Search results

Search for "dielectric" in Full Text gives 442 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Light–matter interactions in two-dimensional layered WSe2 for gauging evolution of phonon dynamics

  • Avra S. Bandyopadhyay,
  • Chandan Biswas and
  • Anupama B. Kaul

Beilstein J. Nanotechnol. 2020, 11, 782–797, doi:10.3762/bjnano.11.63

Graphical Abstract
  • present, where the equilibrium average lattice vibrational amplitude is reduced; hence the frequencies of the modes here in the out-of-plane direction will blue-shift as thickness increases [37]. The red-shift of the mode as thickness increases is attributed to dielectric screening effects of the long
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
PDF
Album
Review
Published 08 May 2020

A novel dry-blending method to reduce the coefficient of thermal expansion of polymer templates for OTFT electrodes

  • Xiangdong Ye,
  • Bo Tian,
  • Yuxuan Guo,
  • Fan Fan and
  • Anjiang Cai

Beilstein J. Nanotechnol. 2020, 11, 671–677, doi:10.3762/bjnano.11.53

Graphical Abstract
  • thermal expansion (CTE) of the polymer template is much higher than the CTE of the dielectric layer. Here, a novel dry-blending method is described in which SiO2 nanoparticles are filled into a grooved silicon template, followed by permeation of polydimethylsiloxane (PDMS) into the SiO2 nanoparticle gaps
  • (analytical grade). Poly(methyl methacrylate) (PMMA) as the dielectric layer was used as purchased from MicroChem, with a molecular weight of 350,000 and a concentration of 4% in anisole (analytical grade). Preparation of the PDMS/SiO2 composite template via dry blending The experimental procedure for
  • electrode alignment in the wet-blended template is that the CTE of the PDMS/SiO2 composite template is 214 ppm/°C, while that of the PMMA dielectric layer to be contacted is 115.2 ppm/°C [24]. The CTE of the PDMS/SiO2 composite template prepared via dry blending was 96 ppm/°C, which better matches that of
PDF
Album
Full Research Paper
Published 20 Apr 2020

Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions

  • Robert Kozioł,
  • Marcin Łapiński,
  • Paweł Syty,
  • Damian Koszelow,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2020, 11, 494–507, doi:10.3762/bjnano.11.40

Graphical Abstract
  • nanostructures, in which LSPR occurs in the visible spectrum. The frequency of LSPR depends on the size and shape of the nanostructures and the dielectric function of the surrounding medium [6][7][8]. Regarding a potential implementation, Ag nanoparticles are especially interesting because of their very high
  • ), instead as full spheres, is a novel approach in the present simulations. It is expected, that this procedure should lead to a better agreement with the experiment. The grid size for the computations was set to 4 nm (limited by the available computer memory). The dielectric function of silver and silicon
  • employed to calculate the scattering efficiencies for a single silver nanoparticle (described by the same dielectric function as previously), surrounded by air. This was done in order to describe absorption, scattering and overall extinction maxima as function of the size of the nanoparticles, since the
PDF
Album
Full Research Paper
Published 25 Mar 2020

Preparation and in vivo evaluation of glyco-gold nanoparticles carrying synthetic mycobacterial hexaarabinofuranoside

  • Gennady L. Burygin,
  • Polina I. Abronina,
  • Nikita M. Podvalnyy,
  • Sergey A. Staroverov,
  • Leonid O. Kononov and
  • Lev A. Dykman

Beilstein J. Nanotechnol. 2020, 11, 480–493, doi:10.3762/bjnano.11.39

Graphical Abstract
  • of the GNPs as well as on the dielectric properties of the medium surrounding the GNPs. These features are useful in many (bio)analytical applications including monitoring their stability (as described below) [25][26][46]. Size and shape of the GNPs (spheres, nanorods, nanoshells and nanostars) were
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2020

Current measurements in the intermittent-contact mode of atomic force microscopy using the Fourier method: a feasibility analysis

  • Berkin Uluutku and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 453–465, doi:10.3762/bjnano.11.37

Graphical Abstract
  • capacitive, dielectric, and impedance properties, such that the timescale of the applied bias voltage can strongly influence the result [55][56]. One additional material-related challenge, is that in some materials the measured current is already very small (this is also the case in tunnelling experiments
PDF
Album
Full Research Paper
Published 13 Mar 2020

High dynamic resistance elements based on a Josephson junction array

  • Konstantin Yu. Arutyunov and
  • Janne S. Lehtinen

Beilstein J. Nanotechnol. 2020, 11, 417–420, doi:10.3762/bjnano.11.32

Graphical Abstract
  • connected in series, each being a Al–AlOx–Al junction with a gap of about 400 µV. The charging energy, Ec = e2/2C, of each SIS contact (considering it to be a plate capacitor with dielectric constant ε ≈ 10, area 100 × 100 nm and distance between plates ≈2 nm) is about two orders of magnitude higher than
PDF
Album
Full Research Paper
Published 03 Mar 2020

DFT calculations of the structure and stability of copper clusters on MoS2

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2020, 11, 391–406, doi:10.3762/bjnano.11.30

Graphical Abstract
  • 2D materials can function as barrier materials to prevent copper diffusion into the underlying dielectric material. While there have been studies of single-atom adsorption at MoS2 [26][29] and the adsorption of larger nanoclusters of noble metals, [25] there is as yet no comprehensive study of the
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2020

Formation of nanoripples on ZnO flat substrates and nanorods by gas cluster ion bombardment

  • Xiaomei Zeng,
  • Vasiliy Pelenovich,
  • Bin Xing,
  • Rakhim Rakhimov,
  • Wenbin Zuo,
  • Alexander Tolstogouzov,
  • Chuansheng Liu,
  • Dejun Fu and
  • Xiangheng Xiao

Beilstein J. Nanotechnol. 2020, 11, 383–390, doi:10.3762/bjnano.11.29

Graphical Abstract
  • of semiconductor quantum dots [2]. Arrays of metallic nanoparticles or nanowires aligned on dielectric surfaces with nanoripples are ideal for research on plasmonics [3]. Ag nanoparticle arrays created on rippled silicon surfaces have demonstrated excellent sensing of molecules through surface
PDF
Album
Full Research Paper
Published 24 Feb 2020

Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization

  • Tuba Evgin,
  • Alpaslan Turgut,
  • Georges Hamaoui,
  • Zdenko Spitalsky,
  • Nicolas Horny,
  • Matej Micusik,
  • Mihai Chirtoc,
  • Mehmet Sarikanat and
  • Maria Omastova

Beilstein J. Nanotechnol. 2020, 11, 167–179, doi:10.3762/bjnano.11.14

Graphical Abstract
  • . Pure HDPE is an insulating material that has a characteristic dielectric behavior corresponding to a linear increase in AC conductivity with increasing frequency [24]. The electrical conductivity of the nanocomposites increased with increasing amount of GnP. The reason for this increase may have been
  • –85°, with a scanning speed of 0.03°/s. FTIR measurements were carried out with a Thermo Fisher Scientific iS10 infrared spectrometer in the range of 4000–650 cm−1 at room temperature. Broadband dielectric spectroscopy (BDS) measurements were conducted using a Novocontrol Concept 40 instrument with an
  • Alpha dielectric spectrometer supplied by Novocontrol Technologies GmbH. A BDS-1200 parallel-plate capacitor with two gold-plated electrodes was used as a test cell for the samples and provided by Novocontrol Technologies. The diameter and thickness of the samples was 20 mm and 0.5 mm, respectively. All
PDF
Album
Supp Info
Full Research Paper
Published 14 Jan 2020

Fabrication of Ag-modified hollow titania spheres via controlled silver diffusion in Ag–TiO2 core–shell nanostructures

  • Bartosz Bartosewicz,
  • Malwina Liszewska,
  • Bogusław Budner,
  • Marta Michalska-Domańska,
  • Krzysztof Kopczyński and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2020, 11, 141–146, doi:10.3762/bjnano.11.12

Graphical Abstract
  • of the fabricated CSNs and Ag-modified hollow TiO2 nanostructures, images of their aqueous suspensions are also shown in the inset of Figure 4. As we have shown previously, coating of AgNPs with TiO2 leads to an overall increase in the refractive index of their local dielectric environment and, as a
PDF
Album
Supp Info
Letter
Published 10 Jan 2020

Nanosecond resistive switching in Ag/AgI/PtIr nanojunctions

  • Botond Sánta,
  • Dániel Molnár,
  • Patrick Haiber,
  • Agnes Gubicza,
  • Edit Szilágyi,
  • Zsolt Zolnai,
  • András Halbritter and
  • Miklós Csontos

Beilstein J. Nanotechnol. 2020, 11, 92–100, doi:10.3762/bjnano.11.9

Graphical Abstract
  • directly followed by the onset of stable hysteretic traces without the need of any further dedicated electroforming procedure. We argue, that the indention of the tip to the surface layer reduces the effective thickness of the dielectric layer resulting in the down-scaling of the electroforming voltage to
PDF
Album
Full Research Paper
Published 08 Jan 2020

Advanced hybrid nanomaterials

  • Andreas Taubert,
  • Fabrice Leroux,
  • Pierre Rabu and
  • Verónica de Zea Bermudez

Beilstein J. Nanotechnol. 2019, 10, 2563–2567, doi:10.3762/bjnano.10.247

Graphical Abstract
  • as functionalized films with high dielectric constant, or, in the case of optical applications, this consists also in embedding different types of nanoparticles. In the first example, “Co-intercalated layered double hydroxides as thermal and photo-oxidation stabilizers for polypropylene”, the
  • fire retardancy and gas permeation in a low molecular weight epoxy resin [28]. Regarding specific applications, the dielectric properties were investigated by broadband dielectric spectroscopy (BDS) in “Nanocomposite–parylene C thin films with high dielectric constant and low losses for future organic
  • electronic devices” [29]. A combination of deposition techniques was used, chemical vapor deposition for parylene and RF-magnetron sputtering for silver nanoparticles. The content and size of the latter influences the dielectric characteristics of the resulting hybrid films. Such devices may find application
PDF
Editorial
Published 20 Dec 2019

Plasmonic nanosensor based on multiple independently tunable Fano resonances

  • Lin Cheng,
  • Zelong Wang,
  • Xiaodong He and
  • Pengfei Cao

Beilstein J. Nanotechnol. 2019, 10, 2527–2537, doi:10.3762/bjnano.10.243

Graphical Abstract
  • kinds of resonators and two stubs which are side-coupled to a metal–dielectric–metal (MDM) waveguide. By utilizing numerical investigation with the finite element method (FEM), the simulation results show that the transmission spectrum of the nanosensor has as many as five sharp Fano resonance peaks
  • nanosensors, optical splitters, filters, optical switches, nonlinear photonic and slow-light devices. Keywords: Fano resonance; metal–dielectric–metal (MDM) waveguide; nanosensor; on-chip plasmonic structures; surface plasmon polaritons (SPPs); Introduction Surface plasmon polariton (SPP) is a unique
  • optical phenomenon which occurs in the coupling of electromagnetic waves with free electrons at the metal–dielectric interface [1]. It can overcome the classical diffraction limit of light. Based on this property, metal–dielectric–metal (MDM) waveguides have been designed and widely applied to manipulate
PDF
Album
Supp Info
Full Research Paper
Published 17 Dec 2019

Multiple Fano resonances with flexible tunablity based on symmetry-breaking resonators

  • Xiao bin Ren,
  • Kun Ren,
  • Ying Zhang,
  • Cheng guo Ming and
  • Qun Han

Beilstein J. Nanotechnol. 2019, 10, 2459–2467, doi:10.3762/bjnano.10.236

Graphical Abstract
  • reflectance). In addition to PhC waveguides, metal–dielectric–metal (MDM) waveguides are very attractive for researchers because they can support surface plasmon polaritons (SPPs) and allow for the control of light at the subwavelength scale. MDM waveguides provide an effective approach to chip-scale photonic
  • the incident light. The other parameters are ε∞ = 3.7, bulk plasma frequency ωp = 1.38 × 1016 Hz, damping frequency γ = 2.73 × 1013 Hz. The dielectric in the waveguide is air. The ring resonator is filled with a dielectric with the constant εd. Temporal coupled-mode theory (CMT) is used to analyze the
PDF
Album
Full Research Paper
Published 11 Dec 2019

Nonlinear absorption and scattering of a single plasmonic nanostructure characterized by x-scan technique

  • Tushar C. Jagadale,
  • Dhanya S. Murali and
  • Shi-Wei Chu

Beilstein J. Nanotechnol. 2019, 10, 2182–2191, doi:10.3762/bjnano.10.211

Graphical Abstract
  • , the backscattering decay is by cubic order larger than the absorption decay. One possible reason could be that scattering is proportional to the square of the variation of the dielectric constant, while absorption is linearly proportional to the dielectric constant. Within the dipole approximation
  • , the absorption and scattering cross sections of a plasmonic nanosphere can be determined by classical Mie theory as: where, k is the wave vector, r is the radius of the particle, εp is the dielectric constant of the particle and εm is the dielectric constant of the surrounding medium. Upon irradiation
PDF
Album
Full Research Paper
Published 06 Nov 2019

BergaCare SmartLipids: commercial lipophilic active concentrates for improved performance of dermal products

  • Florence Olechowski,
  • Rainer H. Müller and
  • Sung Min Pyo

Beilstein J. Nanotechnol. 2019, 10, 2152–2162, doi:10.3762/bjnano.10.208

Graphical Abstract
  • the skin even under mechanical stress is beneficial to fight pollution factors. The lipid particles adhere onto the skin as any nanosized particle does and form a film. This film formation can be followed by measuring the dielectric constant of the skin, using a Corneometer® (Courage + Khazaka
  • Electronic GmbH, Germany) [26]. The probe determines the dielectric constant, D, of the skin through a condenser in the probe. An insulator medium in the condenser reduces the measured D value. For example, D is 0 for a complete insulator (vacuum), about 5 for lipids and organic liquids, and 80 for pure
  • remain on the skin (right arm). Determination of the relative film thickness by measuring the dielectric constant D on skin. Probe readings of untreated skin and skin with applied increasing concentration of lipid particle suspension; reproduced with permission from [27], copyright 2013 Euro Cosmetics
PDF
Album
Review
Published 04 Nov 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • environments is briefly described and hints for future sensor designs are discussed. Interfacial environments provide two distinct features, (i) contacts of phases with different dielectric natures and (ii) connection of extremely different size events (both along the lateral direction and thickness direction
  • interfacial types and nanoarchitectonics of interfacial structures. The above-mentioned specific features at the interfacial media were also proved by theoretical calculations based on quantum chemistry [152][153][154]. Even without direct contact, the low dielectric nature in nonpolar media located close to
  • devices. Of course, all important sensor activities cannot be described in this review. For example, sensors based on various advanced physical mechanisms such as plasmonic [194], dielectric sensing [195], surface-enhanced Raman scattering [196], Fabry–Pérot-based intraocular pressure [197], and/or novel
PDF
Album
Review
Published 16 Oct 2019

Porous silver-coated pNIPAM-co-AAc hydrogel nanocapsules

  • William W. Bryan,
  • Riddhiman Medhi,
  • Maria D. Marquez,
  • Supparesk Rittikulsittichai,
  • Michael Tran and
  • T. Randall Lee

Beilstein J. Nanotechnol. 2019, 10, 1973–1982, doi:10.3762/bjnano.10.194

Graphical Abstract
  • enhanced extinction compared to molecular chromophores [44][45]. This type of particle generally consists of a single metal or an alloy shell with or without a dielectric silica core [46][47][48]. Fortunately, for biological applications, the optical properties of the nanoshells can be tuned by varying the
PDF
Album
Full Research Paper
Published 04 Oct 2019

Pulsed laser synthesis of highly active Ag–Rh and Ag–Pt antenna–reactor-type plasmonic catalysts

  • Kenneth A. Kane and
  • Massimo F. Bertino

Beilstein J. Nanotechnol. 2019, 10, 1958–1963, doi:10.3762/bjnano.10.192

Graphical Abstract
  • of the free electrons of the metal that occurs when the dielectric constants of the metal and the medium (through which the free electrons oscillate) are appropriately matched and the wavelength of the incident light is longer than the size of the nanoparticle (NP). A consequence of plasmon
PDF
Album
Supp Info
Letter
Published 26 Sep 2019

Fabrication and characterization of Si1−xGex nanocrystals in as-grown and annealed structures: a comparative study

  • Muhammad Taha Sultan,
  • Adrian Valentin Maraloiu,
  • Ionel Stavarache,
  • Jón Tómas Gudmundsson,
  • Andrei Manolescu,
  • Valentin Serban Teodorescu,
  • Magdalena Lidia Ciurea and
  • Halldór Gudfinnur Svavarsson

Beilstein J. Nanotechnol. 2019, 10, 1873–1882, doi:10.3762/bjnano.10.182

Graphical Abstract
  • Currently, there is considerable interest in the growth of self-assembled quantum dots their application in optoelectronics and nanosized structures. For instance, semiconducting Si, Ge and SiGe nanocrystals (NCs/NPs) embedded in a dielectric oxide matrix have been found to exhibit strong quantum
  • interface traps (known as Pb-type defects). These interface traps produce scattering centers that can affect the mobility of charge carriers, thus altering the transport properties [11]. Moreover, sharp interfaces with an abrupt change in the dielectric constant or thermal expansion coefficients give rise
PDF
Album
Full Research Paper
Published 17 Sep 2019

Long-term entrapment and temperature-controlled-release of SF6 gas in metal–organic frameworks (MOFs)

  • Hana Bunzen,
  • Andreas Kalytta-Mewes,
  • Leo van Wüllen and
  • Dirk Volkmer

Beilstein J. Nanotechnol. 2019, 10, 1851–1859, doi:10.3762/bjnano.10.180

Graphical Abstract
  • infrared (FTIR) and 19F nuclear magnetic resonance (NMR) spectroscopy. SF6 is an inert, nonflammable and nontoxic gas, which is known to be an excellent dielectric gas for high-voltage applications [15][16]. At the same time, it is also known as one of the most severe greenhouse gases [17][18]. Therefore
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2019

Prestress-loading effect on the current–voltage characteristics of a piezoelectric p–n junction together with the corresponding mechanical tuning laws

  • Wanli Yang,
  • Shuaiqi Fan,
  • Yuxing Liang and
  • Yuantai Hu

Beilstein J. Nanotechnol. 2019, 10, 1833–1843, doi:10.3762/bjnano.10.178

Graphical Abstract
  • = e2/(cε). In the above, strain S and electric field E can be expressed as S = du/dx and E = −dϕ/dx, in which u and ϕ are displacement and electric potential, respectively. c, e and ε are elastic, piezoelectric and dielectric constant, respectively. The one-dimensional Gauss’s law of a piezoelectric p
PDF
Album
Full Research Paper
Published 06 Sep 2019

Growth dynamics and light scattering of gold nanoparticles in situ synthesized at high concentration in thin polymer films

  • Corentin Guyot,
  • Philippe Vandestrick,
  • Ingrid Marenne,
  • Olivier Deparis and
  • Michel Voué

Beilstein J. Nanotechnol. 2019, 10, 1768–1777, doi:10.3762/bjnano.10.172

Graphical Abstract
  • Department, Namur, Belgium 10.3762/bjnano.10.172 Abstract Background: Numerous optical applications of nano-objects require a dispersion of the nanoparticles in a dielectric matrix. In order to achieve high particle concentrations, one can, as an alternative, directly grow the particles in a polymer or an
  • of their conduction electrons excited by incident light. They are strongly influenced by shape and size of the particles but also by the dielectric properties of their environment, in particular when particles are embedded in a dielectric matrix. There are numerous synthesis methods for such
  • model assumes flat interfaces between adjacent layers, each of them being characterized by its thickness and its (frequency-dependent) complex refractive index or dielectric function. In the case of layers containing mixed materials, which is the case for our nanocomposite layers, the optical properties
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2019

Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation

  • Dominik Wrana,
  • Karol Cieślik,
  • Wojciech Belza,
  • Christian Rodenbücher,
  • Krzysztof Szot and
  • Franciszek Krok

Beilstein J. Nanotechnol. 2019, 10, 1596–1607, doi:10.3762/bjnano.10.155

Graphical Abstract
  • ]). Strontium titanate, SrTiO3, is a perfect example of a semiconductor with a wide bandgap of 3.2 eV and also a model perovskite oxide. Ti4+ cations provide no electrons for the d-band, which can participate in conductivity. Strontium titanate finds many applications as a dielectric ceramic material [15] but
PDF
Album
Full Research Paper
Published 02 Aug 2019
Other Beilstein-Institut Open Science Activities