Search results

Search for "electron diffraction" in Full Text gives 189 result(s) in Beilstein Journal of Nanotechnology.

Enhanced fullerene–Au(111) coupling in (2√3 × 2√3)R30° superstructures with intermolecular interactions

  • Michael Paßens,
  • Rainer Waser and
  • Silvia Karthäuser

Beilstein J. Nanotechnol. 2015, 6, 1421–1431, doi:10.3762/bjnano.6.147

Graphical Abstract
  • unit cell of the C60 overlayer aligned along the [11−2] and [10−1] directions of the Au(111) surface, respectively. Low energy electron diffraction (LEED) measurements by Tzeng et al. [11] revealed a R14° structure, which was confirmed by STM measurements later on [12][13]. In addition, the structure
PDF
Album
Full Research Paper
Published 29 Jun 2015

Structural transitions in electron beam deposited Co–carbonyl suspended nanowires at high electrical current densities

  • Gian Carlo Gazzadi and
  • Stefano Frabboni

Beilstein J. Nanotechnol. 2015, 6, 1298–1305, doi:10.3762/bjnano.6.134

Graphical Abstract
  • , where metal grains with a size of few nanometers are embedded in an amorphous, carbonaceous matrix [27]. The structure is confirmed by TEM selected area electron diffraction (SAED) measured at the center of the wire and presented in Figure 1b. The pattern shows an innermost high-intensity ring with many
  • suspended nanowire (SNW) 1 deposited between pillars; (b) electron diffraction pattern from SNW 1 and radial integral of the pattern (red line) compared with calculated reflections (bars) for FCC Co, HCP Co and FCC CoO. (c) EDX spectrum of SNW 1 with peak labels and derived atomic composition. (a) Current(I
PDF
Album
Full Research Paper
Published 11 Jun 2015

Addition of Zn during the phosphine-based synthesis of indium phospide quantum dots: doping and surface passivation

  • Natalia E. Mordvinova,
  • Alexander A. Vinokurov,
  • Oleg I. Lebedev,
  • Tatiana A. Kuznetsova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2015, 6, 1237–1246, doi:10.3762/bjnano.6.127

Graphical Abstract
  • electron diffraction (ED) pattern. As can be seen from the typical low-magnification TEM images in Figure 3a the prepared QDs are of almost spherical shape and the mean particle diameter is about 3–6 nm. The corresponding ED pattern exhibits distinct ring patterns, typical for the clustering of relatively
  • using a 405 nm continuous laser LED (40 mW). Powder X-ray diffraction (XRD) patterns were taken on a Rigaku D/MAX 2500 diffractometer using Cu Kα radiation (λ = 1.540598 Å). Transmission electron microscopy (TEM) and electron diffraction (ED) studies were performed using a Tecnai G2 30 UT (LaB6
  • InP QDs. Experimental X-ray powder diffractogram for synthesized InP QDs with different amounts of Zn dopant. (a) Bright-field low-magnification TEM image of non-doped InP QDs and its number-weighted size distribution (upper insert). Ring electron diffraction pattern (lower insert) confirming zinc
PDF
Album
Full Research Paper
Published 01 Jun 2015

Scanning reflection ion microscopy in a helium ion microscope

  • Yuri V. Petrov and
  • Oleg F. Vyvenko

Beilstein J. Nanotechnol. 2015, 6, 1125–1137, doi:10.3762/bjnano.6.114

Graphical Abstract
  • incidence angles, yet was still more pronounced in REM as compared to TEM [2][4]. The further development of REM in ultrahigh vacuum conditions allowed imaging of the single atomic steps [5][6][7][8] and monitoring of atomic layer-by-layer crystal growth by means of reflection high energy electron
  • diffraction (RHEED) [9]. In the late 1960s, scanning reflection electron microscopy (SREM) was developed [10][11] for the scanning electron microscope (SEM). Chromatic aberration does not appear in SEM because the sample is placed outside of the electron optics. Both REM and SREM require a sufficiently long
PDF
Album
Full Research Paper
Published 07 May 2015

Tunable magnetism on the lateral mesoscale by post-processing of Co/Pt heterostructures

  • Oleksandr V. Dobrovolskiy,
  • Maksym Kompaniiets,
  • Roland Sachser,
  • Fabrizio Porrati,
  • Christian Gspan,
  • Harald Plank and
  • Michael Huth

Beilstein J. Nanotechnol. 2015, 6, 1082–1090, doi:10.3762/bjnano.6.109

Graphical Abstract
  • the experimental nanodiffraction data from the upper and lower layer, electron diffraction simulations for the CoPt fcc- and fct-phase assuming bulk lattice constants were made with the software JEMS [41]. The simulations were done in the kinematic mode. For the generation of the elemental signal
PDF
Album
Full Research Paper
Published 29 Apr 2015

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

  • Philipp Adelhelm,
  • Pascal Hartmann,
  • Conrad L. Bender,
  • Martin Busche,
  • Christine Eufinger and
  • Juergen Janek

Beilstein J. Nanotechnol. 2015, 6, 1016–1055, doi:10.3762/bjnano.6.105

Graphical Abstract
  • electron microscopy, single area electron diffraction and Fourier transform infrared spectroscopy sodium peroxide (Na2O2) and sodium carbonate (Na2CO3) were proven as discharge products. These products vanished during charge with overpotentials exceeding 1 V similar to lithium–oxygen cells. Overall, the
PDF
Album
Review
Published 23 Apr 2015

Observing the morphology of single-layered embedded silicon nanocrystals by using temperature-stable TEM membranes

  • Sebastian Gutsch,
  • Daniel Hiller,
  • Jan Laube,
  • Margit Zacharias and
  • Christian Kübel

Beilstein J. Nanotechnol. 2015, 6, 964–970, doi:10.3762/bjnano.6.99

Graphical Abstract
  • TEM (see insets of Figure 3b and Figure 3c) and electron diffraction, we found that both samples feature a high degree of crystallinity as is corrobated by detailed Raman studies [20][42]. However, the Si NC shape is not spherical at all. Due to the minimization of Gibbs free energy, a spherical shape
PDF
Album
Full Research Paper
Published 15 Apr 2015

Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

  • Brett B. Lewis,
  • Michael G. Stanford,
  • Jason D. Fowlkes,
  • Kevin Lester,
  • Harald Plank and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2015, 6, 907–918, doi:10.3762/bjnano.6.94

Graphical Abstract
  • ), and 5.06 nm (±0.80 nm) for as-deposited, 6 min, and 12 min purification patterns, respectively. In order to further characterize the microstructure development during purification, selected area electron diffraction patterns (SAED) were taken for an as-deposited and purified PtCx deposit as shown in
  • ) of 2 min (51.2 C/cm2), 4 min (102.3 C/cm2), 6 min (153.5 C/cm2), 8 min (204.7 C/cm2), 10 min (255.8 C/cm2), and 12 min (307.0 C/cm2). Selected area electron diffraction was also performed to obtain diffraction patterns. These experiments were conducted in a Zeiss Libra 200 HT FE MC at 120 keV and
  • . Selected area electron diffraction (SAED) patterns for O2 E-beam uncured (left) and cured (right) deposit. Diffraction peaks become more pronounced after curing. Bar graph comparing the simulated and experimental purification rates for varying beam parameters. The relevant derived variables used in the
PDF
Album
Full Research Paper
Published 08 Apr 2015

Graphene on SiC(0001) inspected by dynamic atomic force microscopy at room temperature

  • Mykola Telychko,
  • Jan Berger,
  • Zsolt Majzik,
  • Pavel Jelínek and
  • Martin Švec

Beilstein J. Nanotechnol. 2015, 6, 901–906, doi:10.3762/bjnano.6.93

Graphical Abstract
  • achieved by further annealing of the sample up to 1150 °C, repeated in 10 min increments, until the desired coverage of graphene was achieved (about 2/3 of the surface) [13][14] and terrace widths reached 100 nm. All intermediate steps were monitored both by the low energy electron diffraction and STM. A
  • ) modulation corresponding to the 6× 6R30° quasiperiodic structure detected by low-energy electron diffraction [3][14]. Figure 1b shows a detail of the SLG, measured at a bias voltage 0.5 V, with a stable tip that provides a good resolution, allowing the detection of buffer layer features. These are
PDF
Album
Full Research Paper
Published 07 Apr 2015

Structure and mechanism of the formation of core–shell nanoparticles obtained through a one-step gas-phase synthesis by electron beam evaporation

  • Andrey V. Nomoev,
  • Sergey P. Bardakhanov,
  • Makoto Schreiber,
  • Dashima G. Bazarova,
  • Nikolai A. Romanov,
  • Boris B. Baldanov,
  • Bair R. Radnaev and
  • Viacheslav V. Syzrantsev

Beilstein J. Nanotechnol. 2015, 6, 874–880, doi:10.3762/bjnano.6.89

Graphical Abstract
  • electron microscopy (TEM), high-resolution TEM (HRTEM), selective area electron diffraction (SAED), and energy dispersive X-ray fluorescence (EDX) analysis. These measurements were performed on a JEM-2010 TEM (JEOL, Japan, 200 kV accelerating voltage, 0.14 nm resolution) equipped with an EDX (EDAX Co
PDF
Album
Supp Info
Full Research Paper
Published 31 Mar 2015

Morphology control of zinc oxide films via polysaccharide-mediated, low temperature, chemical bath deposition

  • Florian Waltz,
  • Hans-Christoph Schwarz,
  • Andreas M. Schneider,
  • Stefanie Eiden and
  • Peter Behrens

Beilstein J. Nanotechnol. 2015, 6, 799–808, doi:10.3762/bjnano.6.83

Graphical Abstract
  • experiments in which HYA adsorbs onto ZnO crystallites during their growth and thereby influences their size and aspect ratio. Furthermore, those ZnO subunits aggregate under the influence of HYA into highly ordered mesocrystals, which was evidenced by SEM investigations and selected area electron diffraction
PDF
Album
Full Research Paper
Published 24 Mar 2015

Magnetic properties of self-organized Co dimer nanolines on Si/Ag(110)

  • Lisa Michez,
  • Kai Chen,
  • Fabien Cheynis,
  • Frédéric Leroy,
  • Alain Ranguis,
  • Haik Jamgotchian,
  • Margrit Hanbücken and
  • Laurence Masson

Beilstein J. Nanotechnol. 2015, 6, 777–784, doi:10.3762/bjnano.6.80

Graphical Abstract
  • self-organized Si NR array (pitch: 5 ∙ ≈ 2 nm) with a single domain orientation. This structure was confirmed by surface diffraction techniques (low energy electron diffraction, LEED and grazing incidence X-ray diffraction, GIXD) and large scale STM images [24][26]. The sharp spots of the 5 × 2
PDF
Album
Full Research Paper
Published 19 Mar 2015

Mandibular gnathobases of marine planktonic copepods – feeding tools with complex micro- and nanoscale composite architectures

  • Jan Michels and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2015, 6, 674–685, doi:10.3762/bjnano.6.68

Graphical Abstract
  • described for additional copepod species [28][29][30], and not earlier than several additional years later the application of microprobe and electron diffraction analyses confirmed the presence of silica in such teeth [31]. The analyses indicated that the silica is present in the teeth in the form of opal
PDF
Album
Video
Review
Published 06 Mar 2015

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • . The size of MSN and YVO4:Eu3+ MSN NPs was studied by TEM and was found to be about 50 nm in both the cases. The amorphous nature of the silica surface and the crystalline nature of YVO4 NPs inside the silica spheres were further confirmed by selected area electron diffraction (SAED) (Figure 1
PDF
Album
Review
Published 24 Feb 2015

In situ scanning tunneling microscopy study of Ca-modified rutile TiO2(110) in bulk water

  • Giulia Serrano,
  • Beatrice Bonanni,
  • Tomasz Kosmala,
  • Marco Di Giovannantonio,
  • Ulrike Diebold,
  • Klaus Wandelt and
  • Claudio Goletti

Beilstein J. Nanotechnol. 2015, 6, 438–443, doi:10.3762/bjnano.6.44

Graphical Abstract
  • -modified rutile TiO2(110) surfaces immersed in high purity water. The TiO2 surface was prepared under ultrahigh vacuum (UHV) with repeated sputtering/annealing cycles. Low energy electron diffraction (LEED) analysis shows a pattern typical for the surface segregation of calcium, which is present as an
  • ) structure has been proposed for the resulting Ca overlayer based on low energy electron diffraction (LEED) and scanning tunneling microscopy (STM) measurements [1]. Segregation has been reported to produce an additional, differently ordered Ca layer, namely a p(3 × 1) structure [2][3][4]. More controlled
PDF
Album
Full Research Paper
Published 12 Feb 2015

Tunable white light emission by variation of composition and defects of electrospun Al2O3–SiO2 nanofibers

  • Jinyuan Zhou,
  • Gengzhi Sun,
  • Hao Zhao,
  • Xiaojun Pan,
  • Zhenxing Zhang,
  • Yujun Fu,
  • Yanzhe Mao and
  • Erqing Xie

Beilstein J. Nanotechnol. 2015, 6, 313–320, doi:10.3762/bjnano.6.29

Graphical Abstract
  • surface of the fibers, as shown in Figure 3d. Selected area electron diffraction (SAED) patterns are collected from the thin edge of one fiber, as shown in the inset of Figure 3c. The patterns not only verify the high degree of crystallinity of the composite nanofibers, but also indicate the disordered
PDF
Album
Full Research Paper
Published 28 Jan 2015

Multifunctional layered magnetic composites

  • Maria Siglreitmeier,
  • Baohu Wu,
  • Tina Kollmann,
  • Martin Neubauer,
  • Gergely Nagy,
  • Dietmar Schwahn,
  • Vitaliy Pipich,
  • Damien Faivre,
  • Dirk Zahn,
  • Andreas Fery and
  • Helmut Cölfen

Beilstein J. Nanotechnol. 2015, 6, 134–148, doi:10.3762/bjnano.6.13

Graphical Abstract
  • besides the 10 nm sized particles also smaller particles in the size range of around 3 nm can be detected. Electron diffraction studies of these small particles show their amorphous nature, which leads to the conclusion that under the chosen synthesis conditions amorphous material or poorly crystallized
  • to a multilayered composite material. Furthermore, the distance in between the layers for samples containing gelatin seems less collapsed than for samples without gelatin which results in a material closer in structure to that one of original nacre. Electron diffraction data taken from different
  • perpendicular with a diamond knife in a Leica ultracut UCT and transferred onto a Formvar-coated copper grid. TEM and electron diffraction were performed on a Zeiss Libra 120 operating at 120 kV. For SEM measurements the samples were air-dried at room temperature and cut perpendicular to the chitin layers with
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2015

Two-dimensional and tubular structures of misfit compounds: Structural and electronic properties

  • Tommy Lorenz,
  • Jan-Ole Joswig and
  • Gotthard Seifert

Beilstein J. Nanotechnol. 2014, 5, 2171–2178, doi:10.3762/bjnano.5.226

Graphical Abstract
  • as nanotubes and nanoscrolls (see Figure 6). These structures have been extensively experimentally and theoretically investigated to date [6][25][26][44]. Selected area electron diffraction (SAED) measurements showed that the interlayer distance between the SnS and SnS2 substructures is nearly
PDF
Album
Review
Published 19 Nov 2014

Biopolymer colloids for controlling and templating inorganic synthesis

  • Laura C. Preiss,
  • Katharina Landfester and
  • Rafael Muñoz-Espí

Beilstein J. Nanotechnol. 2014, 5, 2129–2138, doi:10.3762/bjnano.5.222

Graphical Abstract
  • when gold(III) is reduced in the presence of DNA toroids formed with bis(ethylenediamine)gold(III). Reprinted with permission from [66]. Copyright 2010 American Chemical Society. Dark-field TEM micrograph (a) and corresponding electron diffraction pattern (b) of hydroxyapatite/gelatin particles
PDF
Album
Review
Published 17 Nov 2014

Cathode lens spectromicroscopy: methodology and applications

  • T. O. Menteş,
  • G. Zamborlini,
  • A. Sala and
  • A. Locatelli

Beilstein J. Nanotechnol. 2014, 5, 1873–1886, doi:10.3762/bjnano.5.198

Graphical Abstract
  • scattered electron beams [6]. Contrast mechanism. Among all contrast mechanisms available in LEEM, “diffraction contrast” is the one that is most commonly used. This is derived from the strong energy dependence of electron diffraction intensities, making LEEM suitable for studying crystalline systems [13
  • ]. The backscattering intensity varies depending on the material, presence of adsorbates, formation of surface reconstructions and other ordered structures, giving the means to distinguish lateral variations in such properties. In the basic operation mode, only one of the low energy electron diffraction
  • heterogeneous surface. The first example of a full surface structural analysis at the micrometer scale by using LEED I(V) in a LEEM instrument was given only recently for the case of the (4 × 4) reconstruction of oxygen on Ag(111) [17]. Beyond the laterally-resolved electron diffraction, LEED measurements in a
PDF
Album
Review
Published 27 Oct 2014

Room temperature, ppb-level NO2 gas sensing of multiple-networked ZnSe nanowire sensors under UV illumination

  • Sunghoon Park,
  • Soohyun Kim,
  • Wan In Lee,
  • Kyoung-Kook Kim and
  • Chongmu Lee

Beilstein J. Nanotechnol. 2014, 5, 1836–1841, doi:10.3762/bjnano.5.194

Graphical Abstract
  • } lattice planes, respectively, were clearly observed in the core region. The corresponding selected area in the electron diffraction pattern (Figure 2c) exhibited two types of reflection spots assigned to wurtzite-structured ZnSe: a round reflection from the core region and an elongated reflection from the
  • edge region. The corresponding selected area electron diffraction pattern (Figure 2c) exhibited two types of reflection spots assigned to wurtzite-structured ZnSe: round one from the core region and elongated one from the edge region. Performance of nanowire gas sensors Figure 3a and Figure 3b show the
PDF
Album
Full Research Paper
Published 22 Oct 2014

Ionic liquid-assisted formation of cellulose/calcium phosphate hybrid materials

  • Ahmed Salama,
  • Mike Neumann,
  • Christina Günter and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2014, 5, 1553–1568, doi:10.3762/bjnano.5.167

Graphical Abstract
  • beam during electron diffraction. In contrast to the samples grown with GAA, samples grown with NaOH are more uniform and SEM (Figure 2) shows the typical nanoparticle morphology that is also observed for calcium phosphate grown from aqueous solution at basic conditions [12][13]. Also consistent with
PDF
Album
Full Research Paper
Published 16 Sep 2014

Formation of CuxAu1−x phases by cold homogenization of Au/Cu nanocrystalline thin films

  • Alona Tynkova,
  • Gabor L. Katona,
  • Gabor A. Langer,
  • Sergey I. Sidorenko,
  • Svetlana M. Voloshko and
  • Dezso L. Beke

Beilstein J. Nanotechnol. 2014, 5, 1491–1500, doi:10.3762/bjnano.5.162

Graphical Abstract
  • AuxCu1.5x solid solutions. Figure 9 shows bright field (top view) TEM images and selected area electron diffraction patterns of as deposited and heat treated (for 1 h at 160 °C) Au(10nm)/Cu(15nm) bilayers, respectively. For TEM investigations the specimens were prepared by subsequent magnetron sputtering on
  • area electron diffraction patterns of Au(10nm)/Cu(15nm) bilayer b) as deposited and d) after 1 h of heat treatment at 160 °C. Dependence of the average concentration of elements on the annealing time at 150 °C in a) Au(25nm)/Cu(50nm), b) Au(25nm)/Cu(25nm) and c) Au(25nm)/Cu(12nm) systems. Calculated
PDF
Album
Full Research Paper
Published 10 Sep 2014

Probing the electronic transport on the reconstructed Au/Ge(001) surface

  • Franciszek Krok,
  • Mark R. Kaspers,
  • Alexander M. Bernhart,
  • Marek Nikiel,
  • Benedykt R. Jany,
  • Paulina Indyka,
  • Mateusz Wojtaszek,
  • Rolf Möller and
  • Christian A. Bobisch

Beilstein J. Nanotechnol. 2014, 5, 1463–1471, doi:10.3762/bjnano.5.159

Graphical Abstract
  • ). After this procedure, the STM imaging proves that the Ge(001) surface exhibits atomically flat terraces with a lateral extension of 30–50 nm and a mixed (2 × 2)/c(4 × 2)-two domain reconstruction pattern as checked by low energy electron diffraction (LEED). We deposited 6 monolayers (MLs) of Au on the
PDF
Album
Full Research Paper
Published 05 Sep 2014

Microstructural and plasmonic modifications in Ag–TiO2 and Au–TiO2 nanocomposites through ion beam irradiation

  • Venkata Sai Kiran Chakravadhanula,
  • Yogendra Kumar Mishra,
  • Venkata Girish Kotnur,
  • Devesh Kumar Avasthi,
  • Thomas Strunskus,
  • Vladimir Zaporotchenko,
  • Dietmar Fink,
  • Lorenz Kienle and
  • Franz Faupel

Beilstein J. Nanotechnol. 2014, 5, 1419–1431, doi:10.3762/bjnano.5.154

Graphical Abstract
  •  1. With the increase of the Au MVF from 7 to 13%, the average diameter of the Au nanoparticles increased and for an extreme case, in which the Au MVF was about 50%, the growth of extremely large nanoparticles has been observed (Figure 1d). The selected area electron diffraction patterns
  • area electron diffraction patterns of Figure 5b–d. In addition, reflections corresponding to the metrics from TiO [43][44] were observed along with large TiO crystals after ion beam irradiation (see below in Figure 8 and Figure 9). Several studies on SHI-induced crystallization of amorphous TiO2 thin
  • selected area electron diffraction (SAED) patterns corresponding to each MVF composite is shown exactly below each TEM image. Bright field TEM morphologies of Ag–TiO2 nanocomposite films with different metal volume filling fractions, (a) 15%, (b) 26%, (c) 34% and (d) 47%. Morphological evolutions in Au
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2014
Other Beilstein-Institut Open Science Activities