Search results

Search for "roughness" in Full Text gives 466 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nanoscale friction and wear of a polymer coated with graphene

  • Robin Vacher and
  • Astrid S. de Wijn

Beilstein J. Nanotechnol. 2022, 13, 63–73, doi:10.3762/bjnano.13.4

Graphical Abstract
  • . During sliding, we bin the individual polymer particles depending on their position in the reference frame of the tip. We then calculate the average of a specific property in each bin. We also compute the surface roughness. We first divide the box into bins of size σ0 in both x- and y-directions. Each
  • bin is assigned the height of the monomer with the highest z-position. We compute the surface roughness as the root mean square height, where A is the surface area, and Z is the height of the particles on the surface. Results and Discussion Effect of graphene deposition After the deposition of
  • characterise the shape of the polymer surface by the roughness. We computed the roughness of the bare surface, as well as surfaces covered with flat and crumpled graphene sheets just after deposition. Before the deposition of graphene, the roughness of the polymer surface is equal to 0.543 Å. After the
PDF
Album
Full Research Paper
Published 14 Jan 2022

Measurement of polarization effects in dual-phase ceria-based oxygen permeation membranes using Kelvin probe force microscopy

  • Kerstin Neuhaus,
  • Christina Schmidt,
  • Liudmila Fischer,
  • Wilhelm Albert Meulenberg,
  • Ke Ran,
  • Joachim Mayer and
  • Stefan Baumann

Beilstein J. Nanotechnol. 2021, 12, 1380–1391, doi:10.3762/bjnano.12.102

Graphical Abstract
  • according to the Fe3−xCoxO4 phase diagram [10]. For electrical conductivity measurements, the samples were burnished using sanding paper (1200 graining). For KFPM measurements, the samples were embedded in epoxy resin and polished to mirror using diamond polishing paste. The roughness of the polished
PDF
Album
Full Research Paper
Published 15 Dec 2021

Alteration of nanomechanical properties of pancreatic cancer cells through anticancer drug treatment revealed by atomic force microscopy

  • Xiaoteng Liang,
  • Shuai Liu,
  • Xiuchao Wang,
  • Dan Xia and
  • Qiang Li

Beilstein J. Nanotechnol. 2021, 12, 1372–1379, doi:10.3762/bjnano.12.101

Graphical Abstract
  • . The sharp contrast reduced the details of the cell surface microstructure of HDPE6-C7, AsPC-1, and MIA-PaCa-2 cell lines. The corresponding analyses of cell surface roughness is listed in Supporting Information File 1, Table S1, which shows that the surface roughness of MIA-PaCa-2, HDPE6-C7, and AsPC
  • ratio, (c) cell spread areas and (d) the corresponding Young's modulus of MIA PaCa-2 cells with/without DOX treatment. Supporting Information Supporting Information File 96: Surface roughness, energy dissipation, point distribution of Young's modulus of AsPC-1, MIA-PaCa-2, BxPC-3, and HDPE6-C7 and
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2021

Polarity in cuticular ridge development and insect attachment on leaf surfaces of Schismatoglottis calyptrata (Araceae)

  • Venkata A. Surapaneni,
  • Tobias Aust,
  • Thomas Speck and
  • Marc Thielen

Beilstein J. Nanotechnol. 2021, 12, 1326–1338, doi:10.3762/bjnano.12.98

Graphical Abstract
  • imaging of young leaf surfaces [7][23]. By means of confocal microscopy experiments, we demonstrate that polarity in ridge development also occurs on leaves of S. calyptrata and that the surface roughness of the leaves increases as the leaves mature. Previous studies have found reduced insect adhesive
  • morphologies is provided in Figure 2. The ontogenetic variations in roughness on the S. calyptrata leaf surfaces are given as the arithmetic average roughness (Ra) versus leaf stage in Figure 3a and as the ridge aspect ratio (AR) versus leaf stage in Figure 3b. The roughness values of the leaf replicas
  • spots in the dark green region: Rc = 0.76 µm, Rsm = 3.0 µm, AR = 0.25; in the yellowish green region: Rc = 0.88 µm, Rsm = 3.03 µm, AR = 0.29). The mean values of the roughness parameters are shown in Table 1. These values of mean height (Rc) and spacing (Rsm) of the ridges at the intermediate stages 2A
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2021

A review on slip boundary conditions at the nanoscale: recent development and applications

  • Ruifei Wang,
  • Jin Chai,
  • Bobo Luo,
  • Xiong Liu,
  • Jianting Zhang,
  • Min Wu,
  • Mingdan Wei and
  • Zhuanyue Ma

Beilstein J. Nanotechnol. 2021, 12, 1237–1251, doi:10.3762/bjnano.12.91

Graphical Abstract
  • and varies with the external driving force. In addition, depending on whether there is a true slip length, the amplitude of surface roughness has different influences on the effective slip length. The composition of surface textures, including isotropic and anisotropic textures, can also affect the
  • addition, as downsizing can result in an increased surface-to-volume ratio, the solid–liquid interfacial properties, such as wettability and surface roughness, become key factors in the determination of liquid properties near the interface of nanosized systems, and may dramatically affect the slip flow
  • boundary conditions [10][11][12][13][14][15]. For example, many studies have shown that on hydrophobic surfaces, roughness may lead to a transition to a superhydrophobic state, significantly lowering the ability of liquid drops to stick. In other words, liquids can easily slip along such solid surfaces and
PDF
Album
Review
Published 17 Nov 2021

Two dynamic modes to streamline challenging atomic force microscopy measurements

  • Alexei G. Temiryazev,
  • Andrey V. Krayev and
  • Marina P. Temiryazeva

Beilstein J. Nanotechnol. 2021, 12, 1226–1236, doi:10.3762/bjnano.12.90

Graphical Abstract
  • point (reference) level Asp, we define it as Asp = p × A0/100, that is, the amplitude during scanning will be p percent of the initial amplitude. In addition, we must set the scanning speed V. The problem is that the optimal choice of the values of A0, p, and V depends on the roughness of the surface to
  • adjacent points and the roughness of the sample. In many cases, the latter factor will predominantly determine the overall imaging time. There is no need to adjust the feedback and it is possible to scan rough surfaces at small oscillation amplitude. Since feedback is not used in its regular sense, we have
  • return pass. The time of vertical movements is not known in advance. It depends on the sample roughness and two parameters, namely the speed Vdown of the probe approaching the surface at the point of measurement and the retraction speed Vup. The time required to obtain a scan, Tscan, will be the sum of
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2021

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • interconnections of these building blocks with each other result in the formation of 3D porous network structures. This increases coarsening, roughness, and adsorption sites and overall offers a high surface-to-volume ratio [72][82][91]. The crossovers offer additional secondary and tertiary adsorption sites. Thus
  • , roughness, porosity, branching, network structure, and fractal dimensions. The fractal dimensions estimated in the present article show that structures with D in the range of 1.3–1.8 exhibit better gas sensing responses. For fractal dimensions greater than 2, gas sensing behavior is not significant, and
  • fractals, can aid in better sensing. Connectivity, exposure to gaseous environment, nanoscale 3D coarsening, and roughness generate many secondary and tertiary adsorption sites that result in better sensitivity. If somehow the interconnectivity can be improved with the help of an artificial electrode
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Is the Ne operation of the helium ion microscope suitable for electron backscatter diffraction sample preparation?

  • Annalena Wolff

Beilstein J. Nanotechnol. 2021, 12, 965–983, doi:10.3762/bjnano.12.73

Graphical Abstract
  • area. Most areas on the sample returned up to 80% zero solutions under the same conditions due to the roughness of the surface sample (see below Figure 7). The inverse pole figure (IPF X) is shown in Figure 3d. The band contrast and grain boundary map overlay is shown in Figure 3e. A statistical
PDF
Album
Supp Info
Full Research Paper
Published 31 Aug 2021

Self-assembly of Eucalyptus gunnii wax tubules and pure ß-diketone on HOPG and glass

  • Miriam Anna Huth,
  • Axel Huth and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2021, 12, 939–949, doi:10.3762/bjnano.12.70

Graphical Abstract
  • tubules in nature. On E. gunnii leaves, wax regeneration can be observed by AFM, but the measurement is limited to small areas and short times due to the roughness of the leaf surface [30]. In addition, fresh plant leaves containing water are heated by the laser beam during scanning, which can cause a
PDF
Album
Full Research Paper
Published 20 Aug 2021

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
  • . Furthermore, the images themselves were not the input to the machine learning, but rather feature engineering was applied to determine relevant global parameters from the image analysis. These included, among others, roughness as average or root mean square (RMS), surface skewness, surface kurtosis, and peak
PDF
Album
Review
Published 13 Aug 2021

9.1% efficient zinc oxide/silicon solar cells on a 50 μm thick Si absorber

  • Rafal Pietruszka,
  • Bartlomiej S. Witkowski,
  • Monika Ozga,
  • Katarzyna Gwozdz,
  • Ewa Placzek-Popko and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 766–774, doi:10.3762/bjnano.12.60

Graphical Abstract
  • the tested PV cells, as measured with atomic force microscopy (AFM). The results for the photovoltaic cell modified with zinc oxide nanorods are shown in Figure 4a and Figure 4c. The results for the planar cell are shown in Figure 4b and Figure 4d. There are significant differences in the roughness
  • to a non-uniform surface morphology, as intended by us. The average root mean square (RMS) roughness of sample A equals 60 nm. As a result, light reflection is reduced for the cell. This effect was published previously [14] for PV structures prepared on a thicker Si absorber. This feature enhances
  • the light-trapping effect. The impact of light-trapping on the operation of solar cells is presented by means of current–voltage curves. In contrast, sample B showed a flat surface morphology. The average RMS roughness value was 9 nm. Therefore, interference peaks in external quantum efficiency (EQE
PDF
Album
Full Research Paper
Published 21 Jul 2021

Physical constraints lead to parallel evolution of micro- and nanostructures of animal adhesive pads: a review

  • Thies H. Büscher and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2021, 12, 725–743, doi:10.3762/bjnano.12.57

Graphical Abstract
  • morphology of attachment devices is affected by physical constraints. This resulted in two main types of attachment devices in animals: hairy and smooth. They differ in morphology and ultrastructure but achieve mechanical adaptation to substrates with different roughness and maximise the actual contact area
  • influence of different factors, such as substrate roughness and pad stiffness, on contact forces, and review the chemical composition of pad fluids, which is an important component of an adhesive function. Attachment systems are omnipresent in animals. We show parallel evolution of attachment structures on
  • contact with a wide range of microscopically rough substrate profiles (Figure 2). Also, due to the low bending stiffness of their terminal plates, can even adapt to substrates with roughness on a sub-nanometre scale [1][3][4][34]. Smooth pads can also maximise their contact areas with a variety of
PDF
Album
Review
Published 15 Jul 2021

Electromigration-induced formation of percolating adsorbate islands during condensation from the gaseous phase: a computational study

  • Alina V. Dvornichenko,
  • Vasyl O. Kharchenko and
  • Dmitrii O. Kharchenko

Beilstein J. Nanotechnol. 2021, 12, 694–703, doi:10.3762/bjnano.12.55

Graphical Abstract
  • [42], control of surface roughness [43] and morphology of islands or nanowires [26][44][45][46][47], as well as control of adsorbate transfer to graphene [48]. Thus, the effects of EM induced by the presence of a potential difference on opposite sides of the substrate can significantly affect the
PDF
Album
Letter
Published 13 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
PDF
Album
Review
Published 02 Jul 2021

High-yield synthesis of silver nanowires for transparent conducting PET films

  • Gul Naz,
  • Hafsa Asghar,
  • Muhammad Ramzan,
  • Muhammad Arshad,
  • Rashid Ahmed,
  • Muhammad Bilal Tahir,
  • Bakhtiar Ul Haq,
  • Nadeem Baig and
  • Junaid Jalil

Beilstein J. Nanotechnol. 2021, 12, 624–632, doi:10.3762/bjnano.12.51

Graphical Abstract
  • nanowire interactions. Also, the aligned assembly may not only yield reduced PET film roughness and resistance but also improved transmissivity. Here, AgNWs with lengths and diameters of 3.3–4.7 µm and 75–97 nm, respectively, have been formed in the reaction. The AgNWs with larger diameters yield lower
  • free from impurities, that is, silver nanoparticles. No other nanostructures could affect the optical and conduction properties, or the roughness of the film. A silver nanowire ink formulated by adding HEC to an aqueous solution of silver nanowires, was then loaded onto the surface of PET films by
PDF
Album
Full Research Paper
Published 01 Jul 2021

Impact of GaAs(100) surface preparation on EQE of AZO/Al2O3/p-GaAs photovoltaic structures

  • Piotr Caban,
  • Rafał Pietruszka,
  • Jarosław Kaszewski,
  • Monika Ożga,
  • Bartłomiej S. Witkowski,
  • Krzysztof Kopalko,
  • Piotr Kuźmiuk,
  • Katarzyna Gwóźdź,
  • Ewa Płaczek-Popko,
  • Krystyna Lawniczak-Jablonska and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 578–592, doi:10.3762/bjnano.12.48

Graphical Abstract
  • B series, respectively. From the AFM results shown in Figure 3 and Figure 4, one can see that A1, A2, A4, B1, and B4 samples exhibit uniform surfaces by the means of polycrystalline thin film topography. By taking into consideration the roughness of the surfaces (RMS was measured for an area of 4
  • μm2 for every sample), the lowest RMS values are observed in A4 and B4 samples: 2.05 and 1.96 nm, respectively (those samples were treated with the ammonia aqueous solution during stage 3). Conversely, the highest roughness is observed in samples in which the HCl solution was applied (also during
  • stage 3). For A3 and B3 samples we report RMS values of 4.54 and 4.55 nm, respectively. Also, A1 and A2 samples show relatively low roughness, which is likely related to the passivation of the surface with the ammonium sulphide aqueous solution. These values are lower than that of the B1 and B2 samples
PDF
Album
Full Research Paper
Published 28 Jun 2021

Properties of graphene deposited on GaN nanowires: influence of nanowire roughness, self-induced nanogating and defects

  • Jakub Kierdaszuk,
  • Piotr Kaźmierczak,
  • Justyna Grzonka,
  • Aleksandra Krajewska,
  • Aleksandra Przewłoka,
  • Wawrzyniec Kaszub,
  • Zbigniew R. Zytkiewicz,
  • Marta Sobanska,
  • Maria Kamińska,
  • Andrzej Wysmołek and
  • Aneta Drabińska

Beilstein J. Nanotechnol. 2021, 12, 566–577, doi:10.3762/bjnano.12.47

Graphical Abstract
  • nanowires impact graphene properties such as roughness, strain, and carrier concentration as well as density and type of induced defects. Tracing the manifestation of those interactions is important for the application of novel heterostructures. A detailed analysis of Raman spectra of graphene deposited on
PDF
Album
Full Research Paper
Published 22 Jun 2021

Interface interaction of transition metal phthalocyanines with strontium titanate (100)

  • Reimer Karstens,
  • Thomas Chassé and
  • Heiko Peisert

Beilstein J. Nanotechnol. 2021, 12, 485–496, doi:10.3762/bjnano.12.39

Graphical Abstract
  • termination; but slightly different preparation conditions may affect also the surface morphology and roughness. Notably, for all three preparations the intensity of the interface component is in the range between 40% and 60%. That is, only for about the half of the molecules an interaction between the Co ion
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • roughness may be minimized by removing the material with only few cycles. For standard geometries, both of these optimization problems are already targeted with the high-level approach and the pre-defined raster strategies [17]. However, only the low-level approach enables these strategies for arbitrary
  • -crystalline gold constitute an ideal platform for plasmonic applications due to the lack of scattering losses at grain boundaries and surface roughness [56]. In nanostructured gold, collective excitations of the free electron gas may occur under the incidence of visible light [2]. These plasmon polaritons of
  • round. Each monomer acts as a small dipole in our measurement configuration and its response is not very sensitive to its actual shape as long as surface roughness does not increase the scattering losses. Finite-difference time-domain modeling taking into account the slightly varying geometries led to
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

The nanomorphology of cell surfaces of adhered osteoblasts

  • Christian Voelkner,
  • Mirco Wendt,
  • Regina Lange,
  • Max Ulbrich,
  • Martina Gruening,
  • Susanne Staehlke,
  • Barbara Nebe,
  • Ingo Barke and
  • Sylvia Speller

Beilstein J. Nanotechnol. 2021, 12, 242–256, doi:10.3762/bjnano.12.20

Graphical Abstract
  • apical plasma membrane surface. Several other morphological and dynamic parameters are evaluated, for example, cell edge heights, membrane surface roughness, and membrane fluctuations, and discussed with respect to cellular functions. Results and Discussion In Figure 1 we show a typical overview SICM
  • , serve to enhance the exchange of substances with the extracellular medium (through absorption and secretion) while filopodia are used to explore the environment of an adhering cell on a surface, especially if it exhibits some roughness or edges. Occasionally, we observed depression or hole features in
  • fiber network. Largely featureless regions, free of ruffles and other membrane structures, are scarce; they show waviness on the mesoscopic scale and a 2D-rms roughness value of 17 nm on the nanoscopic scale, as illustrated in Figure 7b. We find it noteworthy that hardly any filopodia were formed at
PDF
Album
Full Research Paper
Published 12 Mar 2021

Determination of elastic moduli of elastic–plastic microspherical materials using nanoindentation simulation without mechanical polishing

  • Hongzhou Li and
  • Jialian Chen

Beilstein J. Nanotechnol. 2021, 12, 213–221, doi:10.3762/bjnano.12.17

Graphical Abstract
  • specimen is assumed to be a perfectly flat surface, thus ignoring the influences of surface roughness that might be encountered in experiment. For nanoindentation measurements, a flat surface is fabricated from curved specimens by mechanical polishing. However, the position of the polished curved surface
  • influences of surface roughness that might be encountered in experiment. For nanoindentation measurements, a flat surface is fabricated from curved specimens by mechanical polishing. However, the position of the polished curved surface cannot be controlled [13]. Small-scale microplastics with curved
PDF
Album
Full Research Paper
Published 19 Feb 2021

Paper-based triboelectric nanogenerators and their applications: a review

  • Jing Han,
  • Nuo Xu,
  • Yuchen Liang,
  • Mei Ding,
  • Junyi Zhai,
  • Qijun Sun and
  • Zhong Lin Wang

Beilstein J. Nanotechnol. 2021, 12, 151–171, doi:10.3762/bjnano.12.12

Graphical Abstract
  • . Paper and other fiber-based materials are integral components of many objects that are used on a regular basis by the population, which are also available in different compositions, thickness and surface roughness. Most importantly, paper is biocompatible, biodegradable, and environmentally friendly
  • (i.e., electronegative). Furthermore, due to the high roughness and porous nanofiber structure it can lead to enhanced TENG output performances owing to improved charge-trapping abilities. Based on the above advantages and conveniences, paper-based TENGs (P-TENGs) have exhibited great potential for
PDF
Album
Review
Published 01 Feb 2021

Molecular dynamics modeling of the influence forming process parameters on the structure and morphology of a superconducting spin valve

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Vladimir Boian,
  • Roman Morari and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1776–1788, doi:10.3762/bjnano.11.160

Graphical Abstract
  • structural quality of superconducting niobium layers, for example, with a thickness comparable to the coherence length of approximately <10 nm, is worse than that of thicker films, and the destructive effect of the interface roughness also suppresses the manifestation of interference effects in ultrathin
PDF
Album
Full Research Paper
Published 24 Nov 2020

Mapping of integrated PIN diodes with a 3D architecture by scanning microwave impedance microscopy and dynamic spectroscopy

  • Rosine Coq Germanicus,
  • Peter De Wolf,
  • Florent Lallemand,
  • Catherine Bunel,
  • Serge Bardy,
  • Hugues Murray and
  • Ulrike Lüders

Beilstein J. Nanotechnol. 2020, 11, 1764–1775, doi:10.3762/bjnano.11.159

Graphical Abstract
  • BEOL steps were accomplished. The SPM electrical measurements were performed in the cross section of the chip at the wafer level. In order to enable a stable and constant nanoscale contact between the sensor tip and the sample, a surface with a low roughness is required. For this purpose, the sample
  • was hand-polished down to a roughness of a few nanometres with diamond-based lapping films with decreasing granularity. In the following section, the local electrical properties of all layers in the cross section of the PIN diode are analysed. In order to evaluate the impact of the applied VDC bias
  • ) have a slightly different polishing rate, which results in the observed topography. In the AFM topography image, one can localize the two deep trench isolation structures in the silicon wafer, as well as the anode and cathode contacts. It is important to note that a low roughness is required for a
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2020

Application of contact-resonance AFM methods to polymer samples

  • Sebastian Friedrich and
  • Brunero Cappella

Beilstein J. Nanotechnol. 2020, 11, 1714–1727, doi:10.3762/bjnano.11.154

Graphical Abstract
  • modes including scanning under continuous contact wear and damage the sample and/or alter the surface roughness, the results of point CR measurements on bulk and thin films are presented. Though Young’s moduli of bulk polystyrene and poly(methyl methacrylate) could be determined through the presented
  • such results must still be confirmed by further studies, it is evident that ripples change the roughness of the sample, the geometry of the contacting surfaces and, hence, the contact area, which plays a crucial role in the characterization of mechanical properties. Even when ripples are not formed and
  • the static load is not high enough to induce a uniform depression, abrasion and plastic deformation can lead to the formation of disordered agglomerates of polymer chains, severely changing the roughness of the surface. Since these wear phenomena are due to the lateral movement of the tip, a second
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2020
Other Beilstein-Institut Open Science Activities