Search results

Search for "high-resolution" in Full Text gives 756 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Topographic signatures and manipulations of Fe atoms, CO molecules and NaCl islands on superconducting Pb(111)

  • Carl Drechsel,
  • Philipp D’Astolfo,
  • Jung-Ching Liu,
  • Thilo Glatzel,
  • Rémy Pawlak and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2022, 13, 1–9, doi:10.3762/bjnano.13.1

Graphical Abstract
  • demonstrated. We show a general propensity of these adsorbates to diffuse at low temperature under gentle scanning conditions. Our findings provide new insights into high-resolution probe microscopy imaging with terminated tips, decoupling atoms and molecules by NaCl islands or tip-induced lateral manipulation
  • enable the development of functionalized tips, obtained by picking up a single molecule from a surface. This has been an important milestone for low-temperature STM/AFM techniques since the CO tip nowadays enables systematic high-resolution measurements of surfaces, molecules and atoms [33][34][35]. It
  • believe that our results help to identify these adsorbates and constitute an important step for future experiments to perform high-resolution STM/AFM imaging with CO-terminated tips or in the electronic decoupling of atoms and molecules from the prototypical Pb(111) superconducting surface. Experimental
PDF
Album
Letter
Published 03 Jan 2022

Measurement of polarization effects in dual-phase ceria-based oxygen permeation membranes using Kelvin probe force microscopy

  • Kerstin Neuhaus,
  • Christina Schmidt,
  • Liudmila Fischer,
  • Wilhelm Albert Meulenberg,
  • Ke Ran,
  • Joachim Mayer and
  • Stefan Baumann

Beilstein J. Nanotechnol. 2021, 12, 1380–1391, doi:10.3762/bjnano.12.102

Graphical Abstract
  • and cleaning were performed with an Ar ion beam in a Fischione Nanomill 1040 at 900 eV and 500 eV beam energy, respectively. TEM and energy-filtered TEM (EFTEM) imaging were performed with a FEI Tecnai F20 at 200 kV. High-resolution HAADF imaging and energy-dispersive X-ray (EDX) chemical mapping were
PDF
Album
Full Research Paper
Published 15 Dec 2021

Chemical vapor deposition of germanium-rich CrGex nanowires

  • Vladislav Dřínek,
  • Stanislav Tiagulskyi,
  • Roman Yatskiv,
  • Jan Grym,
  • Radek Fajgar,
  • Věra Jandová,
  • Martin Koštejn and
  • Jaroslav Kupčík

Beilstein J. Nanotechnol. 2021, 12, 1365–1371, doi:10.3762/bjnano.12.100

Graphical Abstract
  • Sciences, Chaberská 1014/57, 182 51 Prague 8, Czech Republic 10.3762/bjnano.12.100 Abstract Chemical vapor deposition was applied to synthetize nanostructured deposits containing several sorts of nanoobjects (i.e., nanoballs, irregular particles, and nanowires). Analytical techniques, that is, high
  • -resolution transmission electron microscopy, scanning electron microscopy, electron dispersive X-ray analysis, selected area electron diffraction, and X-ray photoelectron spectroscopy, showed that unlike nanoballs and particles composed of crystalline germanium, the layer was made of chromium germanide CrGex
PDF
Album
Supp Info
Letter
Published 07 Dec 2021

Biocompatibility and cytotoxicity in vitro of surface-functionalized drug-loaded spinel ferrite nanoparticles

  • Sadaf Mushtaq,
  • Khuram Shahzad,
  • Tariq Saeed,
  • Anwar Ul-Hamid,
  • Bilal Haider Abbasi,
  • Nafees Ahmad,
  • Waqas Khalid,
  • Muhammad Atif,
  • Zulqurnain Ali and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2021, 12, 1339–1364, doi:10.3762/bjnano.12.99

Graphical Abstract
  • phase of the samples is consistent with the XRD results. The formation of spherical NPs was confirmed by transmission electron microscopy (TEM) (Figure 2a). The nanospheres are uniformally distributed throughout the surface of the samples. High-resolution transmission electron microscopy (HR-TEM) images
  • of the (311) plane [30]: where D is the average crystallite size, K = 0.94, λ = 1.54 Å is the X-ray wavelength, β represents the full width at half maximum (FWHM), and θ represents the Bragg's diffraction angle. The surface morphology and major elemental composition were obtained by high-resolution
PDF
Album
Full Research Paper
Published 02 Dec 2021

Plasmon-enhanced photoluminescence from TiO2 and TeO2 thin films doped by Eu3+ for optoelectronic applications

  • Marcin Łapiński,
  • Jakub Czubek,
  • Katarzyna Drozdowska,
  • Anna Synak,
  • Wojciech Sadowski and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2021, 12, 1271–1278, doi:10.3762/bjnano.12.94

Graphical Abstract
  • CrossBeam 540 scanning electron microscope (SEM) operated at 2 kV was used. For microstructure analysis of the plasmonic structures, a TALOS F200X high-resolution transmission electron microscope (HRTEM) was used. The chemical composition of the luminescent layers was investigated by X-ray photoelectron
PDF
Album
Full Research Paper
Published 22 Nov 2021

A review on slip boundary conditions at the nanoscale: recent development and applications

  • Ruifei Wang,
  • Jin Chai,
  • Bobo Luo,
  • Xiong Liu,
  • Jianting Zhang,
  • Min Wu,
  • Mingdan Wei and
  • Zhuanyue Ma

Beilstein J. Nanotechnol. 2021, 12, 1237–1251, doi:10.3762/bjnano.12.91

Graphical Abstract
  • other properties with a high resolution [43]. Finally, when the flow systems are under extreme conditions, such as at high shear rates, it has also been proven that numerical simulations are more efficient than experimental methods [45]. Therefore, in this review we mainly focus on the numerical
PDF
Album
Review
Published 17 Nov 2021

Two dynamic modes to streamline challenging atomic force microscopy measurements

  • Alexei G. Temiryazev,
  • Andrey V. Krayev and
  • Marina P. Temiryazeva

Beilstein J. Nanotechnol. 2021, 12, 1226–1236, doi:10.3762/bjnano.12.90

Graphical Abstract
  • for scanning a large rough area with a probe oscillating at a low amplitude. In contrast, the use of ultrasharp probes allows for performing extremely high-resolution imaging (down to molecular resolution) when scanning small and relatively flat areas. Thus, with the same probe, we can pre-scan a
  • large area, find specific locations and perform high-resolution scans. The technique of high-resolution imaging will be discussed in the next section. The VM avoids image artifacts associated with a sticking probe. In some cases, a sticking effect can be observed, when in the process of AFM imaging the
  • frequency is used as the set point. Historically, FM-AFM is commonly called non-contact atomic force microscopy [33]. However, repulsive forces are required to obtain high resolution, which implies some level of contact [34]. Qualitatively, this is easy to understand from the following reasoning. If a probe
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2021

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • -assisted chemical etching was used by Qin et al. [79] to prepare a dendritic array of Si/WO3 NW composites, which was tested for the detection of NO2 gas at room temperature. Figure 17a–e SEM and high-resolution transmission electron microscopy (HR-TEM) images of Si/WO3 NWs. Figure 17f shows the XRD
PDF
Album
Supp Info
Review
Published 09 Nov 2021

A Au/CuNiCoS4/p-Si photodiode: electrical and morphological characterization

  • Adem Koçyiğit,
  • Adem Sarılmaz,
  • Teoman Öztürk,
  • Faruk Ozel and
  • Murat Yıldırım

Beilstein J. Nanotechnol. 2021, 12, 984–994, doi:10.3762/bjnano.12.74

Graphical Abstract
  • University, 70200, Karaman, Turkey Department of Biotechnology, Faculty of Science, Selcuk University, 42130, Konya, Turkey 10.3762/bjnano.12.74 Abstract In this present work, CuNiCoS4 thiospinel nanocrystals were synthesized by hot injection and characterized by X-ray diffractometry (XRD), high-resolution
PDF
Album
Full Research Paper
Published 02 Sep 2021

Self-assembly of Eucalyptus gunnii wax tubules and pure ß-diketone on HOPG and glass

  • Miriam Anna Huth,
  • Axel Huth and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2021, 12, 939–949, doi:10.3762/bjnano.12.70

Graphical Abstract
  • formed tubules similar to those on E. gunnii leaves. Deviating platelet-shaped and layered structures not found on leaves were also formed, especially on areas with high mass accumulation. High-resolution AFM images of recrystallized ß-diketone tubules are presented for the first time. The data showed
PDF
Album
Full Research Paper
Published 20 Aug 2021

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
  • experimentally record the necessary sets of both high- and low-quality images, depending on the application. For example, de Haan et al. obtained pairs of low-and high-resolution SEM images by changing the magnification of the images [96]. Weigert et al. acquired pairs of low- and high-quality images by varying
  • computation to circumvent difficulties in sufficient data acquisition is to train deep convolutional neural networks on simulated data. Deep STORM is a deep convolutional neural network that achieves high-resolution images from images recorded by a standard inverted microscope under bad imaging conditions
  • learning was also applied to reduce noise and increase the resolution in scanning electron microscopy images. An approach for creating a training dataset of low- and high-resolution image pairs from a single image, was developed by using deep learning to up-sample scanning transmission electron microscopy
PDF
Album
Review
Published 13 Aug 2021

Reducing molecular simulation time for AFM images based on super-resolution methods

  • Zhipeng Dou,
  • Jianqiang Qian,
  • Yingzi Li,
  • Rui Lin,
  • Jianhai Wang,
  • Peng Cheng and
  • Zeyu Xu

Beilstein J. Nanotechnol. 2021, 12, 775–785, doi:10.3762/bjnano.12.61

Graphical Abstract
  • the molecular structure [26], recognizing and classifying surface features [27][28][29], and fast scanning [30][31]. The main problem in training models of machine learning is providing sufficiently labeled training data. High-resolution AFM experiments are time consuming and experimental data are, a
  • in computer vision. Super-resolution methods could be used to reconstruct a high-resolution image from a low-resolution image. There are a variety of methods in the field of super resolution. Compressed sensing (CS) and deep learning methods are two typical methods with excellent imaging performance
  • three-layer convolutional neural network which directly learns an end-to-end mapping between low- and high-resolution images, making the reconstructed image as close to the original image as possible. Generally, increasing the network depth could improve the reconstruction accuracy. With the development
PDF
Album
Full Research Paper
Published 29 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • area of the beam. These characteristics, together with a low yield of backscattered ions and therefore a very small amount of second-generation secondary electrons, enable high-resolution resist-based lithography and high-resolution ion beam-induced deposition with dramatically reduced proximity
  • function [30]. In several of these works, high-resolution scanning TEM (STEM) imaging has been performed to enable the analysis of the defects created on the atomic scale [26][29][30] (see, e.g., Figure 2c). Apart from 2D materials, thin-film samples have also been the subject of electronic property tuning
  • was first demonstrated by Cybart et al. for the cuprate superconductor YBa2Cu3O7−δ (YBCO), by scanning the helium ion beam in line mode across 4 μm wide strips of YBCO that had been locally pre-thinned to a thickness of 30 nm using argon ion milling [31]. Due to the high-resolution writing capability
PDF
Album
Review
Published 02 Jul 2021

Stability and activity of platinum nanoparticles in the oxygen electroreduction reaction: is size or uniformity of primary importance?

  • Kirill O. Paperzh,
  • Anastasia A. Alekseenko,
  • Vadim A. Volochaev,
  • Ilya V. Pankov,
  • Olga A. Safronenko and
  • Vladimir E. Guterman

Beilstein J. Nanotechnol. 2021, 12, 593–606, doi:10.3762/bjnano.12.49

Graphical Abstract
  • University, "High-Resolution Transmission Electron Microscopy” Shared Use Center, 344090, 194/2 Stachki st., Rostov-on-Don, Russia 10.3762/bjnano.12.49 Abstract Platinum–carbon catalysts are widely used in the manufacturing of proton-exchange membrane fuel cells. Increasing Pt/C activity and stability is an
  • assignment in the field of scientific activity No 0852-2020-0019). Acknowledgements The authors are grateful to Mr. Nikulin A.Yu. for assistance in the XRD pattern registration and to the “Shared Use Center High-Resolution Transmission Electron Microscopy” (SFedU) for conducting the TEM studies.
PDF
Album
Supp Info
Full Research Paper
Published 29 Jun 2021

Local stiffness and work function variations of hexagonal boron nitride on Cu(111)

  • Abhishek Grewal,
  • Yuqi Wang,
  • Matthias Münks,
  • Klaus Kern and
  • Markus Ternes

Beilstein J. Nanotechnol. 2021, 12, 559–565, doi:10.3762/bjnano.12.46

Graphical Abstract
  • et al. used high-resolution low-energy electron diffraction and normal incidence X-ray standing wave techniques to detect the large separation of 3.24 Å between the h-BN sheet and the topmost Cu(111) layer [29]. They found almost no height difference between B and N atoms and excluded significant
PDF
Album
Letter
Published 17 Jun 2021

Influence of electrospray deposition on C60 molecular assemblies

  • Antoine Hinaut,
  • Sebastian Scherb,
  • Sara Freund,
  • Zhao Liu,
  • Thilo Glatzel and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2021, 12, 552–558, doi:10.3762/bjnano.12.45

Graphical Abstract
  • the sample. Nevertheless, the contamination from solvent introduction can be reduced down to conditions compatible with high-resolution scanning probe microscopy (SPM) techniques [10][12]. Buckminsterfullerene C60, scheme in Figure 1b, is among the most extensively studied molecules in surface science
  • nanometers in size are observed, suggesting a limited influence of the HV-ESD method. The C60 molecules cover step edges and form monolayer islands, similar to TE. High-resolution imaging of the islands, shown in Figure 2c, confirms the hexagonal lattice arrangement of C60 with a lattice parameter close to 1
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2021

Determining amplitude and tilt of a lateral force microscopy sensor

  • Oliver Gretz,
  • Alfred J. Weymouth,
  • Thomas Holzmann,
  • Korbinian Pürckhauer and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2021, 12, 517–524, doi:10.3762/bjnano.12.42

Graphical Abstract
  • amplitudes of the order of 1 nm is also valid for amplitudes under 100 pm, where we typically acquire high-resolution data. To demonstrate that this method can be applied to more complex systems, calibration data was taken of a CO molecule on Cu(111) with a CO tip. When lateral forces act on the CO molecules
PDF
Album
Supp Info
Full Research Paper
Published 01 Jun 2021

Surface-enhanced Raman scattering of water in aqueous dispersions of silver nanoparticles

  • Paulina Filipczak,
  • Krzysztof Hałagan,
  • Jacek Ulański and
  • Marcin Kozanecki

Beilstein J. Nanotechnol. 2021, 12, 497–506, doi:10.3762/bjnano.12.40

Graphical Abstract
  • as the reference sample. The TEM images were obtained by using a Jeol ARM 200F high-resolution transmission electron microscope. The silver concentration in the AgNP dispersion was determined by FAAS using the GBC 932 plus instrument. The calibration was made using the silver standard solution
  • dispersions of AgNPs. The AgNPs were synthesized according to the protocol proposed by Frank et al. [36]. Two types of nanoparticles were obtained: AgNPs blue and AgNPs yellow, which were labelled according to the colour (compare the UV–vis spectra shown in Figure S1 in Supporting Information File 1). High
  • -resolution transmission electron microscopy (TEM) analysis was performed to estimate the size and identify the shape of the nanoparticles (see Figure 1). The nanoparticles in the AgNPs blue sample had a triangular prism shape with an estimated average size of 34 ± 14 nm, while in the AgNPs yellow sample, the
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2021

Reconstruction of a 2D layer of KBr on Ir(111) and electromechanical alteration by graphene

  • Zhao Liu,
  • Antoine Hinaut,
  • Stefan Peeters,
  • Sebastian Scherb,
  • Ernst Meyer,
  • Maria Clelia Righi and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2021, 12, 432–439, doi:10.3762/bjnano.12.35

Graphical Abstract
  • reconstruction of a two-dimensional layer of KBr on an Ir(111) surface is observed by high-resolution noncontact atomic force microscopy and verified by density functional theory (DFT). The observed KBr structure is oriented along the main directions of the Ir(111) surface, but forms a characteristic double-line
  • structures is presented in the high-resolution image in Figure 2a. The line structures consist of two atomic-scale protrusions separated by a valley. Two types of orthogonal lattice arrangements are observed, that is, one with a regular single-atom repetition along the stripes (red line) and another with a
  • some small KBr clusters at the edge of the graphene sheets as indicated by the white dashed line in Figure 4a. A clear moiré pattern is observed on the bare graphene surfaces on Ir(111) in high-resolution measurements as presented in Figure 4b and as expected for GR/Ir(111) [47][48][49]. However
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2021

Spontaneous shape transition of MnxGe1−x islands to long nanowires

  • S. Javad Rezvani,
  • Luc Favre,
  • Gabriele Giuli,
  • Yiming Wubulikasimu,
  • Isabelle Berbezier,
  • Augusto Marcelli,
  • Luca Boarino and
  • Nicola Pinto

Beilstein J. Nanotechnol. 2021, 12, 366–374, doi:10.3762/bjnano.12.30

Graphical Abstract
  • (SEM), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). We demonstrate that the thickness of the Mn layer and the annealing conditions finely control the shape transition, resulting in NWs up to ≃1.5 μm length with uniform width and homogeneous composition
PDF
Album
Full Research Paper
Published 28 Apr 2021

Structural and optical characteristics determined by the sputtering deposition conditions of oxide thin films

  • Petronela Prepelita,
  • Florin Garoi and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2021, 12, 354–365, doi:10.3762/bjnano.12.29

Graphical Abstract
  • was possible to gain information related to the thickness of our samples. The high-resolution elementary microanalysis of the cross section perpendicular to the surface of the thin films was performed in manual mode, where the adjustment device allowed the manual setting of the tilt angle from −90° to
  • of the samples by depleting the films of oxygen. Figure 2 shows the general oxide spectra for three SiO2 samples. The high-resolution (HR) analysis of the Si 2p3 and O 1s spectra recorded [43][44] for the SiO2 samples are shown in Figure 3. Using this analysis, we determined the elemental composition
  • structures. XRD patterns of ZnO thin film samples with different thickness, namely: 200, 250, and 300 nm. XPS patterns of SiO2 thin films: general spectra. High-resolution XPS spectra acquired from SiO2 samples: (a) Si 2p3 and (b) O 1s. XPS survey spectra acquired from ZnO films. High-resolution (a) Zn 2p3
PDF
Album
Full Research Paper
Published 19 Apr 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • ranging from several days to one or two months. For imaging and nanofabrication, only one of the three atoms is selected. This nearly ideal point source allows not only for high-resolution imaging but also for the milling of smallest geometric features [5][6][7]. Furthermore, large-area machining is
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

The nanomorphology of cell surfaces of adhered osteoblasts

  • Christian Voelkner,
  • Mirco Wendt,
  • Regina Lange,
  • Max Ulbrich,
  • Martina Gruening,
  • Susanne Staehlke,
  • Barbara Nebe,
  • Ingo Barke and
  • Sylvia Speller

Beilstein J. Nanotechnol. 2021, 12, 242–256, doi:10.3762/bjnano.12.20

Graphical Abstract
  • , extracting the fraction of active, that is, ATP-depending fluctuations with spatial and frequency band resolution may help to develop cell activity parameters for the assessment of cellular programs such as adhesion on materials surfaces. Conclusion High-resolution SICM topographies of living and fixed MG-63
PDF
Album
Full Research Paper
Published 12 Mar 2021

Extended iron phthalocyanine islands self-assembled on a Ge(001):H surface

  • Rafal Zuzak,
  • Marek Szymonski and
  • Szymon Godlewski

Beilstein J. Nanotechnol. 2021, 12, 232–241, doi:10.3762/bjnano.12.19

Graphical Abstract
  • consider now high-resolution imaging analysis. Already within the STM image in Figure 3a, we can notice lobes that differ in their apparent height. The separation between differently bright nearest neighboring lobes, which reaches approximately 0.7 nm, suggests that they originate from the same molecule
  • defects. Such molecules could be displaced laterally by means of STM manipulation and placed onto a perfectly hydrogenated Ge(001):H surface, which provided sufficient isolation from the underlying germanium substrate. Based on high-resolution STM images, we have proposed a simplified model of the layer
  • . (c) Structural scheme of FePc (bottom) with schematic appearance of the STM contrast for upright-oriented molecules within the islands (top view). The differently shaded lobes mimic the contrast variation of the STM appearance due to a slight rotation of the molecules. (d) High-resolution STM image
PDF
Supp Info
Full Research Paper
Published 05 Mar 2021

TiOx/Pt3Ti(111) surface-directed formation of electronically responsive supramolecular assemblies of tungsten oxide clusters

  • Marco Moors,
  • Yun An,
  • Agnieszka Kuc and
  • Kirill Yu. Monakhov

Beilstein J. Nanotechnol. 2021, 12, 203–212, doi:10.3762/bjnano.12.16

Graphical Abstract
  • surfaces by using high-resolution scanning tunneling microscopy (STM), in particular on TiO2(110) [15][16], CuO(110) [17], and Pt(111) [18]. Recently, the surface behavior of W3O9 was assessed on a complex CuWO3 phase grown on Cu(110). The CuWO3/Cu(110) substrate can be viewed as a two-dimensional (2D
  • , theory-supported STM measurements at liquid nitrogen temperatures have been selected as an ideal characterization technique. This is due to the fact that it not only allows high-resolution imaging on the nanoscale, but the STM tip may also act as a charge-injecting or depleting electrode for the
  • tendency to form agglomerations indicating a weaker overall interaction with the w’-TiOx phase. This is quite intuitive because, in the latter case, the clusters have no direct contact with the metallic substrate due to the completely closed oxide film. High-resolution STM images (Figure 3a) reveal very
PDF
Album
Full Research Paper
Published 16 Feb 2021
Other Beilstein-Institut Open Science Activities