Search results

Search for "liquid" in Full Text gives 882 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

The effect of cobalt on morphology, structure, and ORR activity of electrospun carbon fibre mats in aqueous alkaline environments

  • Markus Gehring,
  • Tobias Kutsch,
  • Osmane Camara,
  • Alexandre Merlen,
  • Hermann Tempel,
  • Hans Kungl and
  • Rüdiger-A. Eichel

Beilstein J. Nanotechnol. 2021, 12, 1173–1186, doi:10.3762/bjnano.12.87

Graphical Abstract
  • active sites, that is, triple-phase contact points. These contact points of air, solid catalyst, and liquid electrolyte, need to be high in number or area. This entails a partial wetting of the electrode to ensure accessibility of the sites for gaseous oxygen. From a more industrial perspective
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2021

Open-loop amplitude-modulation Kelvin probe force microscopy operated in single-pass PeakForce tapping mode

  • Gheorghe Stan and
  • Pradeep Namboodiri

Beilstein J. Nanotechnol. 2021, 12, 1115–1126, doi:10.3762/bjnano.12.83

Graphical Abstract
  • calibration for the gain of the cantilever’s transfer function. DH-KPFM has found applications on sensitive materials and solid–liquid interfaces where conventional CL KPFM does not perform very well [43]. CPD measurements in an OL operation have also been demonstrated in more inclusive scanning probe modes
PDF
Album
Full Research Paper
Published 06 Oct 2021

Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review

  • Keshav Nagpal,
  • Erwan Rauwel,
  • Frédérique Ducroquet and
  • Protima Rauwel

Beilstein J. Nanotechnol. 2021, 12, 1078–1092, doi:10.3762/bjnano.12.80

Graphical Abstract
  • market. Light sources in OLED mainly consist of Alq3 and derived version of PPV polymer, whereas QD based on Cd, Zn, Se, and S are mainly used for QLED. Both technologies have many advantages over traditional inorganic LED and liquid crystal displays in terms of low power consumption, wider view angle
PDF
Album
Review
Published 24 Sep 2021

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • of a drug which is stabilized by the use of surfactants [48]. Therefore, a nanosuspension can be prepared by dispersing a nanocrystal or any other powdered material in an outer liquid medium using a stabilizing agent [45]. Furthermore, these nanosystems have shown increased adhesion to surfaces. The
  • nanotransporters, due to their liquid-phase lipids [61]. The intestinal permeation of a CUR-loaded NLC has been studied in vitro in Caco-2 cells [69]. The formulation protected the compounds from degradation under basic pH, significantly improved the solubility of CUR, and increased its apparent permeation
  • the other hand, it has been reported that NLC have a higher loading capacity and greater stability than SLN. This is mainly attributed to the fact that NLC have an imperfect crystalline structure and due to the presence of liquid lipids it prevents the expulsion of the drug [61][66]. Liposomes
PDF
Album
Review
Published 15 Sep 2021

An overview of microneedle applications, materials, and fabrication methods

  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2021, 12, 1034–1046, doi:10.3762/bjnano.12.77

Graphical Abstract
  • on hydrogel-forming polymer microneedles [16][17][18]. Microneedle patch technology has the potential to overcome the challenges involved in mass vaccination against COVID-19 across the world and has already shown promising achievements in delivering lyophilised or liquid formulation-based vaccines
  • after micropores have been formed by the insertion of microneedles [12]. Therapeutics pre-coated on solid microneedles may dissolve off them after insertion into the skin. Gas-jet dry coating [56], liquid methods including repeated immersion and dip-in coating [57][58], and spray coating [56][59] are
  • in liquid form. It has so far been limited to low density arrays with relatively large spacing between adjacent microneedles (>900 μm). Faraji Rad et al. made tall polymer microneedle arrays with complex design using TPP and micromoulding [5]. Two-photon polymerization enables fabrication of almost
PDF
Album
Review
Published 13 Sep 2021

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • had important security and corrosion issues since sodium and sulfur are both liquid under the working conditions. Therefore, the applicability of HT Na–S batteries is limited to stationary deployment, and the operation temperature needs to be reduced in order to improve market penetration of Na–S
  • composites is the fact that sodium polysulfides are incorporated as a liquid phase (so-called catholyte) and thus, it is necessary to confine them at the cathode. Otherwise, they would migrate to the anode and compromise the battery performance via the shuttle effect. Figure 5 shows an illustration of the
  • electrolyte interphases (SEI) [66], while the latter is addressed by engineering of liquid and solid electrolytes [63]. Results show that these strategies have an undeniable positive influence on cycle stability and performance safety of sodium batteries [10]. Yet, there are currently also other strategies
PDF
Album
Review
Published 09 Sep 2021

Uniform arrays of gold nanoelectrodes with tuneable recess depth

  • Elena O. Gordeeva,
  • Ilya V. Roslyakov,
  • Alexey P. Leontiev,
  • Alexey A. Klimenko and
  • Kirill S. Napolskii

Beilstein J. Nanotechnol. 2021, 12, 957–964, doi:10.3762/bjnano.12.72

Graphical Abstract
  • alternative approach includes bulk electrode structuring by deposition or etching techniques using self-assembled arrays of colloidal nanoparticles [15], liquid crystals [16], or track-etched membranes [17][18][19] as template or mask, respectively. Among porous templates, anodic aluminium oxide (AAO) allows
PDF
Album
Full Research Paper
Published 30 Aug 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • electronically decoupled single molecules and molecular assemblies on surfaces. Several decoupling strategies at the solid–vacuum and solid–liquid interface were explored to elucidate structural, electronic, vibronic, and chemical properties of decoupled molecular structures. Physical decoupling by molecular
  • molecular design, the built-in functionality of the active part of the molecule can be preserved upon adsorption on a surface. An example of the preservation of catalytic properties is demonstrated for the redox behavior of manganese porphyrins at the solid–liquid interface. Redox reactions at the axial
  • this Thematic Issue discuss structural templating effects at the solid–liquid interface by systematically looking at the influence of organic decoupling layers. Reynaerts et al. [76] investigated the suitability of long-chain alkanes as physical decoupling layers from a graphite surface. The occurrence
PDF
Editorial
Published 23 Aug 2021

Self-assembly of Eucalyptus gunnii wax tubules and pure ß-diketone on HOPG and glass

  • Miriam Anna Huth,
  • Axel Huth and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2021, 12, 939–949, doi:10.3762/bjnano.12.70

Graphical Abstract
  • amounts of deposited mass. This phenomenon known as “coffee ring effect” is caused by capillary flow of the solvent from the middle of the droplet towards its three-phase (solid–liquid–air) contact line. During evaporation, the molecules are aggregated on the outer edge of the droplet where evaporation is
PDF
Album
Full Research Paper
Published 20 Aug 2021

Modification of a SERS-active Ag surface to promote adsorption of charged analytes: effect of Cu2+ ions

  • Bahdan V. Ranishenka,
  • Andrei Yu. Panarin,
  • Irina A. Chelnokova,
  • Sergei N. Terekhov,
  • Peter Mojzes and
  • Vadim V. Shmanai

Beilstein J. Nanotechnol. 2021, 12, 902–912, doi:10.3762/bjnano.12.67

Graphical Abstract
  • measurement of Raman scattering was carried out using a 100× objective and a CCD camera Newton 970 EMCCD DU970P-BV (Andor Technology Ltd, UK). Additionally, in some cases, the SERS spectra were recorded using a Raman spectrometer equipped with Spex 270M (Jobin Yvon) spectrograph and liquid-nitrogen-cooled CCD
PDF
Album
Supp Info
Full Research Paper
Published 16 Aug 2021

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
PDF
Album
Review
Published 13 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • or gas bubbles, pockets, and cavities under excitation of acoustic waves” [63]. Brennen defined cavitation as “the process of rupturing a liquid by a decrease in pressure at a roughly constant liquid temperature” [64], while Paliwal and Mitragotri stated that cavitation is “the process of formation
  • provided evidence that during the expansion phase of MB-triggered cavitation there is a net influx of gas into the MB. The bubbles expand until they reach their resonant size with low amplitude oscillations in a linear direction. These stable oscillations result in the creation of a liquid flow surrounding
  • particles can be explained using different equations [90]. An interaction between two bubbles is called Bjerknes. An interaction between a bubble and a solid particle, according to the related equation, implies that particles denser than the host liquid are attracted by the bubble, while particles less
PDF
Album
Review
Published 11 Aug 2021

Silver nanoparticles nucleated in NaOH-treated halloysite: a potential antimicrobial material

  • Yuri B. Matos,
  • Rodrigo S. Romanus,
  • Mattheus Torquato,
  • Edgar H. de Souza,
  • Rodrigo L. Villanova,
  • Marlene Soares and
  • Emilson R. Viana

Beilstein J. Nanotechnol. 2021, 12, 798–807, doi:10.3762/bjnano.12.63

Graphical Abstract
  • solution (8.5 mg/mL of NaCl). The two suspensions were then homogenized in a vortex mixer, and subsequently had their concentration adjusted to 108 colony forming units (CFU) per millilitre, as recommended by [29]. The two bacterial suspensions were then further diluted, with liquid Mueller–Hinton broth
PDF
Album
Full Research Paper
Published 05 Aug 2021

9.1% efficient zinc oxide/silicon solar cells on a 50 μm thick Si absorber

  • Rafal Pietruszka,
  • Bartlomiej S. Witkowski,
  • Monika Ozga,
  • Katarzyna Gwozdz,
  • Ewa Placzek-Popko and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 766–774, doi:10.3762/bjnano.12.60

Graphical Abstract
  • temperature range from 90 to 290 K with steps of 20 K. During the test, solar cells were mounted on a cold finger inside a liquid nitrogen vacuum cryostat. A transparent window in the cryostat allowed for the illumination of the cells. Solar cells with ZnONR revealed better operation parameters. A noticeable
PDF
Album
Full Research Paper
Published 21 Jul 2021

Recent progress in actuation technologies of micro/nanorobots

  • Ke Xu and
  • Bing Liu

Beilstein J. Nanotechnol. 2021, 12, 756–765, doi:10.3762/bjnano.12.59

Graphical Abstract
  • which can effectively conform to the outer contours of any target with autonomous deformation in a liquid environment for grasping and releasing. The robot has multiple actuation modes, for example, through trapping of magnetic microspheres or through encapsulating magnetic nanomaterials in the robot
  • actuation Wang et al. [31] designed a needle-shaped liquid metal gallium nanoswimmer with controllable movement under near-infrared laser irradiation. Its propulsion force is mainly derived from the thermophoresis force generated by the temperature gradient along the longitudinal axis. Experiments show that
PDF
Album
Review
Published 20 Jul 2021

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • on diamagnetic levitation nanomaterials. Without using strong electromagnets or bulky permanent magnets, it can make the microrobot move in three dimensions in a liquid environment through diamagnetic levitation. The main purpose of this method is to eliminate friction between the substrate surface
  • of the microrobot could be changed by the position of the lifter magnet. The advantage of the system is that it does not require current control and can use single carrier magnets and lifter magnets to control three-dimensional motion in a liquid environment, eliminating unwanted physical effects
PDF
Album
Review
Published 19 Jul 2021

Physical constraints lead to parallel evolution of micro- and nanostructures of animal adhesive pads: a review

  • Thies H. Büscher and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2021, 12, 725–743, doi:10.3762/bjnano.12.57

Graphical Abstract
  • preparation show that the secretory droplets contain nanodroplets on their surfaces (Figure 8). These results led authors to suggest that the pad secretion is an emulsion consisting of lipoid nanodroplets dispersed in an aqueous liquid. The fluid within the smooth pad contributes to the viscoelastic behaviour
PDF
Album
Review
Published 15 Jul 2021

Nanogenerator-based self-powered sensors for data collection

  • Yicheng Shao,
  • Maoliang Shen,
  • Yuankai Zhou,
  • Xin Cui,
  • Lijie Li and
  • Yan Zhang

Beilstein J. Nanotechnol. 2021, 12, 680–693, doi:10.3762/bjnano.12.54

Graphical Abstract
  • novel data source for big data and AI. Especially, TENGs are good candidates for designing AI sensors [66]. TENGs can be used as an energy source for traditional sensors to collect tiny amounts of energy from the environment, such as from liquid droplets [67]. The performance of TENGs can be improved
  • sensor that uses mechanical energy and biochemical energy. The fiber nanogenerator (FNG) and the fiber biofuel cell (FBFC) are fully integrated on a single carbon fiber. The FNG converts the periodically applied pressure in the liquid into an alternating current (AC) output, and the FBFC converts glucose
  • . proposed a self-powered acceleration sensor based on liquid-metal triboelectric nanogenerator (LM-TENG), which can directly detect horizontal and vertical accelerations [6]. When a vehicle crashes, the force and position data of the vehicle can be obtained through the acceleration sensor. This acceleration
PDF
Album
Review
Published 08 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • the beam energy and current, the growth of single-crystal nanowires was also shown. This is reminiscent of nanowire growth by the vapor–solid–liquid mechanism, except here the process was performed at room temperature and without the flow of a gaseous precursor. In the HIM case it was proposed that
PDF
Album
Review
Published 02 Jul 2021

High-yield synthesis of silver nanowires for transparent conducting PET films

  • Gul Naz,
  • Hafsa Asghar,
  • Muhammad Ramzan,
  • Muhammad Arshad,
  • Rashid Ahmed,
  • Muhammad Bilal Tahir,
  • Bakhtiar Ul Haq,
  • Nadeem Baig and
  • Junaid Jalil

Beilstein J. Nanotechnol. 2021, 12, 624–632, doi:10.3762/bjnano.12.51

Graphical Abstract
  • structure and bend the film. The experimental results revealed that after ink coating, the substrate PET film retained its flexibility and transparency, as shown in Figure 2. Characterization UV–vis absorption spectra of liquid AgNW samples were recorded with a Cecil 7500 double-beam UV–vis
PDF
Album
Full Research Paper
Published 01 Jul 2021

Stability and activity of platinum nanoparticles in the oxygen electroreduction reaction: is size or uniformity of primary importance?

  • Kirill O. Paperzh,
  • Anastasia A. Alekseenko,
  • Vadim A. Volochaev,
  • Ilya V. Pankov,
  • Olga A. Safronenko and
  • Vladimir E. Guterman

Beilstein J. Nanotechnol. 2021, 12, 593–606, doi:10.3762/bjnano.12.49

Graphical Abstract
  • liquid-phase synthesis. A comparative study of the structural characteristics, catalytic activity in the oxygen electroreduction reaction (ORR), and durability of the synthesized catalysts, as well as their commercial analogs, was carried out. It was shown that the uniformity of the structural and
  • . Taking into account the above requirement, we chose commercial catalysts that are widely used both in research and in the manufacture of fuel cells. Experimental Materials The synthesis of Pt/C catalysts was carried out in the liquid phase according to the procedure described in detail in [16
  • , G25, G30, G35, and G40 containing from 20 to 39 wt % of platinum with NPs of a small size (from 2 to 2.6 nm), which demonstrated a narrow and uniform size and spatial distribution on the surface and in the pores of the carbon support Vulcan XC-72, were obtained by liquid-phase synthesis. Due to the
PDF
Album
Supp Info
Full Research Paper
Published 29 Jun 2021

The preparation temperature influences the physicochemical nature and activity of nanoceria

  • Robert A. Yokel,
  • Wendel Wohlleben,
  • Johannes Georg Keller,
  • Matthew L. Hancock,
  • Jason M. Unrine,
  • D. Allan Butterfield and
  • Eric A. Grulke

Beilstein J. Nanotechnol. 2021, 12, 525–540, doi:10.3762/bjnano.12.43

Graphical Abstract
  • from a liquid or gas phase. If NM-212 was exposed to a high temperature it would be expected to have less surface Ce3+ [58], which is the case (Supporting Information File 1, Table S1), and show slow dissolution, as was seen with NM-212 and the calcined solvothermally synthesized nanoceria. The cerium
  • +, consistent with the interpretation that nanoceria dissolution occurs at the solid–liquid interface [14]. Cerium ions may then complex with phosphate. Nanoceria dissolution is pH-dependent ([14][39][70] and Figure 11). Nanoceria dissolution presumably results from an interaction between the hydrogen ion and
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2021

Determining amplitude and tilt of a lateral force microscopy sensor

  • Oliver Gretz,
  • Alfred J. Weymouth,
  • Thomas Holzmann,
  • Korbinian Pürckhauer and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2021, 12, 517–524, doi:10.3762/bjnano.12.42

Graphical Abstract
  • ]. This has been used to achieve atomic resolution of a sample that is laterally stiff and vertically soft [5]. It has also been used under ultrahigh-vacuum conditions [6] as well as in liquid to yield atomic resolution [7]. Also in 2002, Giessibl and co-workers performed LFM using a qPlus sensor as shown
PDF
Album
Supp Info
Full Research Paper
Published 01 Jun 2021

Surface-enhanced Raman scattering of water in aqueous dispersions of silver nanoparticles

  • Paulina Filipczak,
  • Krzysztof Hałagan,
  • Jacek Ulański and
  • Marcin Kozanecki

Beilstein J. Nanotechnol. 2021, 12, 497–506, doi:10.3762/bjnano.12.40

Graphical Abstract
  • selective enhancement of Raman signals from the samples. Previous studies showed that the RRE in liquid water directly corresponds to its supramolecular structure. It was also reported that the electric-field-induced orientation of water molecules on the electrode surface results in the surface-enhanced
  • average size of 34 ± 14 nm. The temperature experiment results showed a higher enhancement with temperature increase. Performed simulation studies revealed a slowdown of the mobility of the water molecules close to the surface of AgNPs. Keywords: Dynamic lattice liquid (DLL) simulations; liquid water
  • the world and a vital substance for every living organism. Despite being so abundant, water is still not an entirely known substance [2][3]. Raman spectroscopy is a very useful technique to study the water structure and molecular interactions in liquid water [4]. Analyses of Raman spectra of water in
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • inorganic compound is suspended in a liquid polyol and the suspension is stirred and heated to a certain temperature, which can approach the boiling point of the polyol [140]. The versatility that the polyols offer in the obtainment of AgNPs with different shapes and sizes makes this method interesting for
PDF
Album
Supp Info
Review
Published 14 May 2021
Other Beilstein-Institut Open Science Activities