Search results

Search for "oxidation" in Full Text gives 750 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • under solar irradiation. Keywords: multi-wall carbon nanotubes (MWCNTs); nanomaterials; photoelectrochemical; TiO2; water splitting; Introduction TiO2 is an excellent photochemical catalyst for environmental and chemical applications due to its good activity regarding numerous reduction and oxidation
  • , MWCNTs, and TiO2@MWCNTs electrodes as working electrodes in 0.1 M KCl electrolyte at a sweep rate of 50 mV/s. In Figure 8a, oxidation and reduction peaks are not observed in the CVs in the scanned potential range from −1.0 to +0.2 V. In the CV of the TiO2 electrode, the current decreases significantly at
PDF
Album
Full Research Paper
Published 14 Dec 2022

In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles

  • Mitzi J. Ramírez-Hernández,
  • Mario Valera-Zaragoza,
  • Omar Viñas-Bravo,
  • Ariana A. Huerta-Heredia,
  • Miguel A. Peña-Rico,
  • Erick A. Juarez-Arellano,
  • David Paniagua-Vega,
  • Eduardo Ramírez-Vargas and
  • Saúl Sánchez-Valdes

Beilstein J. Nanotechnol. 2022, 13, 1505–1519, doi:10.3762/bjnano.13.124

Graphical Abstract
  • the Ag+ ion of the AgNO3 salt to Ag0. In this way, silver nuclei are generated and join to form nanoparticles, which are stabilized (via capping) by the same metabolites that are involved in the oxidation–reduction process [9]. Various plant parts have been used to generate AgNPs. Amongst these parts
PDF
Album
Full Research Paper
Published 13 Dec 2022

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • analysis, (ii) morphology (size and distribution of grains) by using SEM, (iii) specific surface area (SSA) by carrying out Brunauer–Emmett–Teller (BET) measurements, (iv) oxidation states of metals by measuring electron paramagnetic resonance (EPR), and (v) electrical parameters (thermal dependencies of
PDF
Album
Full Research Paper
Published 07 Dec 2022

Rapid and sensitive detection of box turtles using an electrochemical DNA biosensor based on a gold/graphene nanocomposite

  • Abu Hashem,
  • M. A. Motalib Hossain,
  • Ab Rahman Marlinda,
  • Mohammad Al Mamun,
  • Khanom Simarani and
  • Mohd Rafie Johan

Beilstein J. Nanotechnol. 2022, 13, 1458–1472, doi:10.3762/bjnano.13.120

Graphical Abstract
  • shown to have synergistic benefits [36][48]. As a result, there are good reasons to believe that combining Gr and AuNPs in biosensing will result in a synergistic impact on electro-oxidation [30][37]. Considering these, we hypothesised that a combination of Gr and AuNPs would increase the detection
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2022

Near-infrared photoactive Ag-Zn-Ga-S-Se quantum dots for high-performance quantum dot-sensitized solar cells

  • Roopakala Kottayi,
  • Ilangovan Veerappan and
  • Ramadasse Sittaramane

Beilstein J. Nanotechnol. 2022, 13, 1337–1344, doi:10.3762/bjnano.13.110

Graphical Abstract
  • of solar cells. In this study, we synthesized Ag-Zn-Ga-S-Se-based alloyed QDs by colloidal hot injection and characterized them. The X-ray photoelectron spectrum analysis confirms the +1, +2, +3, −2, and −2 oxidation states of, respectively, Ag, Zn, Ga, S, and Se in the QDs, and the energy-dispersive
  • . Conclusion Ag-Zn-Ga-S-Se alloyed QDs with a diameter of 5.11 nm were synthesized by a hot injection method. From the EDX analysis, its stoichiometric ratio was found to be 1:1:1:1.5:1.5. The oxidation sate of the elements in the synthesized QDs are examined to be +1, +2, +3, −2 and −2 for, respectively, Ag
PDF
Album
Full Research Paper
Published 14 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • degradation, antibiotic treatment, and sterilization [38]. The term “advanced oxidation processes” has become more common recently. In this process, many oxidizing agents (∙OH) are created. Electron–hole pairs are formed in AOPs when the VB electrons of semiconductor photocatalysts are driven into the
  • capabilities, as illustrated in Figure 2, since their VB potential is much higher than the oxidation potential of H2O, that is, 0.82 V vs NHE. Unfortunately, due to inadequate CB potential energy, most reduction processes, such as CO2 reduction, N2 fixation, and H2 creation, cannot be catalyzed with Bi-based
  • expediting the detachment and mobility of photoinduced charges. This, in turn, increases the ability of holes and electrons to undergo oxidation and reduction, respectively. As a consequence of this, the ZnIn2S4/BiVO4 heterojunction has unusual photocatalytic activity. It has an H2 evolution rate much higher
PDF
Album
Review
Published 11 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • fluoride oxidation at the anode to form nanopores of 50–100 nm in diameter. After electrodeposition, the carbon nanotubes are grown by CVD at 750 °C. If the carbon nanotubes do not grow in a suitable trend, they are removed by oxidation. The CNT tips are then grown again by CVD. The CVD nanotube tips can
PDF
Album
Review
Published 03 Nov 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • deposited CuO film onto highly symmetrical Au(111) surfaces was shown to have mirror-symmetric chirality. The enantiospecificity of the films was studied using QCM and evaluated according to the changes by the selective oxidation of chiral tartaric acid. The films etched in ʟ-(+)-tartaric acid were shown to
  • prefer the ʟ-(+)-tartrate oxidation, whereas the etched films in ᴅ-(−)-tartaric acid tend to oxidize ᴅ-(−)-tartrate. This indicated that the produced chiral surfaces of the CuO films from the etching process may regulate the chiral selective reactions on the surface. Jie et al. synthesized chiral R/L
PDF
Album
Review
Published 27 Oct 2022

Rapid fabrication of MgO@g-C3N4 heterojunctions for photocatalytic nitric oxide removal

  • Minh-Thuan Pham,
  • Duyen P. H. Tran,
  • Xuan-Thanh Bui and
  • Sheng-Jie You

Beilstein J. Nanotechnol. 2022, 13, 1141–1154, doi:10.3762/bjnano.13.96

Graphical Abstract
  • environment, human health, and other biotas. Among the technologies to treat NO pollution, photocatalytic oxidation under visible light is considered an effective means. This study describes photocatalytic oxidation to degrade NO under visible light with the support of a photocatalyst. MgO@g-C3N4
  • are different approaches to mitigate NO pollution, including catalyst/non-catalyst [4], oxidation [5], bioprocesses [6], adsorption [7], absorption [8], and non-thermal plasma technologies [9]. Photocatalytic oxidation is considered a promising approach due to its ability to degrade various air
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022

Green synthesis of zinc oxide nanoparticles toward highly efficient photocatalysis and antibacterial application

  • Vo Thi Thu Nhu,
  • Nguyen Duy Dat,
  • Le-Minh Tam and
  • Nguyen Hoang Phuong

Beilstein J. Nanotechnol. 2022, 13, 1108–1119, doi:10.3762/bjnano.13.94

Graphical Abstract
  • technologies have been proposed to remove organic pollutants from water, including coagulation coupled with sedimentation, biological processes, membrane filtration, adsorption, advanced oxidation, catalysis, and photocatalysis [1][2][3]. Using semiconductors as photocatalysts has been a widely studied
  • exothermic peak at 570.54 °C, revealing that the decomposition of organic compounds continues and the oxidation of Zn to form the ZnO crystalline phase occurs completely. From there, the organic matter in the zinc resinate begins to decompose at 300 °C. At a temperature of about 600 °C, the organic matter is
  • , proteins, DNA, and amino acids [39][40][41]. The O2 causes biomembrane oxidation reactions, damaging tissues [42]. Furthermore, it is reasonable to explain that the additional toxicity that causes bacterial death is due to the fact that zinc solubilization releases Zn2+ ions which can infiltrate into
PDF
Album
Full Research Paper
Published 07 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • synthetic pathways for the formation of CDs, that is, “top-down” and “bottom-up” methods. In the top-down method, large carbon structures (such as carbon nanotubes or graphite) are decomposed into CDs. The top-down methods include arc discharge, laser abrasion [24], chemical and electrochemical oxidation
  • different methods used were hydrothermal method, and pyrolysis in a vacuum tube furnace or a muffle furnace. Due to incomplete carbonization and oxidation in the hydrothermal method and pyrolysis in the muffle furnace, respectively, pyrolysis in a vacuum tube furnace was selected as a suitable synthesis
  • method to prevent over-oxidation of CDs. It was found that blue fluorescent CDs with high QY were obtained at 300 °C with 2 h reaction time. Increased temperatures, however, may cause a complete carbonization process as well as small CDs, which can lead to higher QY. A simple and easy preparatory method
PDF
Album
Review
Published 05 Oct 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • separation of electron–hole pairs, thus improving the photocatalytic activity of MIL101(Fe) to a certain extent. Nevertheless, the redox ability of the catalyst is weakened due to the fact that the reduction and oxidation processes on the catalyst surface occur at lower oxidation and reduction potentials
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • environmentally friendly with zero emissions at the time of use. These systems have the ability to convert chemical energy into electric energy with the highest conversion possible [1][2]. The active electrode reactions include the hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR). The
  • important binding sites, oxidation states, and the elemental composition using X-ray photoelectron spectroscopy. The survey scan of ACC-2 revealed C, O, Cu, Co, and Ag with 54.7, 29.9, 1.0, 8.1, and 6.3 atom % respectively (Figure S10a, Supporting Information File 1). The Ag 3d3/2 and Ag 3d5/2 peaks in the
  • high-resolution spectrum lie at 367.9 and 373.9 eV, respectively, with a splitting of 6 eV (Figure 6a), indicating the elemental oxidation state of Ag metal [28][33]. The Co 2p high-resolution spectrum has two primary peaks assigned to 2p1/2 and 2p3/2 at 797.3 and 781.3 eV, respectively, as well as two
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Theoretical investigations of oxygen vacancy effects in nickel-doped zirconia from ab initio XANES spectroscopy at the oxygen K-edge

  • Dick Hartmann Douma,
  • Lodvert Tchibota Poaty,
  • Alessio Lamperti,
  • Stéphane Kenmoe,
  • Abdulrafiu Tunde Raji,
  • Alberto Debernardi and
  • Bernard M’Passi-Mabiala

Beilstein J. Nanotechnol. 2022, 13, 975–985, doi:10.3762/bjnano.13.85

Graphical Abstract
  • is due to the structural disorder induced by the 2Ni dopants and the O vacancies. Furthermore, the analysis of the XANES signatures shows that the oxidation state of nickel atoms changes with the introduction of oxygen vacancies. Our study therefore shows a possibility to control the oxidation state
  • and magnetic order in a typical diluted magnetic oxide. Such a finding may be crucial for spintronics-related applications. Keywords: defect; ligand field; nickel; oxidation state; oxides; spectroscopy; spintronics; vacancy; X-ray absorption; X-ray absorption near-edge structure (XANES); zirconia
  • TM atom usually occupies the Zr site substitutionally. However, due to the difference in the oxidation state of the TM atom and Zr, oxygen vacancies are created to maintain an overall charge neutrality. This is aptly demonstrated in the experimental investigations of Fe-doped zirconia using X-ray
PDF
Album
Full Research Paper
Published 15 Sep 2022

Efficiency of electron cooling in cold-electron bolometers with traps

  • Dmitrii A. Pimanov,
  • Vladimir A. Frost,
  • Anton V. Blagodatkin,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2022, 13, 896–901, doi:10.3762/bjnano.13.80

Graphical Abstract
  • superconductor/ferromagnet hybrid absorbers based on Al/Fe films, as the previous samples. However, there are different oxidation parameters. This work aims to improve our new fit methodology, which takes into account both leakage and Andreev currents and also uses the sixth power of phonon and electron
  • clearly seen since the minimal electron temperatures for 100 and 200 mK are quite close, see Figure 2a. The design of samples C from [7] and OL-G7nn is identical; the only difference is in the normal resistance due to the longer oxidation time of the OL-G7nn sample, which should lead to a thicker
PDF
Album
Full Research Paper
Published 07 Sep 2022

Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants

  • Chao-Wei Huang,
  • Shu-Yu Hsu,
  • Jun-Han Lin,
  • Yun Jhou,
  • Wei-Yu Chen,
  • Kun-Yi Andrew Lin,
  • Yu-Tang Lin and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 882–895, doi:10.3762/bjnano.13.79

Graphical Abstract
  • pollutants, such as adsorption, coagulation, filtration, and chemical and biochemical oxidation [10][11]. Advanced oxidation processes (AOPs) have recently attracted attention due to their simple operation, low cost, and potentially high effectiveness. AOPs are the technologies that use various chemical
  • methods to treat wastewater to purify water quality, such as electrochemical oxidation [12], Fenton method [13], ozonation [14], and photocatalysis [15]. They can achieve a fast reaction rate and extremely high organic removal ratio under average temperature and pressure to remove or decompose organic
  • Fenton method exhibits high oxidation capability and low selectivity for removing most organic substances. It can decompose organic pollutants into smaller organic molecules and generate carbon dioxide, water, and inorganic ions [17]. Generally, the ferrous ion employed in the Fenton reaction is from
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2022

Temperature and chemical effects on the interfacial energy between a Ga–In–Sn eutectic liquid alloy and nanoscopic asperities

  • Yujin Han,
  • Pierre-Marie Thebault,
  • Corentin Audes,
  • Xuelin Wang,
  • Haiwoong Park,
  • Jian-Zhong Jiang and
  • Arnaud Caron

Beilstein J. Nanotechnol. 2022, 13, 817–827, doi:10.3762/bjnano.13.72

Graphical Abstract
  • melt by atomic force spectroscopy. We find that the interfacial energy with Ga–In–Sn eutectic melt is a factor two to eight smaller than its surface tension for all asperities. We find that the interfacial energy is influenced by oxidation of the melt at the SiOx–liquid metal alloy interface, which
PDF
Album
Full Research Paper
Published 23 Aug 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • into IPA and then DI water bath for 1 h. Finally, the graphene on the receiving substrate was blow-dried with N2. Optical microscopy A selective oxidation method was adopted to rapidly identify the as-grown graphene, enabling the direct optical inspection of the graphene domains without the laborious
  • transfer process. Following this method, the Cu substrate with graphene was first oxidized in ambient air on a hot plate at 200 °C for 2 min. The graphene film on the Cu substrate serves as a protection layer, preventing the underlying Cu surface from oxidation because of its high chemical/thermal
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Hierarchical Bi2WO6/TiO2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants

  • Zehao Lin,
  • Zhan Yang and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

Graphical Abstract
  • some Bi2WO6/TiO2 composites, which were employed in various photocatalytic applications, such as degradation of organic pollutants [25], oxidation of methane [24], and production of hydrogen by water splitting [26]. According to these reports, Bi2WO6/TiO2 composites have better photocatalytic
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • depend on the number of layers and the distance between the layers, which can be changed by a variation of the synthesis protocol to achieve a higher electroactive surface area and electrical conductivity. Figure 4A displays a higher oxidation/reduction peak current of Fe2+/3+ redox couple for the
  • absorption of PT through π stacking interaction between aromatic moieties of GO and the benzene ring of PT. In comparison, the highest cathodic/anodic peak was obtained at −0.58 and −0.05 V, respectively, for the electro-reduction/oxidation of PT on ERGO/GCE. The oxidation/reduction potentials of PT on ERGO
  • ) to form its hydroxylamine derivatives (NHOH–PT) involving a four electron-transfer process as shown in Figure 5C [16][17][18][35]. An anodic peak appeared at −0.05 V in the backward segment of the first cycle, which is related to the oxidation of NHOH–PT to a nitroso group (NO–PT). This reversible
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Modeling a multiple-chain emeraldine gas sensor for NH3 and NO2 detection

  • Hana Sustkova and
  • Jan Voves

Beilstein J. Nanotechnol. 2022, 13, 721–729, doi:10.3762/bjnano.13.64

Graphical Abstract
  • conductivity of PANI [2]. PANI can be synthesized chemically or electrochemically, with different results in terms of polymer conductivity [3]. There are three different ground states of oxidation, which leads to a large spectrum of the electric properties of PANI. First, leucoemeraldine, the fully reduced
PDF
Album
Full Research Paper
Published 26 Jul 2022

Experimental and theoretical study of field-dependent spin splitting at ferromagnetic insulator–superconductor interfaces

  • Peter Machon,
  • Michael J. Wolf,
  • Detlef Beckmann and
  • Wolfgang Belzig

Beilstein J. Nanotechnol. 2022, 13, 682–688, doi:10.3762/bjnano.13.60

Graphical Abstract
  • observed in EuS/Al structures [45][46], and the microscopic origin is yet unclear. A possible explanation are misaligned spins at the interface, which are nearly free and therefore gradually aligned by the applied field. The misaligned spins might be the result of partial oxidation of the EuS surface
PDF
Album
Full Research Paper
Published 20 Jul 2022

Revealing local structural properties of an atomically thin MoSe2 surface using optical microscopy

  • Lin Pan,
  • Peng Miao,
  • Anke Horneber,
  • Alfred J. Meixner,
  • Pierre-Michel Adam and
  • Dai Zhang

Beilstein J. Nanotechnol. 2022, 13, 572–581, doi:10.3762/bjnano.13.49

Graphical Abstract
  • , in the AFM image in Figure 2c, one can clearly see the presence of particle aggregates, which were reported to be oxidation products (MoOxSey or MoO3) either through the CVD growth process or through aging in air. Sahoo et al. have reported that the aging of WSe2 flakes by exposure to air produces
  • nanoparticles, which lead to a redshift by 2 to 4 nm in the photoluminescence peak position as compared to the pristine flake. They attributed the observed photoluminescence redshift to the formation of different states or strains in the presence of oxidation nanoparticles [42]. In Figure 2f, we see redshifts
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2022

Influence of thickness and morphology of MoS2 on the performance of counter electrodes in dye-sensitized solar cells

  • Lam Thuy Thi Mai,
  • Hai Viet Le,
  • Ngan Kim Thi Nguyen,
  • Van La Tran Pham,
  • Thu Anh Thi Nguyen,
  • Nguyen Thanh Le Huynh and
  • Hoang Thai Nguyen

Beilstein J. Nanotechnol. 2022, 13, 528–537, doi:10.3762/bjnano.13.44

Graphical Abstract
  • precursor solutions show redox peaks associated with the oxidation/reduction of the precursor ions on the surface of the FTO electrode. In detail, the CV recorded in Na2S solution shows a broad anodic peak around −0.50 V due to the oxidation of S2− ions [25][26]. The CV curve of (NH4)6Mo7O24 solution
  • recorded in the mixture solution showed two oxidation peaks at −0.20 V and −0.50 V attributed to the oxidation of Mo7O246− and S2− ions, respectively. Moreover, a new reduction peak appeared around −1.20 V related to the reduction of MoS42− to form MoS2 as described in Equation 5. This CV behavior is
  • and compared to that of a Pt CE. As can be seen in Figure 5, there are two redox pairs (Ox1/Red1) and (Ox2/Red2). These redox peaks were well defined as the oxidation and reduction of iodide and triiodide (3I− − 2e− → I3− (Ox1), I3− + 2e− → 3I− (Red1) and 2I3− − 2e− → 3I2 (Ox2), 3I2 + 2e− → 2I3− (Red2
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2022

Ethosomal (−)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects

  • Çiğdem Yücel,
  • Gökçe Şeker Karatoprak,
  • Sena Yalçıntaş and
  • Tuğba Eren Böncü

Beilstein J. Nanotechnol. 2022, 13, 491–502, doi:10.3762/bjnano.13.41

Graphical Abstract
  • collagenase and elastase enzymes were investigated compared to those of the solution form. Within the scope of antioxidant activity studies, 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+•) radical scavenging and β-carotene/linoleic acid co-oxidation
  • thus protect cells from oxidation-induced damage by slowing/inhibiting oxidation. They are of critical importance in maintaining the structural integrity of cells/tissues and ensuring the continuity of their functions, which include the ability to prevent side effects of free radicals [4][5][6
  • values compared to the those of the standard (14.2 µg/mL and 1.54 µg/mL, respectively) [32]. However, the β-carotene/linoleic acid co-oxidation inhibitory effects of our ethosomal formulations were different when compared to those of the synthetic antioxidant butylated hydroxytoluene (BHT) used as the
PDF
Album
Full Research Paper
Published 31 May 2022
Other Beilstein-Institut Open Science Activities