Search results

Search for "electron diffraction" in Full Text gives 196 result(s) in Beilstein Journal of Nanotechnology.

Case studies on the formation of chalcogenide self-assembled monolayers on surfaces and dissociative processes

  • Yongfeng Tong,
  • Tingming Jiang,
  • Azzedine Bendounan,
  • Makri Nimbegondi Kotresh Harish,
  • Angelo Giglia,
  • Stefan Kubsky,
  • Fausto Sirotti,
  • Luca Pasquali,
  • Srinivasan Sampath and
  • Vladimir A. Esaulov

Beilstein J. Nanotechnol. 2016, 7, 263–277, doi:10.3762/bjnano.7.24

Graphical Abstract
  • (111) monocrystals were purchased, oriented and polished, from Mateck or from the Surface Preparation Laboratories. In situ surface preparation was performed as usual by cycles of sputtering and annealing, and the surface cleanliness and crystallinity was checked by XPS and low energy electron
  • diffraction (LEED). The prepared samples were extracted from the ultra-high vacuum preparation chamber under N2 flow and immediately immersed into the solutions. Thereafter, they were rinsed in the corresponding solvents and dried by N2 gas. The samples were then immediately transferred into the analysis
PDF
Album
Supp Info
Full Research Paper
Published 17 Feb 2016

Surfactant-controlled composition and crystal structure of manganese(II) sulfide nanocrystals prepared by solvothermal synthesis

  • Elena Capetti,
  • Anna M. Ferretti,
  • Vladimiro Dal Santo and
  • Alessandro Ponti

Beilstein J. Nanotechnol. 2015, 6, 2319–2329, doi:10.3762/bjnano.6.238

Graphical Abstract
  • precursor. When we used a single surfactant (carboxylic acid, alcohol, thiol, amine), α-MnS nanocrystals were obtained. The peculiar role of the amine seems to be related to its basicity. The nanocrystals were characterized by TEM and electron diffraction; ATR-FTIR spectroscopy provided information about
  • section) and an inorganic compound, Mn2(CO)10, which cannot release carboxylic acid upon decomposition. Transmission electron microscopy (TEM) images and electron diffraction (ED) patterns of representative NCs can be found in Figure 1. All ED patterns could be assigned to MnO or α-MnS NCs (or a mixture
  • out with no free surfactant correspond to data on the vertical axis of Figure 3. These results confirmed the previous conclusions about Mn(OH)Ol or MnOl2, in particular that a mixture of MnO and α-MnS NCs is obtained at a stoichiometric S/Mn = 1:1 ratio. The electron diffraction results gave no
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2015

Green synthesis, characterization and catalytic activity of natural bentonite-supported copper nanoparticles for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles and reduction of 4-nitrophenol

  • Akbar Rostami-Vartooni,
  • Mohammad Alizadeh and
  • Mojtaba Bagherzadeh

Beilstein J. Nanotechnol. 2015, 6, 2300–2309, doi:10.3762/bjnano.6.236

Graphical Abstract
  • microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and Brunauer–Emmett–Teller (BET) analysis. Afterward, the catalytic performance of the prepared catalyst was investigated for the solvent-free synthesis of 1
  • spherical morphology with a low tendency for agglomeration. Figure 6d (SAED) shows the measured selected area electron diffraction pattern of as-prepared Cu NPs/bentonite. This result indicates that the nanoparticles are crystalline and mainly composed of fcc Cu. The SAED patterns of the Cu NPs/bentonite
PDF
Album
Full Research Paper
Published 03 Dec 2015

Silica-coated upconversion lanthanide nanoparticles: The effect of crystal design on morphology, structure and optical properties

  • Uliana Kostiv,
  • Miroslav Šlouf,
  • Hana Macková,
  • Alexander Zhigunov,
  • Hana Engstová,
  • Katarína Smolková,
  • Petr Ježek and
  • Daniel Horák

Beilstein J. Nanotechnol. 2015, 6, 2290–2299, doi:10.3762/bjnano.6.235

Graphical Abstract
  • and time on the properties of the particles was investigated. The nanoparticles were characterized by transmission electron microscopy (TEM), electron diffraction (ED), energy dispersive spectroscopy (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), elemental analysis and X-ray
  • . Characterization of the nanoparticles The nanoparticles were visualized and analyzed on a Tecnai G2 Spirit Twin transmission electron microscope (TEM; FEI; Brno, Czech Republic) equipped with an energy dispersive spectrometer (EDX; Mahwah, NJ, USA). Bright field TEM imaging (BF), electron diffraction (ED) and
PDF
Album
Full Research Paper
Published 03 Dec 2015

Distribution of Pd clusters on ultrathin, epitaxial TiOx films on Pt3Ti(111)

  • Christian Breinlich,
  • Maria Buchholz,
  • Marco Moors,
  • Tobias Pertram,
  • Conrad Becker and
  • Klaus Wandelt

Beilstein J. Nanotechnol. 2015, 6, 2007–2014, doi:10.3762/bjnano.6.204

Graphical Abstract
  • experiments presented in this paper, was run at room temperature. The sample was prepared in an adjacent preparation chamber, which was equipped with a sputter gun, low energy electron diffraction (LEED) optics and an Auger electron spectroscopy (AES) analyser. The STM tips were electrochemically etched from
PDF
Album
Full Research Paper
Published 09 Oct 2015

Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials

  • Xiaoxing Ke,
  • Carla Bittencourt and
  • Gustaaf Van Tendeloo

Beilstein J. Nanotechnol. 2015, 6, 1541–1557, doi:10.3762/bjnano.6.158

Graphical Abstract
  • spatial resolution, attention was focused on unfolding the mystery through electron diffraction. Different from the phase contrast projected in the imaging plane, information projected in reciprocal space is much less influenced by lens imperfections. In addition, diffraction patterns reflect the kinetic
PDF
Album
Review
Published 16 Jul 2015

Transformations of PTCDA structures on rutile TiO2 induced by thermal annealing and intermolecular forces

  • Szymon Godlewski,
  • Jakub S. Prauzner-Bechcicki,
  • Thilo Glatzel,
  • Ernst Meyer and
  • Marek Szymoński

Beilstein J. Nanotechnol. 2015, 6, 1498–1507, doi:10.3762/bjnano.6.155

Graphical Abstract
  • surface quality was monitored with a low-energy electron diffraction (LEED) setup. PTCDA molecules were evaporated from a standard Knudsen cell at approximately 580 K on the substrate maintained at room or elevated temperature. The molecular flux was controlled using a quartz microbalance. Before the
PDF
Album
Full Research Paper
Published 10 Jul 2015

Enhanced fullerene–Au(111) coupling in (2√3 × 2√3)R30° superstructures with intermolecular interactions

  • Michael Paßens,
  • Rainer Waser and
  • Silvia Karthäuser

Beilstein J. Nanotechnol. 2015, 6, 1421–1431, doi:10.3762/bjnano.6.147

Graphical Abstract
  • unit cell of the C60 overlayer aligned along the [11−2] and [10−1] directions of the Au(111) surface, respectively. Low energy electron diffraction (LEED) measurements by Tzeng et al. [11] revealed a R14° structure, which was confirmed by STM measurements later on [12][13]. In addition, the structure
PDF
Album
Full Research Paper
Published 29 Jun 2015

Structural transitions in electron beam deposited Co–carbonyl suspended nanowires at high electrical current densities

  • Gian Carlo Gazzadi and
  • Stefano Frabboni

Beilstein J. Nanotechnol. 2015, 6, 1298–1305, doi:10.3762/bjnano.6.134

Graphical Abstract
  • , where metal grains with a size of few nanometers are embedded in an amorphous, carbonaceous matrix [27]. The structure is confirmed by TEM selected area electron diffraction (SAED) measured at the center of the wire and presented in Figure 1b. The pattern shows an innermost high-intensity ring with many
  • suspended nanowire (SNW) 1 deposited between pillars; (b) electron diffraction pattern from SNW 1 and radial integral of the pattern (red line) compared with calculated reflections (bars) for FCC Co, HCP Co and FCC CoO. (c) EDX spectrum of SNW 1 with peak labels and derived atomic composition. (a) Current(I
PDF
Album
Full Research Paper
Published 11 Jun 2015

Addition of Zn during the phosphine-based synthesis of indium phospide quantum dots: doping and surface passivation

  • Natalia E. Mordvinova,
  • Alexander A. Vinokurov,
  • Oleg I. Lebedev,
  • Tatiana A. Kuznetsova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2015, 6, 1237–1246, doi:10.3762/bjnano.6.127

Graphical Abstract
  • electron diffraction (ED) pattern. As can be seen from the typical low-magnification TEM images in Figure 3a the prepared QDs are of almost spherical shape and the mean particle diameter is about 3–6 nm. The corresponding ED pattern exhibits distinct ring patterns, typical for the clustering of relatively
  • using a 405 nm continuous laser LED (40 mW). Powder X-ray diffraction (XRD) patterns were taken on a Rigaku D/MAX 2500 diffractometer using Cu Kα radiation (λ = 1.540598 Å). Transmission electron microscopy (TEM) and electron diffraction (ED) studies were performed using a Tecnai G2 30 UT (LaB6
  • InP QDs. Experimental X-ray powder diffractogram for synthesized InP QDs with different amounts of Zn dopant. (a) Bright-field low-magnification TEM image of non-doped InP QDs and its number-weighted size distribution (upper insert). Ring electron diffraction pattern (lower insert) confirming zinc
PDF
Album
Full Research Paper
Published 01 Jun 2015

Scanning reflection ion microscopy in a helium ion microscope

  • Yuri V. Petrov and
  • Oleg F. Vyvenko

Beilstein J. Nanotechnol. 2015, 6, 1125–1137, doi:10.3762/bjnano.6.114

Graphical Abstract
  • incidence angles, yet was still more pronounced in REM as compared to TEM [2][4]. The further development of REM in ultrahigh vacuum conditions allowed imaging of the single atomic steps [5][6][7][8] and monitoring of atomic layer-by-layer crystal growth by means of reflection high energy electron
  • diffraction (RHEED) [9]. In the late 1960s, scanning reflection electron microscopy (SREM) was developed [10][11] for the scanning electron microscope (SEM). Chromatic aberration does not appear in SEM because the sample is placed outside of the electron optics. Both REM and SREM require a sufficiently long
PDF
Album
Full Research Paper
Published 07 May 2015

Tunable magnetism on the lateral mesoscale by post-processing of Co/Pt heterostructures

  • Oleksandr V. Dobrovolskiy,
  • Maksym Kompaniiets,
  • Roland Sachser,
  • Fabrizio Porrati,
  • Christian Gspan,
  • Harald Plank and
  • Michael Huth

Beilstein J. Nanotechnol. 2015, 6, 1082–1090, doi:10.3762/bjnano.6.109

Graphical Abstract
  • the experimental nanodiffraction data from the upper and lower layer, electron diffraction simulations for the CoPt fcc- and fct-phase assuming bulk lattice constants were made with the software JEMS [41]. The simulations were done in the kinematic mode. For the generation of the elemental signal
PDF
Album
Full Research Paper
Published 29 Apr 2015

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

  • Philipp Adelhelm,
  • Pascal Hartmann,
  • Conrad L. Bender,
  • Martin Busche,
  • Christine Eufinger and
  • Juergen Janek

Beilstein J. Nanotechnol. 2015, 6, 1016–1055, doi:10.3762/bjnano.6.105

Graphical Abstract
  • electron microscopy, single area electron diffraction and Fourier transform infrared spectroscopy sodium peroxide (Na2O2) and sodium carbonate (Na2CO3) were proven as discharge products. These products vanished during charge with overpotentials exceeding 1 V similar to lithium–oxygen cells. Overall, the
PDF
Album
Review
Published 23 Apr 2015

Observing the morphology of single-layered embedded silicon nanocrystals by using temperature-stable TEM membranes

  • Sebastian Gutsch,
  • Daniel Hiller,
  • Jan Laube,
  • Margit Zacharias and
  • Christian Kübel

Beilstein J. Nanotechnol. 2015, 6, 964–970, doi:10.3762/bjnano.6.99

Graphical Abstract
  • TEM (see insets of Figure 3b and Figure 3c) and electron diffraction, we found that both samples feature a high degree of crystallinity as is corrobated by detailed Raman studies [20][42]. However, the Si NC shape is not spherical at all. Due to the minimization of Gibbs free energy, a spherical shape
PDF
Album
Full Research Paper
Published 15 Apr 2015

Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

  • Brett B. Lewis,
  • Michael G. Stanford,
  • Jason D. Fowlkes,
  • Kevin Lester,
  • Harald Plank and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2015, 6, 907–918, doi:10.3762/bjnano.6.94

Graphical Abstract
  • ), and 5.06 nm (±0.80 nm) for as-deposited, 6 min, and 12 min purification patterns, respectively. In order to further characterize the microstructure development during purification, selected area electron diffraction patterns (SAED) were taken for an as-deposited and purified PtCx deposit as shown in
  • ) of 2 min (51.2 C/cm2), 4 min (102.3 C/cm2), 6 min (153.5 C/cm2), 8 min (204.7 C/cm2), 10 min (255.8 C/cm2), and 12 min (307.0 C/cm2). Selected area electron diffraction was also performed to obtain diffraction patterns. These experiments were conducted in a Zeiss Libra 200 HT FE MC at 120 keV and
  • . Selected area electron diffraction (SAED) patterns for O2 E-beam uncured (left) and cured (right) deposit. Diffraction peaks become more pronounced after curing. Bar graph comparing the simulated and experimental purification rates for varying beam parameters. The relevant derived variables used in the
PDF
Album
Full Research Paper
Published 08 Apr 2015

Graphene on SiC(0001) inspected by dynamic atomic force microscopy at room temperature

  • Mykola Telychko,
  • Jan Berger,
  • Zsolt Majzik,
  • Pavel Jelínek and
  • Martin Švec

Beilstein J. Nanotechnol. 2015, 6, 901–906, doi:10.3762/bjnano.6.93

Graphical Abstract
  • achieved by further annealing of the sample up to 1150 °C, repeated in 10 min increments, until the desired coverage of graphene was achieved (about 2/3 of the surface) [13][14] and terrace widths reached 100 nm. All intermediate steps were monitored both by the low energy electron diffraction and STM. A
  • ) modulation corresponding to the 6× 6R30° quasiperiodic structure detected by low-energy electron diffraction [3][14]. Figure 1b shows a detail of the SLG, measured at a bias voltage 0.5 V, with a stable tip that provides a good resolution, allowing the detection of buffer layer features. These are
PDF
Album
Full Research Paper
Published 07 Apr 2015

Structure and mechanism of the formation of core–shell nanoparticles obtained through a one-step gas-phase synthesis by electron beam evaporation

  • Andrey V. Nomoev,
  • Sergey P. Bardakhanov,
  • Makoto Schreiber,
  • Dashima G. Bazarova,
  • Nikolai A. Romanov,
  • Boris B. Baldanov,
  • Bair R. Radnaev and
  • Viacheslav V. Syzrantsev

Beilstein J. Nanotechnol. 2015, 6, 874–880, doi:10.3762/bjnano.6.89

Graphical Abstract
  • electron microscopy (TEM), high-resolution TEM (HRTEM), selective area electron diffraction (SAED), and energy dispersive X-ray fluorescence (EDX) analysis. These measurements were performed on a JEM-2010 TEM (JEOL, Japan, 200 kV accelerating voltage, 0.14 nm resolution) equipped with an EDX (EDAX Co
PDF
Album
Supp Info
Full Research Paper
Published 31 Mar 2015

Morphology control of zinc oxide films via polysaccharide-mediated, low temperature, chemical bath deposition

  • Florian Waltz,
  • Hans-Christoph Schwarz,
  • Andreas M. Schneider,
  • Stefanie Eiden and
  • Peter Behrens

Beilstein J. Nanotechnol. 2015, 6, 799–808, doi:10.3762/bjnano.6.83

Graphical Abstract
  • experiments in which HYA adsorbs onto ZnO crystallites during their growth and thereby influences their size and aspect ratio. Furthermore, those ZnO subunits aggregate under the influence of HYA into highly ordered mesocrystals, which was evidenced by SEM investigations and selected area electron diffraction
PDF
Album
Full Research Paper
Published 24 Mar 2015

Magnetic properties of self-organized Co dimer nanolines on Si/Ag(110)

  • Lisa Michez,
  • Kai Chen,
  • Fabien Cheynis,
  • Frédéric Leroy,
  • Alain Ranguis,
  • Haik Jamgotchian,
  • Margrit Hanbücken and
  • Laurence Masson

Beilstein J. Nanotechnol. 2015, 6, 777–784, doi:10.3762/bjnano.6.80

Graphical Abstract
  • self-organized Si NR array (pitch: 5 ∙ ≈ 2 nm) with a single domain orientation. This structure was confirmed by surface diffraction techniques (low energy electron diffraction, LEED and grazing incidence X-ray diffraction, GIXD) and large scale STM images [24][26]. The sharp spots of the 5 × 2
PDF
Album
Full Research Paper
Published 19 Mar 2015

Mandibular gnathobases of marine planktonic copepods – feeding tools with complex micro- and nanoscale composite architectures

  • Jan Michels and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2015, 6, 674–685, doi:10.3762/bjnano.6.68

Graphical Abstract
  • described for additional copepod species [28][29][30], and not earlier than several additional years later the application of microprobe and electron diffraction analyses confirmed the presence of silica in such teeth [31]. The analyses indicated that the silica is present in the teeth in the form of opal
PDF
Album
Video
Review
Published 06 Mar 2015

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • . The size of MSN and YVO4:Eu3+ MSN NPs was studied by TEM and was found to be about 50 nm in both the cases. The amorphous nature of the silica surface and the crystalline nature of YVO4 NPs inside the silica spheres were further confirmed by selected area electron diffraction (SAED) (Figure 1
PDF
Album
Review
Published 24 Feb 2015

In situ scanning tunneling microscopy study of Ca-modified rutile TiO2(110) in bulk water

  • Giulia Serrano,
  • Beatrice Bonanni,
  • Tomasz Kosmala,
  • Marco Di Giovannantonio,
  • Ulrike Diebold,
  • Klaus Wandelt and
  • Claudio Goletti

Beilstein J. Nanotechnol. 2015, 6, 438–443, doi:10.3762/bjnano.6.44

Graphical Abstract
  • -modified rutile TiO2(110) surfaces immersed in high purity water. The TiO2 surface was prepared under ultrahigh vacuum (UHV) with repeated sputtering/annealing cycles. Low energy electron diffraction (LEED) analysis shows a pattern typical for the surface segregation of calcium, which is present as an
  • ) structure has been proposed for the resulting Ca overlayer based on low energy electron diffraction (LEED) and scanning tunneling microscopy (STM) measurements [1]. Segregation has been reported to produce an additional, differently ordered Ca layer, namely a p(3 × 1) structure [2][3][4]. More controlled
PDF
Album
Full Research Paper
Published 12 Feb 2015

Tunable white light emission by variation of composition and defects of electrospun Al2O3–SiO2 nanofibers

  • Jinyuan Zhou,
  • Gengzhi Sun,
  • Hao Zhao,
  • Xiaojun Pan,
  • Zhenxing Zhang,
  • Yujun Fu,
  • Yanzhe Mao and
  • Erqing Xie

Beilstein J. Nanotechnol. 2015, 6, 313–320, doi:10.3762/bjnano.6.29

Graphical Abstract
  • surface of the fibers, as shown in Figure 3d. Selected area electron diffraction (SAED) patterns are collected from the thin edge of one fiber, as shown in the inset of Figure 3c. The patterns not only verify the high degree of crystallinity of the composite nanofibers, but also indicate the disordered
PDF
Album
Full Research Paper
Published 28 Jan 2015

Multifunctional layered magnetic composites

  • Maria Siglreitmeier,
  • Baohu Wu,
  • Tina Kollmann,
  • Martin Neubauer,
  • Gergely Nagy,
  • Dietmar Schwahn,
  • Vitaliy Pipich,
  • Damien Faivre,
  • Dirk Zahn,
  • Andreas Fery and
  • Helmut Cölfen

Beilstein J. Nanotechnol. 2015, 6, 134–148, doi:10.3762/bjnano.6.13

Graphical Abstract
  • besides the 10 nm sized particles also smaller particles in the size range of around 3 nm can be detected. Electron diffraction studies of these small particles show their amorphous nature, which leads to the conclusion that under the chosen synthesis conditions amorphous material or poorly crystallized
  • to a multilayered composite material. Furthermore, the distance in between the layers for samples containing gelatin seems less collapsed than for samples without gelatin which results in a material closer in structure to that one of original nacre. Electron diffraction data taken from different
  • perpendicular with a diamond knife in a Leica ultracut UCT and transferred onto a Formvar-coated copper grid. TEM and electron diffraction were performed on a Zeiss Libra 120 operating at 120 kV. For SEM measurements the samples were air-dried at room temperature and cut perpendicular to the chitin layers with
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2015

Two-dimensional and tubular structures of misfit compounds: Structural and electronic properties

  • Tommy Lorenz,
  • Jan-Ole Joswig and
  • Gotthard Seifert

Beilstein J. Nanotechnol. 2014, 5, 2171–2178, doi:10.3762/bjnano.5.226

Graphical Abstract
  • as nanotubes and nanoscrolls (see Figure 6). These structures have been extensively experimentally and theoretically investigated to date [6][25][26][44]. Selected area electron diffraction (SAED) measurements showed that the interlayer distance between the SnS and SnS2 substructures is nearly
PDF
Album
Review
Published 19 Nov 2014
Other Beilstein-Institut Open Science Activities