascal Bieschke,
  • Dieter P. Kern and
  • Monika Fleischer

Beilstein J. Nanotechnol. 2018, 9, 1977–1985, doi:10.3762/bjnano.9.188

Graphical Abstract
  • increases, their size increases up to about 100 nm to 120 nm. A systematic offset can be discerned between the separate test series, indicating that the process is highly sensitive to the exact preparation conditions during the fabrication process even when the same recipe is followed. In addition, the
PDF
Album
Full Research Paper
Published 12 Jul 2018

Colorimetric detection of Cu2+ based on the formation of peptide–copper complexes on silver nanoparticle surfaces

  • Gajanan Sampatrao Ghodake,
  • Surendra Krishna Shinde,
  • Rijuta Ganesh Saratale,
  • Avinash Ashok Kadam,
  • Ganesh Dattatraya Saratale,
  • Asad Syed,
  • Fuad Ameen and
  • Dae-Young Kim

Beilstein J. Nanotechnol. 2018, 9, 1414–1422, doi:10.3762/bjnano.9.134

Graphical Abstract
  • ., atomic emission spectrometer, atomic absorption spectrometer, inductively coupled plasma mass spectrometer) are only of limited use for on-site applications [6]. Thus, the development of a convenient but highly sensitive and selective sensing method for Cu2+ with improved practicality is urgently needed
PDF
Album
Full Research Paper
Published 15 May 2018
Other Beilstein-Institut Open Science Activities