Search results

Search for "tunneling" in Full Text gives 309 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Adsorption behavior of tin phthalocyanine onto the (110) face of rutile TiO2

  • Lukasz Bodek,
  • Mads Engelund,
  • Aleksandra Cebrat and
  • Bartosz Such

Beilstein J. Nanotechnol. 2020, 11, 821–828, doi:10.3762/bjnano.11.67

Graphical Abstract
  • , Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland 10.3762/bjnano.11.67 Abstract The adsorption behavior of tin phthalocyanine (SnPc) molecules on rutile TiO2(110) was studied by scanning tunneling microscopy (STM). Low-temperature STM
  • tunneling microscopy (STM); tin phthalocyanine (SnPc); titanium dioxide (TiO2); Introduction Phthalocyanines (Pcs) are aromatic molecules that can form metal complexes with a variety of elements, which can be used to tune molecular properties, such as position or shape of adsorption bands. Therefore, Pcs
  • rate (0.25 ML/min) was determined using a quartz crystal microbalance. Scanning tunneling microscopy (STM) experiments were performed with the use of either a low-temperature STM (LT-STM) operating at ca. 78 K or a room-temperature STM (RT-STM) manufactured by Scienta Omicron installed in a separate
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2020

Templating effect of single-layer graphene supported by an insulating substrate on the molecular orientation of lead phthalocyanine

  • K. Priya Madhuri,
  • Abhay A. Sagade,
  • Pralay K. Santra and
  • Neena S. John

Beilstein J. Nanotechnol. 2020, 11, 814–820, doi:10.3762/bjnano.11.66

Graphical Abstract
  • microscopy shows enhanced vertical conductance with interconnected conducting domains consisting of ordered monoclinic crystallites through which the charge transfer occurs via tunneling. These results show the importance of a templating layer to induce the formation of a required phase of PbPc suitable for
  • indicating that the charge transport in a thin PbPc layer is governed by tunneling (Figure 7). A plot of ln(I/V2) as a function of V−1 indicates a logarithmic dependence in the low-bias region showing direct tunneling, which transforms into a linear dependence in the high-bias region, suggesting Fowler
  • –Nordheim (F-N) tunneling or injection tunneling. However, it is seen that the transition from direct to F-N tunneling is not a sharp transition. Instead, there is a seemingly linear slope between the two states. A sharp rise in linear current is noticed beyond this region, which corresponds to F-N
PDF
Album
Full Research Paper
Published 19 May 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
  • atom probe tomography, providing sub-nanometer spatial information of the chemical composition, scanning tunneling electron microscope (STEM) imaging and spectroscopy at low beam energy [65], enabling the characterization of individual defects in h-BN, and atomic electron tomography. However, all these
  • of h-BN with triangle shapes. The most commonly formed defects found are boron monovacancies [65] as the dominating zigzag-type edges of the defects are nitrogen terminated. Individual defects with nanoscale resolution were isolated and manipulated by using scanning tunneling microscopy (STM) [95
PDF
Album
Review
Published 08 May 2020
Graphical Abstract
  • Majid Sanaeepur Department of Electrical Engineering, Faculty of Engineering, Arak University, Arak, 3815688349, Iran Institute of Nanosciences and Nanotechnology, Arak University, Arak, Iran 10.3762/bjnano.11.56 Abstract A nanometer-scaled resonant tunneling diode based on lateral
  • substitutional defects (including BC, NC, CB, and CN) at the interface of graphene and boron nitride nanoribbons on the negative differential resistance behavior of the proposed resonant tunneling diode is investigated. Transport simulations are carried out in the framework of tight-binding Hamiltonians and non
  • heterojunction; armchair boron nitride nanoribbon (ABNNR); armchair graphene nanoribbon (AGNR); negative differential resistance (NDR); nonequilibrium Green’s function (NEGF); resonant tunneling diode (RTD); substitutional defects; Introduction 2D materials have gained tremendous research interest due to the
PDF
Album
Full Research Paper
Published 24 Apr 2020

Electromigration-induced directional steps towards the formation of single atomic Ag contacts

  • Atasi Chatterjee,
  • Christoph Tegenkamp and
  • Herbert Pfnür

Beilstein J. Nanotechnol. 2020, 11, 680–687, doi:10.3762/bjnano.11.55

Graphical Abstract
  • break junctions (MCBJ), scanning tunneling microscopy (STM) and electromigration (EM). All these techniques rely on conductance histograms as a statistical tool in order to find the configurations of high stability. Conductance histograms provide information about the most probable conductance values
PDF
Album
Full Research Paper
Published 22 Apr 2020

Atomic-resolution imaging of rutile TiO2(110)-(1 × 2) reconstructed surface by non-contact atomic force microscopy

  • Daiki Katsube,
  • Shoki Ojima,
  • Eiichi Inami and
  • Masayuki Abe

Beilstein J. Nanotechnol. 2020, 11, 443–449, doi:10.3762/bjnano.11.35

Graphical Abstract
  • , because it cannot be clarified whether the (1 × 2) structure is formed over a wide area or only locally using macroscopic analysis methods such as diffraction. We used non-contact atomic force microscopy, scanning tunneling microscopy, and low-energy electron diffraction at room temperature to
  • clean surface is relatively easy. A well-known rutile TiO2(110) surface is the (1 × 1) structure [2]. The (1 × 1) surface has been studied using low-energy electron diffraction (LEED) [3][4], surface X-ray diffraction [5], non-contact atomic force microscopy (NC-AFM) [6][7][8][9], scanning tunneling
  • -AFM and tunneling current for STM), the surface structure sometimes results in different contrasts in both images. In Figure 3, white squares and circles indicate line defects and protrusions, which are considered to be adsorbates or contamination. A line defect was imaged as a likely vacancy by STM
PDF
Album
Full Research Paper
Published 10 Mar 2020

High dynamic resistance elements based on a Josephson junction array

  • Konstantin Yu. Arutyunov and
  • Janne S. Lehtinen

Beilstein J. Nanotechnol. 2020, 11, 417–420, doi:10.3762/bjnano.11.32

Graphical Abstract
  • here the finite electric current is maintained by correlated Cooper pair tunneling at a voltage bias V across the QPSJ exceeding the particular Coulomb blockade threshold, VC [14]. The tunneling happens at the Bloch oscillation rate, fB. The synchronization of this “internal” periodic process with the
PDF
Album
Full Research Paper
Published 03 Mar 2020

Anomalous current–voltage characteristics of SFIFS Josephson junctions with weak ferromagnetic interlayers

  • Tairzhan Karabassov,
  • Anastasia V. Guravova,
  • Aleksei Yu. Kuzin,
  • Elena A. Kazakova,
  • Shiro Kawabata,
  • Boris G. Lvov and
  • Andrey S. Vasenko

Beilstein J. Nanotechnol. 2020, 11, 252–262, doi:10.3762/bjnano.11.19

Graphical Abstract
  • technique, which has been developed to describe many-body systems in equilibrium at finite temperature [92]. In our model the tunneling barrier is located between two F layers at x = 0 (Figure 1), whereas the other interfaces at x = −df1 and x = df2 are identical and transparent. This case corresponds to
PDF
Album
Full Research Paper
Published 23 Jan 2020

Nonequilibrium Kondo effect in a graphene-coupled quantum dot in the presence of a magnetic field

  • Levente Máthé and
  • Ioan Grosu

Beilstein J. Nanotechnol. 2020, 11, 225–239, doi:10.3762/bjnano.11.17

Graphical Abstract
  • points the energy dispersion of quasiparticles in graphene is linear in momentum. This linear band structure is called a Dirac cone, and it is at the basis of many interesting physical phenomena such as the ’chiral’ quantum Hall effect [51], the Klein tunneling effect [50] and the Aharonov–Bohm effect
  • that the Kondo resonance appears only in a narrow energy range for the impurity level with respect to the chemical potential (μ), and the energy scale is proportional to |μ|. The Kondo effect of an adatom on the surface of graphene and its scanning tunneling microscopy (STM) have been analyzed by
  • regimes, the shape of the Kondo resonance is influenced by the Fano resonance. However, the tunneling between the STM tip and graphene does not obviously affect the shape of the Kondo resonance in the vicinity of zero bias. Yanagisawa investigated the Kondo effect induced by the s–d interaction with Dirac
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2020

Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization

  • Tuba Evgin,
  • Alpaslan Turgut,
  • Georges Hamaoui,
  • Zdenko Spitalsky,
  • Nicolas Horny,
  • Matej Micusik,
  • Mihai Chirtoc,
  • Mehmet Sarikanat and
  • Maria Omastova

Beilstein J. Nanotechnol. 2020, 11, 167–179, doi:10.3762/bjnano.11.14

Graphical Abstract
  • conductivity was dependent on the frequency. The first part was linked to the transfer of charge carriers by direct contacts between the GnP filler, while the second part reflected the conductivity due to hopping and tunneling of electrons between adjacent particles [26]. It was apparent that the critical
PDF
Album
Supp Info
Full Research Paper
Published 14 Jan 2020

Molecular architectonics of DNA for functional nanoarchitectures

  • Debasis Ghosh,
  • Lakshmi P. Datta and
  • Thimmaiah Govindaraju

Beilstein J. Nanotechnol. 2020, 11, 124–140, doi:10.3762/bjnano.11.11

Graphical Abstract
PDF
Album
Review
Published 09 Jan 2020

Nanosecond resistive switching in Ag/AgI/PtIr nanojunctions

  • Botond Sánta,
  • Dániel Molnár,
  • Patrick Haiber,
  • Agnes Gubicza,
  • Edit Szilágyi,
  • Zsolt Zolnai,
  • András Halbritter and
  • Miklós Csontos

Beilstein J. Nanotechnol. 2020, 11, 92–100, doi:10.3762/bjnano.11.9

Graphical Abstract
  • to fire 500 ps long set/reset voltage pulses and acquire the resulting resistive switching at 1 GHz bandwidth. Results and Discussion Structural and electrical characterization Memristive nanojunctions were created by approaching a mechanically sharpened PtIr tip of a custom-built scanning tunneling
  • keep the junction resistance in the targeted metallic resistance range, where the nonlinear tunneling I(V) characteristics, which are unfavorable for neuromorphic operations, are avoided. These characteristics were further investigated as a function of the amplitude and the frequency fdrive of the
PDF
Album
Full Research Paper
Published 08 Jan 2020

Antimony deposition onto Au(111) and insertion of Mg

  • Lingxing Zan,
  • Da Xing,
  • Abdelaziz Ali Abd-El-Latif and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2019, 10, 2541–2552, doi:10.3762/bjnano.10.245

Graphical Abstract
  • (CV) and scanning tunneling microscopy (STM). Monolayer deposition results in a characteristic row structure; the monolayer is commensurate in one dimension, but not in the other. The row structure is to some extent maintained after deposition of further layers. After dissolution of the Sb multilayers
  • electrochemical scanning tunneling microscopy (EC-STM). A detailed study on the structure of the irreversibly adsorbed oxygenous Sb(III) species and the Sb adlayer on Au(100) was carried out by Hara et al. and Yan et al. [9][10]. Jung investigated the structure of the irreversibly adsorbed oxygenous Sb(III
  • LabVIEW software (National Instruments GmbH, Munich, Germany) for recording the cyclic voltammograms (CVs). Electrochemical scanning tunneling microscopy (EC-STM) measurements All EC-STM measurements were performed with an Agilent Technologies 5500 scanning probe microscope (SPM) and a commercially
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2019

Mobility of charge carriers in self-assembled monolayers

  • Zhihua Fu,
  • Tatjana Ladnorg,
  • Hartmut Gliemann,
  • Alexander Welle,
  • Asif Bashir,
  • Michael Rohwerder,
  • Qiang Zhang,
  • Björn Schüpbach,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2019, 10, 2449–2458, doi:10.3762/bjnano.10.235

Graphical Abstract
  • vertical charge transport through individual molecules of aromatic SAMs by using conductive atomic force microscope (c-AFM) [12][13][14][15] and scanning tunneling microscope (STM) techniques [16][17]. Using these methods, current–voltage (I–V-) curves on the SAM-forming organothiolates has been determined
  • (Goodfellow). All data were collected in a constant-current mode with typical tunneling currents of 0.1–0.15 nA and a sample bias of 0.5–0.7 V. NEXAFS spectroscopy measurements were performed at the HE-SGM dipole beamline at synchrotron facility BESSY II, which is a part of the Helmholtz-Zentrum, Berlin. A
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2019

Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells

  • Olivia Amargós-Reyes,
  • José-Luis Maldonado,
  • Omar Martínez-Alvarez,
  • María-Elena Nicho,
  • José Santos-Cruz,
  • Juan Nicasio-Collazo,
  • Irving Caballero-Quintana and
  • Concepción Arenas-Arrocena

Beilstein J. Nanotechnol. 2019, 10, 2238–2250, doi:10.3762/bjnano.10.216

Graphical Abstract
  • Committee on Powder Diffraction Standards) card), which is in good agreement with the reported cubic morphology [49]. FeS2 thin films were analyzed using scanning tunneling microscopy (STM) to study their molecular ordering at the nanoscale level. Figure 3a shows the STM image. The scanned area (A), the
  • tunneling current (It) and the applied potential (U) are A = 50 nm × 50 nm, It = 500 pA and U = 450 mV. The scanning electron microscopy (SEM) image of agglomerated FeS2 NCs is shown in Figure 3b. The results verify that the sizes of the NCs lie within the nanoscale regime (about 15 to 25 nm). The energy
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation

  • Dominik Wrana,
  • Karol Cieślik,
  • Wojciech Belza,
  • Christian Rodenbücher,
  • Krzysztof Szot and
  • Franciszek Krok

Beilstein J. Nanotechnol. 2019, 10, 1596–1607, doi:10.3762/bjnano.10.155

Graphical Abstract
  • the present case of thermally reduced SrTiO3(100), the dominant reconstruction is (√5×√5)R26.6°, which forms on the TiO2 termination, as proved by the scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) investigations (see Figure 5g,h). The surface is composed of two
PDF
Album
Full Research Paper
Published 02 Aug 2019

Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere

  • Petr Knotek,
  • Tomáš Plecháček,
  • Jan Smolík,
  • Petr Kutálek,
  • Filip Dvořák,
  • Milan Vlček,
  • Jiří Navrátil and
  • Čestmír Drašar

Beilstein J. Nanotechnol. 2019, 10, 1401–1411, doi:10.3762/bjnano.10.138

Graphical Abstract
  • tunneling microscopy (STM) [27][28] or by using AFM in the semicontact mode. The latter enables a describtion not only of the topography (size and shape) but also a detection of the changes in density, stiffness and adhesion of NPs [20][21][24][29][30]. In the present study we demonstrate that the Schottky
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2019

Molecular attachment to a microscope tip: inelastic tunneling, Kondo screening, and thermopower

  • Rouzhaji Tuerhong,
  • Mauro Boero and
  • Jean-Pierre Bucher

Beilstein J. Nanotechnol. 2019, 10, 1243–1250, doi:10.3762/bjnano.10.124

Graphical Abstract
  • Rouzhaji Tuerhong Mauro Boero Jean-Pierre Bucher Université de Strasbourg, IPCMS UMR 70504, 67034 Strasbourg, France 10.3762/bjnano.10.124 Abstract The vibrational excitation related transport properties of a manganese phthalocyanine molecule suspended between the tip of a scanning tunneling
  • microsope (STM) and a surface are investigated by combining the local manipulation capabilities of the STM with inelastic electron tunneling spectroscopy. By attachment of the molecule to the probe tip, the intrinsic physical properties similar to those exhibited by a free standing molecule become
  • thermopower measured across the single-molecule junction. Keywords: inelastic electron tunneling; molecular quantum dot; Kondo physics; single molecule; thermopower; tunnel junction; Introduction Scanning tunneling microscopy (STM) has the capability to detect the electron transport through a molecule not
PDF
Album
Full Research Paper
Published 19 Jun 2019

Imaging the surface potential at the steps on the rutile TiO2(110) surface by Kelvin probe force microscopy

  • Masato Miyazaki,
  • Huan Fei Wen,
  • Quanzhen Zhang,
  • Yuuki Adachi,
  • Jan Brndiar,
  • Ivan Štich,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2019, 10, 1228–1236, doi:10.3762/bjnano.10.122

Graphical Abstract
  • observed with a lateral resolution of several nanometers by Kelvin probe force microscopy (KPFM) [29][30]. However, the dependence of surface potential on direction and structure of steps such as [001], and has not yet been clarified. In scanning tunneling microscopy (STM) [31] studies, three typical
  • several factors can be considered: a phantom force derived from the flow of a tunneling current [48][49], the local adsorption of molecules, the localization of defect states [55][56], the induced dipole moment [50], the unintentional change in tip–sample distance [57], the electron redistribution due to
  • orbital splitting [18] and the Smoluchowski effect [58]. First, we analyze the influence of a tunneling current flowing between the tip and the sample, i.e., a phantom force. The probability of tunneling depends on the atomic site. This may influence the observed CPD value, but it should be excluded as
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2019

Pure and mixed ordered monolayers of tetracyano-2,6-naphthoquinodimethane and hexathiapentacene on the Ag(100) surface

  • Robert Harbers,
  • Timo Heepenstrick,
  • Dmitrii F. Perepichka and
  • Moritz Sokolowski

Beilstein J. Nanotechnol. 2019, 10, 1188–1199, doi:10.3762/bjnano.10.118

Graphical Abstract
  • structures are formed on a surface by molecules that are otherwise typically used for the synthesis of bulk charge-transfer materials. The layers were obtained by vacuum deposition on the Ag(100) surface and analyzed by low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). The
  • a planar orientation on the surface. We discuss the influence of intermolecular charge transfer on the ordering in the mixed structure. Keywords: charge transfer; low-energy electron diffraction; hexathiapentacene; scanning tunneling microscopy; tetracyano-2,6-naphthoquinodimethane; Introduction
  • :1 stoichiometry. Experimental The experiments were conducted in an ultra-high vacuum (UHV) chamber with a base pressure of 10−10 mbar. The chamber was equipped with a variable-temperature scanning tunneling microscope STM (type RHK UHV 300) from RHK Technologies and a multi-channel plate (MCP) low
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2019

In situ AFM visualization of Li–O2 battery discharge products during redox cycling in an atmospherically controlled sample cell

  • Kumar Virwani,
  • Younes Ansari,
  • Khanh Nguyen,
  • Francisco José Alía Moreno-Ortiz,
  • Jangwoo Kim,
  • Maxwell J. Giammona,
  • Ho-Cheol Kim and
  • Young-Hye La

Beilstein J. Nanotechnol. 2019, 10, 930–940, doi:10.3762/bjnano.10.94

Graphical Abstract
  • these redox materials at the micrometer and nanometer scales. Gewirth et al. [2] reviewed the use of scanning tunneling microscopy (STM) and atomic force microscopy (AFM) investigations of phenomena such as reconstructions, restructuring and adsorption of ions. Phenomena such as under-potential
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2019

Capillary force-induced superlattice variation atop a nanometer-wide graphene flake and its moiré origin studied by STM

  • Loji K. Thomas and
  • Michael Reichling

Beilstein J. Nanotechnol. 2019, 10, 804–810, doi:10.3762/bjnano.10.80

Graphical Abstract
  • superlattices on graphite by imaging a live transition from one superlattice to another with concurrent and direct measurement of the orientation angle before and after rotation using scanning tunneling microscopy (STM). This has been possible due to a fortuitous observation of a superlattice on a nanometer
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Coexisting spin and Rabi oscillations at intermediate time regimes in electron transport through a photon cavity

  • Vidar Gudmundsson,
  • Hallmann Gestsson,
  • Nzar Rauf Abdullah,
  • Chi-Shung Tang,
  • Andrei Manolescu and
  • Valeriu Moldoveanu

Beilstein J. Nanotechnol. 2019, 10, 606–616, doi:10.3762/bjnano.10.61

Graphical Abstract
  • coexisting radiative transitions and photon-assisted tunneling [9]. The characteristic time of the transient and the intermediate regime depends on the the ratio of the system lead coupling and the electron–photon coupling in addition to the shape or geometry of the central system and the photon energy [13
  • ]. The formation of very slow Rabi-like spin-flip transitions promoted by the interplay of tunneling and spin orbit interactions in a system of double quantum dots has been studied by Khomitsky et al. [14]. In earlier publications we have shown how a Rabi oscillation can be detected in the transport of
  • approximately one effective magnetic length aw into each subsystem. This approach describing a weak tunneling coupling of the central system and the leads allows for full coupling between the quantum dots and the rest of the central system, like in a scattering approach [21]. Moreover, it conserves parity of
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2019

Polymorphic self-assembly of pyrazine-based tectons at the solution–solid interface

  • Achintya Jana,
  • Puneet Mishra and
  • Neeladri Das

Beilstein J. Nanotechnol. 2019, 10, 494–499, doi:10.3762/bjnano.10.50

Graphical Abstract
  • supramolecular structures is crucial for realizing surface-supported functional molecular devices. Here, we report on the synthesis and surface self-assembly of a new pyrazine-derived molecule with pyridine pendants. Ambient scanning tunneling microscopy investigation at the solution–solid interface reveals
  • ); organic molecules; pyrazine; pyridines; scanning tunneling microscopy; self-assembly; Introduction Molecular materials are attracting considerable attention for the fabrication of next-generation functional devices owing to their high density and low power requirements. Several recent studies have
  • –HOPG interface using scanning tunneling microscopy (STM) technique under ambient conditions. The molecules belong to a new class of pyrazine/triazine-based molecules, containing two or more pyridine pendant units, and can act as a precursor to several two- and three-dimensional supramolecular
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2019

Transport signatures of an Andreev molecule in a quantum dot–superconductor–quantum dot setup

  • Zoltán Scherübl,
  • András Pályi and
  • Szabolcs Csonka

Beilstein J. Nanotechnol. 2019, 10, 363–378, doi:10.3762/bjnano.10.36

Graphical Abstract
  • experiments is to understand the various tunneling-induced non-local interaction mechanisms that are present in the devices, namely crossed Andreev reflection, elastic co-tunneling, and direct interdot tunneling. Here, we provide a theoretical study of a simple device that consists of two quantum dots and a
  • experiments and applications. Keywords: Andreev bound state; crossed Andreev reflection; elastic co-tunneling; quantum dot; Introduction Superconducting hybrid nanodevices provide a promising platform for quantum architectures. While superconductors (SCs) allow for a spatially extended coherent state
  • quasiparticle states, via the so-called elastic co-tunneling (EC) process [21][23][56][57][58][59][60][61][62][63][64][65][66][67][68]. Furthermore, if there is direct tunnel coupling between the dots, as in certain experimental realizations [69][70], then this interdot coupling (IT) also influences the
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2019
Other Beilstein-Institut Open Science Activities