Search results

Search for "SiO2" in Full Text gives 476 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Synthesis of highly active ETS-10-based titanosilicate for heterogeneously catalyzed transesterification of triglycerides

  • Muhammad A. Zaheer,
  • David Poppitz,
  • Khavar Feyzullayeva,
  • Marianne Wenzel,
  • Jörg Matysik,
  • Radomir Ljupkovic,
  • Aleksandra Zarubica,
  • Alexander A. Karavaev,
  • Andreas Pöppl,
  • Roger Gläser and
  • Muslim Dvoyashkin

Beilstein J. Nanotechnol. 2019, 10, 2039–2061, doi:10.3762/bjnano.10.200

Graphical Abstract
  • of ETS-10, sodium silicate (Na2SiO3, 34.5–36.0 wt % SiO2, 17–19 wt % Na2O, donated by PQ corporation), titanium isopropoxide (TIP, 97 wt %, Sigma-Aldrich), hydrochloric acid (HCl, 35–37 wt %, VWR Chemicals), sodium chloride (high-purity grade, VWR Chemicals), and potassium fluoride (KF, ≥99 wt
  • solution was further added into 87.5 mL of the titania/silica-containing solution. The resulting molar composition of the obtained 90 mL solution is the following SiO2/TiO2/HCl/Na2O/NaCl/KF/H2O = 5.56:1:1.94:2.64:3.22:0.09:216. The solution was then further aged for 16 h in a flask at room temperature for
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2019

Fabrication and characterization of Si1−xGex nanocrystals in as-grown and annealed structures: a comparative study

  • Muhammad Taha Sultan,
  • Adrian Valentin Maraloiu,
  • Ionel Stavarache,
  • Jón Tómas Gudmundsson,
  • Andrei Manolescu,
  • Valentin Serban Teodorescu,
  • Magdalena Lidia Ciurea and
  • Halldór Gudfinnur Svavarsson

Beilstein J. Nanotechnol. 2019, 10, 1873–1882, doi:10.3762/bjnano.10.182

Graphical Abstract
  • , 050094 Bucharest, Romania 10.3762/bjnano.10.182 Abstract Multilayer structures comprising of SiO2/SiGe/SiO2 and containing SiGe nanoparticles were obtained by depositing SiO2 layers using reactive direct current magnetron sputtering (dcMS), whereas, Si and Ge were co-sputtered using dcMS and high-power
  • consequential interface characteristics and its effect on the photocurrent spectra. Keywords: grazing incidence XRD (GIXRD); high-power impulse magnetron sputtering (HiPIMS); HRTEM; magnetron sputtering; photocurrent spectra; SiGe nanocrystals in SiO2/SiGe/SiO2 multilayers; STEM-HAADF; TEM; Introduction
  • obtain NCs embedded in an oxide matrix is by thermal annealing of multilayer structures. Several oxide matrices have been studied already [12][13][14][15][16][17][18], of which SiO2 is the most extensively studied as it remains amorphous up to high temperatures and due to its compatibility with Si-based
PDF
Album
Full Research Paper
Published 17 Sep 2019

Nanoarchitectonics meets cell surface engineering: shape recognition of human cells by halloysite-doped silica cell imprints

  • Elvira Rozhina,
  • Ilnur Ishmukhametov,
  • Svetlana Batasheva,
  • Farida Akhatova and
  • Rawil Fakhrullin

Beilstein J. Nanotechnol. 2019, 10, 1818–1825, doi:10.3762/bjnano.10.176

Graphical Abstract
  • of various functional composite materials [26]. The anisotropic shape (hollow tubules having lengths from 300 nm to 1–2 µm, 50–70 nm diameter, and 20 nm lumen) and surface chemistry (outer surface of SiO2, inner surface of Al2O3) make these nanotubes ideal carriers for novel catalysts, polymer
  • were mixed with the cells in serum-free medium (1:50 v/v) for 10 min on a rotator. The cells@SiO2-HNTs were washed five times with Milli-Q water, and the sediment was dried for 12 h at 105 °C. Dried cells@-SiO2-HNTs were re-suspended in Milli-Q water and crushed using an ultrasonic bath for 6–8 min. To
  • remove the cell debris from the silica-halloysite imprints the cells@-SiO2-HNTs fragments were centrifuged at 4500 rpm, the supernatant was removed, and 10 mL of a HNO3 and HCl mixture (3:1) was added to the precipitate. After 30 min the silica-halloysite imprints were separated, washed three times with
PDF
Album
Letter
Published 04 Sep 2019

Synthesis of nickel/gallium nanoalloys using a dual-source approach in 1-alkyl-3-methylimidazole ionic liquids

  • Ilka Simon,
  • Julius Hornung,
  • Juri Barthel,
  • Jörg Thomas,
  • Maik Finze,
  • Roland A. Fischer and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2019, 10, 1754–1767, doi:10.3762/bjnano.10.171

Graphical Abstract
  • ] derivates are equally known [66]. When metal nanoparticles like the Lindlar catalyst PdPb@CaCO3 are used, the formation of (Z)-alkenes [67][68][69][70][71] is favored. For the formation of (E)-alkenes the use of a tandem catalytic system Pd3Pb@SiO2 + RhSb@SiO2 [72] is needed. Catalytic semihydrogenation of
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2019

Remarkable electronic and optical anisotropy of layered 1T’-WTe2 2D materials

  • Qiankun Zhang,
  • Rongjie Zhang,
  • Jiancui Chen,
  • Wanfu Shen,
  • Chunhua An,
  • Xiaodong Hu,
  • Mingli Dong,
  • Jing Liu and
  • Lianqing Zhu

Beilstein J. Nanotechnol. 2019, 10, 1745–1753, doi:10.3762/bjnano.10.170

Graphical Abstract
  • following way: where R2 and R1 are the reflectance coefficients associated with the natural orthorhombic crystal. To characterize the optical anisotropy, a few layered 1T’-WTe2 flake was mechanically exfoliated and transferred onto a pre-cleaned Si/SiO2 wafer, and atomic force microscopy (AFM) was used to
  • ’-WTe2 flake. In detail, first we mechanically exfoliated a few-layer hexagonal boron nitride (h-BN) flake onto a cleaned Si/SiO2 (400 μm/285 nm) substrate with pre-fabricated metal pads (20 nm Gr/180nm Au), then the same process was conducted to transfer a 1T’-WTe2 flake onto a h-BN film under an
  • covered with 285 nm of SiO2 for Raman spectroscopy, ADRDM and electrical characterization. The substrate had pre-patterned alignment grids and 12 electrodes (20 nm Gr/180 nm Au). XPS analysis was performed on a VG Scientific ESCALAB 250 device. The TEM images and SAED patterns were performed with on a FEI
PDF
Album
Correction
Full Research Paper
Published 20 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • [216]. The diameters of the used nanowires are less than 2 nm and their aspect ratios exceed 100. The synthesized nanowires are dispersible in organic solvents and can be fabricated in large-area aligned arrays at the air–water interface. The films were transferred onto Si/SiO2 substrates patterned
PDF
Album
Review
Published 30 Jul 2019

High-temperature resistive gas sensors based on ZnO/SiC nanocomposites

  • Vadim B. Platonov,
  • Marina N. Rumyantseva,
  • Alexander S. Frolov,
  • Alexey D. Yapryntsev and
  • Alexander M. Gaskov

Beilstein J. Nanotechnol. 2019, 10, 1537–1547, doi:10.3762/bjnano.10.151

Graphical Abstract
  • −1 and 1067 cm−1, corresponding to the stretching vibrations of the Si–C and Si–O bonds, respectively [23]. This indicates the formation of an amorphous SiO2 shell on the surface of SiC nanoparticles, which does not appear on the diffraction patterns of the samples. In addition to these absorption
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

Development of a new hybrid approach combining AFM and SEM for the nanoparticle dimensional metrology

  • Loïc Crouzier,
  • Alexandra Delvallée,
  • Sébastien Ducourtieux,
  • Laurent Devoille,
  • Guillaume Noircler,
  • Christian Ulysse,
  • Olivier Taché,
  • Elodie Barruet,
  • Christophe Tromas and
  • Nicolas Feltin

Beilstein J. Nanotechnol. 2019, 10, 1523–1536, doi:10.3762/bjnano.10.150

Graphical Abstract
  • population of spherical NPs is performed. We used silica (SiO2) nanoparticles that are supposed to have a spherical shape [13][14]. Indeed, the sphericity requires that the NP height is equal to the diameter measured in XY-plane (lateral diameters). In this manner, height measurements performed by AFM can be
  • (a) DFmin, (b) DFmax on the same sets of PSL and SiO2 NPs. Profiles obtained by (a) SEM and (b) AFM, on a single NP of FD304 or PSL with the same diameter measured by SEM. Profiles obtained by (a) AFM and (b) SEM, on a single NP of FD304 or PSL with the same height measured by AFM. (a) Comparison of
PDF
Album
Full Research Paper
Published 26 Jul 2019

Growth of lithium hydride thin films from solutions: Towards solution atomic layer deposition of lithiated films

  • Ivan Kundrata,
  • Karol Fröhlich,
  • Lubomír Vančo,
  • Matej Mičušík and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 1443–1451, doi:10.3762/bjnano.10.142

Graphical Abstract
  • calibration routine and the internal Au, Ag and Cu standards supplied with the K-Alpha system. Argon etching was done with ion gun (1.4 µA of 2 keV Ar+ ions over 8 mm2). The samples indented to be used in XPS and Auger were coated with an additional layer of SiO2 inside of the deposition chamber. This
PDF
Album
Full Research Paper
Published 18 Jul 2019

BiOCl/TiO2/diatomite composites with enhanced visible-light photocatalytic activity for the degradation of rhodamine B

  • Minlin Ao,
  • Kun Liu,
  • Xuekun Tang,
  • Zishun Li,
  • Qian Peng and
  • Jing Huang

Beilstein J. Nanotechnol. 2019, 10, 1412–1422, doi:10.3762/bjnano.10.139

Graphical Abstract
  • at 530.05, 530.35, 532.36 and 533.14 eV, corresponding to [Bi2O2]2−, Ti–O–Ti, surface OH and Si–O–Si [29], respectively. This confirms that BiOCl, TiO2 and SiO2 exist on the surface of BTD. In addition, the two peaks at 458.25 and 464 eV in the Ti 2p spectrum (Figure 3f) belong to Ti 2p3/2 and Ti 2p1
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2019

Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere

  • Petr Knotek,
  • Tomáš Plecháček,
  • Jan Smolík,
  • Petr Kutálek,
  • Filip Dvořák,
  • Milan Vlček,
  • Jiří Navrátil and
  • Čestmír Drašar

Beilstein J. Nanotechnol. 2019, 10, 1401–1411, doi:10.3762/bjnano.10.138

Graphical Abstract
  • the second resonance frequency of the AFM tip [35][36]. It also has to be noted that all measurements were carried out at room temperature. Photodiffusion of the metal into Bi2Se3 was enabled by means of a Ronchi ruling (non-transparent Cr lines on the SiO2 substrate) with a density of 2000 lines per
  • nanometers for SiO2 on Si [51][52]). In our case it is increased by the electric field and good oxygen mobility in BiOx due to the formation of charged Bi vacancies [59][60]. This assumption is in good agreement with the observed increase of the cut-in potential barrier upon thinning of the Au layer (see
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2019

Porous N- and S-doped carbon–carbon composite electrodes by soft-templating for redox flow batteries

  • Maike Schnucklake,
  • László Eifert,
  • Jonathan Schneider,
  • Roswitha Zeis and
  • Christina Roth

Beilstein J. Nanotechnol. 2019, 10, 1131–1139, doi:10.3762/bjnano.10.113

Graphical Abstract
  • electrocatalytic activity. A disadvantage of the hard-templating approach is the requirement of harsh conditions that are needed to remove, e.g., SiO2 spheres used as templates [20]. In this respect, the soft-templating approach is a good alternative. The procedure is facile, with just two steps needed, and it is
PDF
Album
Full Research Paper
Published 28 May 2019

CuInSe2 quantum dots grown by molecular beam epitaxy on amorphous SiO2 surfaces

  • Henrique Limborço,
  • Pedro M.P. Salomé,
  • Rodrigo Ribeiro-Andrade,
  • Jennifer P. Teixeira,
  • Nicoleta Nicoara,
  • Kamal Abderrafi,
  • Joaquim P. Leitão,
  • Juan C. Gonzalez and
  • Sascha Sadewasser

Beilstein J. Nanotechnol. 2019, 10, 1103–1111, doi:10.3762/bjnano.10.110

Graphical Abstract
  • preparation The samples presented in this work were grown in a molecular beam epitaxy system (Omicron EVO 50) by evaporating high-purity solid precursors. Nanodots were grown on Si(100) with an approximately 1.6 nm thick layer of native SiO2. The substrates were outgassed at 600 °C for 10 min before the
  • typically produces films with a thickness of 50–70 nm. Results and Discussion We prepared three samples grown on Si(100) substrates with a ca. 1.6 nm layer of native SiO2 using exactly the same evaporation fluxes but at different substrate growth temperatures (TG) of 490, 530, and 580 °C. Figure 1 shows
  • study. The approximately 1.6 ± 0.3 nm thick amorphous SiO2 layer is also observed, isolating the nanodot from the Si substrate. A power spectrum (PS) generated from the HAADF image is presented in Figure 2b. Figure 2c presents the simulated diffraction patterns along the [110] zone axis for Si and
PDF
Album
Full Research Paper
Published 22 May 2019

Revisiting semicontinuous silver films as surface-enhanced Raman spectroscopy substrates

  • Malwina Liszewska,
  • Bogusław Budner,
  • Małgorzata Norek,
  • Bartłomiej J. Jankiewicz and
  • Piotr Nyga

Beilstein J. Nanotechnol. 2019, 10, 1048–1055, doi:10.3762/bjnano.10.105

Graphical Abstract
  • was performed at room temperature. Glass substrates were first coated with 10 nm thick layer of silicon dioxide (SiO2). Next, without breaking vacuum, silver was deposited on the substrates. Two depositions were performed and in each of them several substrates were located at a different distance from
  • the evaporation source to fabricate films with different thicknesses. In such way in two depositions a total of nine samples were fabricated. In order to ensure uniform thickness of SiO2, the substrates were rotated during the deposition process. The thickness of deposited films was monitored with
PDF
Album
Full Research Paper
Published 15 May 2019

Direct growth of few-layer graphene on AlN-based resonators for high-sensitivity gravimetric biosensors

  • Jimena Olivares,
  • Teona Mirea,
  • Lorena Gordillo-Dagallier,
  • Bruno Marco,
  • José Miguel Escolano,
  • Marta Clement and
  • Enrique Iborra

Beilstein J. Nanotechnol. 2019, 10, 975–984, doi:10.3762/bjnano.10.98

Graphical Abstract
  • -based solidly mounted resonators (SMR) using a low-temperature chemical vapour deposition (CVD) process assisted by Ni catalysts, and its effective bio-functionalization with antibodies. The SMRs are manufactured on top of fully insulating AlN/SiO2 acoustic mirrors able to withstand the temperatures
  • ) and low (SiO2) acoustic impedance of the fully insulating reflector, the Ir/AlN/Mo piezoelectric stack and the Ni catalyst that covers the active area of the device (Figure 8a). All these layers were adjusted to set the resonant frequency to the desired value and to achieve the best performance of the
  • the films involved in the SMR structure were deposited by sputtering, except the Ir bottom electrode and the Ni catalyst that were e-beam evaporated. The deposition conditions of the AlN and SiO2 layers in the reflector were carefully adjusted to minimize residual stresses in each film. The final
PDF
Album
Full Research Paper
Published 29 Apr 2019

Experimental study of an evanescent-field biosensor based on 1D photonic bandgap structures

  • Jad Sabek,
  • Francisco Javier Díaz-Fernández,
  • Luis Torrijos-Morán,
  • Zeneida Díaz-Betancor,
  • Ángel Maquieira,
  • María-José Bañuls,
  • Elena Pinilla-Cienfuegos and
  • Jaime García-Rupérez

Beilstein J. Nanotechnol. 2019, 10, 967–974, doi:10.3762/bjnano.10.97

Graphical Abstract
  • nm. This small deviation between the theoretical and the experimental response might be due to slight variations in the dimensions of the fabricated structure (of only few nanometers) or to the presence of SiO2 residues from opening the channel on the chip. Once the near-field behavior of the PBG
  • silsesquioxane (HSQ) resist layer. Then, the layout was transferred to the top 220 nm thick silicon layer of the SOI chip by means of inductively coupled plasma etching. 70 nm deep shallow etch 1D grating couplers were created for accessing the photonic chip. Finally, the chip is covered with a 400 nm thick SiO2
PDF
Album
Full Research Paper
Published 26 Apr 2019

Effects of gold and PCL- or PLLA-coated silica nanoparticles on brain endothelial cells and the blood–brain barrier

  • Aniela Bittner,
  • Angélique D. Ducray,
  • Hans Rudolf Widmer,
  • Michael H. Stoffel and
  • Meike Mevissen

Beilstein J. Nanotechnol. 2019, 10, 941–954, doi:10.3762/bjnano.10.95

Graphical Abstract
  • inflammation and apoptosis via connection to the NF-κB pathway [22]. Size- and dose-dependent cytotoxicity and disruption of the BBB after exposure to SiO2 particles were shown in a human model and confirmed in vivo [23]. Integrity and function of the BBB of primary porcine brain microvascular ECs (PBECs) in
  • permeability of the PBMEC monolayer [19][20]. Liu et al. showed a size-dependent effect of SiO2 particles on the expression of occludin and ZO-1 and BBB permeability with particles in the nanometer range causing a decrease in TJ protein expression and an increase in permeability, whereas microparticles did not
PDF
Album
Full Research Paper
Published 25 Apr 2019

Novel reversibly switchable wettability of superhydrophobic–superhydrophilic surfaces induced by charge injection and heating

  • Xiangdong Ye,
  • Junwen Hou and
  • Dongbao Cai

Beilstein J. Nanotechnol. 2019, 10, 840–847, doi:10.3762/bjnano.10.84

Graphical Abstract
  • accumulation of solid–liquid interfacial charges, we discovered a phenomenon where charge injection and accumulation at the solid surface results in a sharp increase in wettability. The wettability of a sprayed SiO2 nanoparticle coating on a glass slide was shown to change from superhydrophobic to
  • –liquid interfacial charges, we discovered a phenomenon where the charge is injected and accumulates on the solid surface driven by a direct-current electric field and results in a sharp increase in wettability. In this study, a SiO2 nanoparticle coating sprayed on a glass slide was placed in a high
  • temperature, 5 µL of deionized water was absorbed by a 5 µL needle tube and dripped vertically on the surface of the sample. The final contact angle of the sample surface was the average value of five points on the sample. Coating preparation 0.2 g of SiO2 was slowly dispersed in 10 mL of alcohol and
PDF
Album
Full Research Paper
Published 10 Apr 2019

An iridescent film of porous anodic aluminum oxide with alternatingly electrodeposited Cu and SiO2 nanoparticles

  • Menglei Chang,
  • Huawen Hu,
  • Haiyan Quan,
  • Hongyang Wei,
  • Zhangyi Xiong,
  • Jiacong Lu,
  • Pin Luo,
  • Yaoheng Liang,
  • Jianzhen Ou and
  • Dongchu Chen

Beilstein J. Nanotechnol. 2019, 10, 735–745, doi:10.3762/bjnano.10.73

Graphical Abstract
  • of the fabrication of an iridescent film of porous AAO on an industrial aluminum alloy substrate, with alternatingly electrodeposited Cu and SiO2 nanoparticles (NPs). A rainbow effect was effectively obtained for the optimized sample with appropriate alternating electrodeposition times. The structure
  • and optical properties of a series of the electrodeposited AAO-based thin film were investigated. The Cu and SiO2 NPs were found to be uniformly deposited into the porous structure of the AAO film, and the alternating electrodeposition repeating twice led to the formation of the optimal AAO-based thin
  • -area, ordered interference-enabled colored films with uniform structural colors on the surface of inorganic nanoparticles (NPs) that had been prepared to bear surface charges [28]. On the substrates of quartz glass, PET and PP, twenty cycles of the assembly of a SiO2 film led to the formation of dark
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2019

Choosing a substrate for the ion irradiation of two-dimensional materials

  • Egor A. Kolesov

Beilstein J. Nanotechnol. 2019, 10, 531–539, doi:10.3762/bjnano.10.54

Graphical Abstract
  • defect formation mechanisms. The estimations include Monte Carlo simulations for He, Ar, Xe, C, N and Si ions, performed in the incident ion energy range from 100 eV to 250 MeV. Cu, SiO2, SiC and Al2O3 substrates were analyzed. The considered substrate-related defect formation mechanisms are sputtering
  • Transport of Ions in Matter (TRIM) simulations using 160 MeV Xe ions for the irradiation of graphene on Cu, SiO2/Si and glass leads to negligible overall participation of substrate sputtering and a stronger (but small) role of the substrate recoils. Besides, it was noted that hot electrons generated in the
  • taking the substrate effects into account. The analysis was performed for the most common ions used for monolayer irradiation: He, Ar, Xe, C, N and Si; the chosen substrates include Cu, SiO2, SiC and Al2O3. Copper is a widely available metal and is traditionally used as a substrate in 2D material science
PDF
Album
Full Research Paper
Published 22 Feb 2019

A porous 3D-RGO@MWCNT hybrid material as Li–S battery cathode

  • Yongguang Zhang,
  • Jun Ren,
  • Yan Zhao,
  • Taizhe Tan,
  • Fuxing Yin and
  • Yichao Wang

Beilstein J. Nanotechnol. 2019, 10, 514–521, doi:10.3762/bjnano.10.52

Graphical Abstract
  • sulfur loading is essential for the practical implementation of Li–S batteries [5][6][7]. To overcome the above-mentioned challenges in Li–S batteries, many strategies have been proposed [8][9][10][11][12]. For example, metal oxides, such as TiO2, ZnO, MnO2, and SiO2, were reported to provide active
  • The synthesis of the 3D-RGO@MWCNT composite is illustrated in Figure 1, highlighting the 3D porous RGO structure and the MWCNT lattice matrix. The SEM images confirmed that the precursor composite, RGO@MWCNT@SiO2, contained 200–300 nm SiO2 particles that were successfully encased by RGO and MWCNTs
  • (Figure 2a). After HF etching, a 3D-RGO@MWCNT was obtained (Figure 2b,c). The porous spherical indents (ca. 200 nm) remained after the removal of SiO2 (Figure 3a). Furthermore, after sulfur loading, both SEM (Figure 2d) and TEM (Figure 3b) images revealed that the structure remained in the resulting S-3D
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2019

Nanocomposite–parylene C thin films with high dielectric constant and low losses for future organic electronic devices

  • Marwa Mokni,
  • Gianluigi Maggioni,
  • Abdelkader Kahouli,
  • Sara M. Carturan,
  • Walter Raniero and
  • Alain Sylvestre

Beilstein J. Nanotechnol. 2019, 10, 428–441, doi:10.3762/bjnano.10.42

Graphical Abstract
  • other pure materials such as SiO2, polyimide, polyethylene, alumina (Al2O3), benzocyclobutenes (BCB) and SiO2/poly(methyl methacrylate) (PMMA), nanocomposite parylene C (NCPC) exhibits some interesting properties [39][40][41][42][43][44][45][46][47]. As an example, parylene C/Silica nanocomposites show
PDF
Album
Full Research Paper
Published 12 Feb 2019

Advanced scanning probe lithography using anatase-to-rutile transition to create localized TiO2 nanorods

  • Julian Kalb,
  • Vanessa Knittel and
  • Lukas Schmidt-Mende

Beilstein J. Nanotechnol. 2019, 10, 412–418, doi:10.3762/bjnano.10.40

Graphical Abstract
  • done in argon (20 sccm) at a pressure of 6.7 × 10−3 mbar. Subsequently, the sample was annealed at 850 °C in oxygen (500 sccm) for 2 h resulting in a polycrystalline anatase TiO2 film. Optionally, an additional 3 nm thin SiO2 layer was placed on the anatase film with RC sputter deposition. Scanning
  • was not observed that different probes result in changes of the presented structure. Last but not least, a look at the penetration depth of this method is taken. For this purpose, a 3 nm thin SiO2 layer was deposited on the anatase film. Even after scratching hundreds of times at the same position
  • anatase film. In addition, silicon nanoparticles being scraped off the AFM tip might act as nucleation sites such as other dirt particles appearing in the growth solution. However, the absence of nanorods on SiO2 indicates that the growth of rutile nanorods is not triggered by silicon nanoparticles. It
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

Integration of LaMnO3+δ films on platinized silicon substrates for resistive switching applications by PI-MOCVD

  • Raquel Rodriguez-Lamas,
  • Dolors Pla,
  • Odette Chaix-Pluchery,
  • Benjamin Meunier,
  • Fabrice Wilhelm,
  • Andrei Rogalev,
  • Laetitia Rapenne,
  • Xavier Mescot,
  • Quentin Rafhay,
  • Hervé Roussel,
  • Michel Boudard,
  • Carmen Jiménez and
  • Mónica Burriel

Beilstein J. Nanotechnol. 2019, 10, 389–398, doi:10.3762/bjnano.10.38

Graphical Abstract
  • , maximizing the flux of carried precursor. The deposition temperature inside the main chamber (a hot-wall quartz reactor heated by an external furnace) ranged from 500 to 750 °C. The substrates used were 1 cm × 1 cm chips cut from a Pt (150 nm)/TiO2 (40 nm)/SiO2 (500 nm)/Si (111) wafer (VinKarola Instruments
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2019

Effects of post-lithography cleaning on the yield and performance of CVD graphene-based devices

  • Eduardo Nery Duarte de Araujo,
  • Thiago Alonso Stephan Lacerda de Sousa,
  • Luciano de Moura Guimarães and
  • Flavio Plentz

Beilstein J. Nanotechnol. 2019, 10, 349–355, doi:10.3762/bjnano.10.34

Graphical Abstract
  • . Experimental We made use of CVD graphene on top of a 300 nm thick SiO2 layer, which was purchased from Graphene Platform. The graphene devices were produced in the field-effect transistor configuration (GFET) in two photolithography steps (Figure 1). The first step was employed for defining the graphene device
PDF
Album
Full Research Paper
Published 05 Feb 2019
Other Beilstein-Institut Open Science Activities