Search results

Search for "gap" in Full Text gives 731 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • by measuring the bright optical modes [59]. The target geometry for all fabrication techniques is a particle radius of 45 nm with a gap size of 35 nm. This is the geometry that can reliably fabricated by resist-based electron beam lithography on physically sputtered gold layers (cf. Figure 7a). Later
  • , we will assess the ultimate resolution of He ion beam machining to minimize the gap sizes. The gold flakes of approx. 30 nm thickness were wet-chemically synthesized on glass [60] and transferred to the target substrate via a PMMA-mediated method. On the target glass substrate, a thin layer of gold
  • decay of the plasmonic near field. Hence, a nanopatterning approach that is able to realize sub-10 nm gaps in a reproducible manner is highly desired. He ion beam milling already demonstrated these capabilities in the fabrication of strongly coupled dimers with gap distances of less than 6 nm [62][63
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization

  • Barbora Svitkova,
  • Vlasta Zavisova,
  • Veronika Nemethova,
  • Martina Koneracka,
  • Miroslava Kretova,
  • Filip Razga,
  • Monika Ursinyova and
  • Alena Gabelova

Beilstein J. Nanotechnol. 2021, 12, 270–281, doi:10.3762/bjnano.12.22

Graphical Abstract
  • of CME under different physiological conditions is poorly understood and other studies are required to bridge this gap in our knowledge. Conclusion MNPs coated with bovine serum albumin (BSA-SO-MNPs) and polyethylene glycol (PEG-SO-MNPs), were found to enter the cells by different routes of
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2021

The nanomorphology of cell surfaces of adhered osteoblasts

  • Christian Voelkner,
  • Mirco Wendt,
  • Regina Lange,
  • Max Ulbrich,
  • Martina Gruening,
  • Susanne Staehlke,
  • Barbara Nebe,
  • Ingo Barke and
  • Sylvia Speller

Beilstein J. Nanotechnol. 2021, 12, 242–256, doi:10.3762/bjnano.12.20

Graphical Abstract
  • step edge height not only incorporates the gap between cell and surface of the material but also the local height of the cell itself (Figure 9b). Both parameters may vary independently, and from the three-dimensional cell morphology we can only determine the sum of gap and cell height. At the higher
  • edges (above 1 µm) the step edge slope is greater than 89° and there is hardly any curvature detectable on the cell before its height falls to the substrate level. This could mean that the cell has a pronouncedly undermined configuration, compatible with the gap distance rising at the rim of cells (see
  • corresponds to less than 1/(10 nm) [49][50]. Sometimes we find rugged traces with only 60 nm height. We suspect that those may originate from protein secretions from the extracellular matrix left behind, material that was formerly present within the gap between cell and substrate. Either this protein becomes
PDF
Album
Full Research Paper
Published 12 Mar 2021

Extended iron phthalocyanine islands self-assembled on a Ge(001):H surface

  • Rafal Zuzak,
  • Marek Szymonski and
  • Szymon Godlewski

Beilstein J. Nanotechnol. 2021, 12, 232–241, doi:10.3762/bjnano.12.19

Graphical Abstract
  • ) phthalocyanine (FePc) molecules on a Ge(001):H surface results in monolayer islands extending over hundreds of nanometers and comprising upright-oriented entities. Scanning tunneling spectroscopy reveals a transport gap of 2.70 eV in agreement with other reports regarding isolated FePc molecules. Detailed
  • van der Waals interactions [7], but the lack of a gap results in broadening and shifting of the molecular resonances. In recent years, it has been proposed to add a buffer layer between the metallic substrate and the molecules of interest [8][9]. This approach allows for the decoupling of the
  • scanning tunneling spectroscopy (STS) measurements indicate that the FePc molecules stay intact upon adsorption on the Ge(001):H surface. The gap measured with STS matches well independently recorded data for weekly coupled FePc molecules. Also, it is in good agreement with optical measurements, indicating
PDF
Supp Info
Full Research Paper
Published 05 Mar 2021

Scanning transmission helium ion microscopy on carbon nanomembranes

  • Daniel Emmrich,
  • Annalena Wolff,
  • Nikolaus Meyerbröker,
  • Jörg K. N. Lindner,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 222–231, doi:10.3762/bjnano.12.18

Graphical Abstract
  • with hole diameters from 100 μm to 3 mm lead to acceptance angles between 3 and 98 mrad. Two centering pins ensure that all aperture strips are always mounted at the identical position on the holder. The total size of the holder is limited by the dimensions of the load lock valve as well as by the gap
PDF
Album
Full Research Paper
Published 26 Feb 2021

TiOx/Pt3Ti(111) surface-directed formation of electronically responsive supramolecular assemblies of tungsten oxide clusters

  • Marco Moors,
  • Yun An,
  • Agnieszka Kuc and
  • Kirill Yu. Monakhov

Beilstein J. Nanotechnol. 2021, 12, 203–212, doi:10.3762/bjnano.12.16

Graphical Abstract
  • atoms per each WVI center. As a result, tungsten ions are in tetrahedral coordination environments. W3O9 shows a large energy gap of 3.4 eV which nearly reaches the value of bulk WO3 exhibiting a direct band gap of 3.5 eV [12]. Overall, W3O9 can be seen as the smallest molecular model for bulk WO3
PDF
Album
Full Research Paper
Published 16 Feb 2021

Paper-based triboelectric nanogenerators and their applications: a review

  • Jing Han,
  • Nuo Xu,
  • Yuchen Liang,
  • Mei Ding,
  • Junyi Zhai,
  • Qijun Sun and
  • Zhong Lin Wang

Beilstein J. Nanotechnol. 2021, 12, 151–171, doi:10.3762/bjnano.12.12

Graphical Abstract
  • plated with a metal electrode at the back surface of each layer. When the two dielectric films are vertically separated and periodically contacted due to the application of external forces, a small air gap is formed in the middle and a potential difference is induced between the two electrodes, which can
PDF
Album
Review
Published 01 Feb 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
PDF
Album
Review
Published 25 Jan 2021

Bulk chemical composition contrast from attractive forces in AFM force spectroscopy

  • Dorothee Silbernagl,
  • Media Ghasem Zadeh Khorasani,
  • Natalia Cano Murillo,
  • Anna Maria Elert and
  • Heinz Sturm

Beilstein J. Nanotechnol. 2021, 12, 58–71, doi:10.3762/bjnano.12.5

Graphical Abstract
  • Gaussian distributions (envelope function: black line) shows that the normal distribution of Fattr(PC) (blue line) and Fattr(epoxy) (brown line) do not overlap. Due to this gap, a third intermediate peak Fattr(int) (light blue line) can be unambiguously distinguished. However, the three distributions
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2021

ZnO and MXenes as electrode materials for supercapacitor devices

  • Ameen Uddin Ammar,
  • Ipek Deniz Yildirim,
  • Feray Bakan and
  • Emre Erdem

Beilstein J. Nanotechnol. 2021, 12, 49–57, doi:10.3762/bjnano.12.4

Graphical Abstract
  • band gap in semiconductors. However, this approach has major problems. It is semi-empiric and indirect via the Tauc formula [12]. Therefore, it contains highly erroneous data. Here, the approach is to measure the reflectance data and accordingly plot the Tauc formula as a function of the energy
PDF
Album
Review
Published 13 Jan 2021

Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells

  • Cynthia Kembuan,
  • Helena Oliveira and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 35–48, doi:10.3762/bjnano.12.3

Graphical Abstract
  • -coated UCNPs on RAW 264.7 macrophages, an analysis of the cell cycle dynamics of UCNP@thin_NH2 and UCNP@thick_NH2 samples was carried out. The cell cycle consists of four parts: The rest phase (G0); the first gap phase (G1), in which the cells grow and produce enzymes necessary for cell division; the
  • synthesis phase (S), in which the DNA is replicated; and the second gap phase (G2), in which the cell continues to grow further and to perform processes that are necessary for mitosis [74]. Both silica-coated samples show a significant increase in the G0/G1 phase compared to control cells (not treated with
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2021

Kondo effects in small-bandgap carbon nanotube quantum dots

  • Patryk Florków,
  • Damian Krychowski and
  • Stanisław Lipiński

Beilstein J. Nanotechnol. 2020, 11, 1873–1890, doi:10.3762/bjnano.11.169

Graphical Abstract
  • prediction, one third of randomly selected nanotubes should be metallic. Experimentally, the fraction of nanotubes showing metallic behavior is very small (≤1% [41]). Even in nominally metallic tubes a narrow gap of the order of 10 meV is usually observed. These systems are sometimes called “nearly metallic
  • equilibrium energy gap is 37 meV·nm2 [9][63]. ΔO and ΔZ stand for orbital and Zeeman parameters of spin–orbit coupling in the form: where sz is the spin component along the nanotube axis and lx is the Pauli matrix in the A–B graphene sublattice space. ΔZ = −δcos(3Θ)/D and ΔO = δ/D [63]. Various theoretical
  • ⟩ degenerate in a magnetic field of Bo = |Δe|/μo ≈ 0.48 T. In small-bandgap nanotubes, the field dependencies of degeneracy lines are determined not only by spin–orbit parameters and orbital and spin magnetic moments, but also by the gap and the gate voltage. This is reflected in the nonlinear gate
PDF
Album
Full Research Paper
Published 23 Dec 2020

Scanning transmission imaging in the helium ion microscope using a microchannel plate with a delay line detector

  • Eduardo Serralta,
  • Nico Klingner,
  • Olivier De Castro,
  • Michael Mousley,
  • Santhana Eswara,
  • Serge Duarte Pinto,
  • Tom Wirtz and
  • Gregor Hlawacek

Beilstein J. Nanotechnol. 2020, 11, 1854–1864, doi:10.3762/bjnano.11.167

Graphical Abstract
  • future ToF applications. In the present form of the detector, we use two MCPs, each with a 50 mm by 50 mm square active area, stacked and rotated by 90° to each other with a gap of 100 μm between them. The first MCP has a magnesium oxide coating to increase the SE yield [37]. The MCP pores have a
PDF
Album
Full Research Paper
Published 11 Dec 2020

Self-standing heterostructured NiCx-NiFe-NC/biochar as a highly efficient cathode for lithium–oxygen batteries

  • Shengyu Jing,
  • Xu Gong,
  • Shan Ji,
  • Linhui Jia,
  • Bruno G. Pollet,
  • Sheng Yan and
  • Huagen Liang

Beilstein J. Nanotechnol. 2020, 11, 1809–1821, doi:10.3762/bjnano.11.163

Graphical Abstract
  • that the overpotential of NiFe-PBA/PP-900 in the Li–O2 cell was comparable to data reported in the literature, as shown in Table 1. An ideal Li–O2 cell has a low charge voltage plateau and a high discharge voltage plateau. The gap between charge and discharge voltage plateaus of the Li–O2 battery with
PDF
Album
Full Research Paper
Published 02 Dec 2020

High-responsivity hybrid α-Ag2S/Si photodetector prepared by pulsed laser ablation in liquid

  • Raid A. Ismail,
  • Hanan A. Rawdhan and
  • Duha S. Ahmed

Beilstein J. Nanotechnol. 2020, 11, 1596–1607, doi:10.3762/bjnano.11.142

Graphical Abstract
  • (SEM), energy-dispersive X-ray spectroscopy (EDX), and UV–vis spectroscopy. The optical absorption decreased and the optical energy gap of α-Ag2S increased from 1.5 to 2 eV after the CTAB surfactant was added to the Tu solution. XRD studies revealed that the synthesized Ag2S NPs were polycrystalline
  • narrow direct optical energy gap, which ranges from 0.96 to 1.1 eV at room temperature. Ag2S has good chemical stability, low toxicity, and high optical absorption [4]. According to the growth temperature, Ag2S has three phases: monoclinic α-Ag2S (acanthite), β-Ag2S (argentite), and the stable γ-Ag2S [5
  • with CTAB due to quantum size effects [31]. The absorption of the Ag2S NPs decreased sharply above λ = 302 nm for Ag2S prepared in pure Tu solution, while it decreased slowly for Ag2S prepared in Tu with CTAB, indicating different absorption edges. The optical band gap of the Ag2S NPs prepared in pure
PDF
Album
Full Research Paper
Published 21 Oct 2020

Detecting stable adsorbates of (1S)-camphor on Cu(111) with Bayesian optimization

  • Jari Järvi,
  • Patrick Rinke and
  • Milica Todorović

Beilstein J. Nanotechnol. 2020, 11, 1577–1589, doi:10.3762/bjnano.11.140

Graphical Abstract
  • resemble the HOMO and LUMO of an isolated camphor molecule and are at −1.0 and 2.9 eV, respectively, with an energy gap of 3.9 eV. This indicates physisorption between the molecule and the substrate in class Hy. Discussion With the low-dimensional studies of molecular translation (1D and 2D) and rotation
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2020

Fabrication of nano/microstructures for SERS substrates using an electrochemical method

  • Jingran Zhang,
  • Tianqi Jia,
  • Xiaoping Li,
  • Junjie Yang,
  • Zhengkai Li,
  • Guangfeng Shi,
  • Xinming Zhang and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2020, 11, 1568–1576, doi:10.3762/bjnano.11.139

Graphical Abstract
  • factor of R6G molecules on the pyramid structure was about 105. Wu et al. [26] machined nanohole array structures using EBL and lift-off methods. The diameter of the nanoholes ranged from 90 to 585 nm, and the gap between adjacent nanoholes ranged from 125 to 585 nm. An enhancement factor of 8 × 106 was
  • ] manufactured graphene/Au nanodot array structures, which were used as SERS substrates. The diameter and gap distribution ranged from 30 to 42 nm and from 20 to 30 nm, respectively. In addition, a detection level of 10−9 mol·L−1 for R6G molecules was obtained using the aforementioned SERS substrates. Choi et al
PDF
Album
Full Research Paper
Published 16 Oct 2020

Optically and electrically driven nanoantennas

  • Monika Fleischer,
  • Dai Zhang and
  • Alfred J. Meixner

Beilstein J. Nanotechnol. 2020, 11, 1542–1545, doi:10.3762/bjnano.11.136

Graphical Abstract
  • , Germany 10.3762/bjnano.11.136 Keywords: active plasmonics; electrically driven nanoantenna; gap antenna; nanoantenna; nanofabrication; nanospectroscopy; nano-photonics; optical antenna; second harmonic generation; sensing; scanning tip; surface-enhanced infrared absorption (SEIRA); surface-enhanced Raman
  • frequencies to a traveling electromagnetic wave that can be observed in the far field. Optical antennas are key elements in nano-optics, bridging the gap between the dimension of an optical wavelength (several hundreds of nanometers) and the size of elementary quantum emitters such as single atoms, molecules
  • integration, device-to-device communication, and bilateral transduction between electrons and photons [26]. An optical gap antenna typically consists of two nanostructures with a nanometer gap in between. Optical excitation induces a coupled plasmon oscillation along the two antenna parts, which can lead to
PDF
Editorial
Published 07 Oct 2020

Design of V-shaped cantilevers for enhanced multifrequency AFM measurements

  • Mehrnoosh Damircheli and
  • Babak Eslami

Beilstein J. Nanotechnol. 2020, 11, 1525–1541, doi:10.3762/bjnano.11.135

Graphical Abstract
  • carried out at a setpoint around 60%, the tip–sample gap has been always higher that than the intermolecular distance causing the net forces to be attractive. Different tip–sample gaps can change the energies of the cantilever in different eigenmodes for bimodal AFM imaging. This can consequently affect
PDF
Album
Supp Info
Full Research Paper
Published 06 Oct 2020

Helium ion microscope – secondary ion mass spectrometry for geological materials

  • Matthew R. Ball,
  • Richard J. M. Taylor,
  • Joshua F. Einsle,
  • Fouzia Khanom,
  • Christelle Guillermier and
  • Richard J. Harrison

Beilstein J. Nanotechnol. 2020, 11, 1504–1515, doi:10.3762/bjnano.11.133

Graphical Abstract
  • fill a critical length-scale gap in the field of microanalysis, with resolutions second only to the atom probe, but with field of views of the order of micrometres, allowing for high resolution over a relatively large sample area. The HIM–SIMS is therefore a useful tool for a wide range of geological
PDF
Album
Full Research Paper
Published 02 Oct 2020

Controlling the electronic and physical coupling on dielectric thin films

  • Philipp Hurdax,
  • Michael Hollerer,
  • Larissa Egger,
  • Georg Koller,
  • Xiaosheng Yang,
  • Anja Haags,
  • Serguei Soubatch,
  • Frank Stefan Tautz,
  • Mathias Richter,
  • Alexander Gottwald,
  • Peter Puschnig,
  • Martin Sterrer and
  • Michael G. Ramsey

Beilstein J. Nanotechnol. 2020, 11, 1492–1503, doi:10.3762/bjnano.11.132

Graphical Abstract
  • and below the Fermi level, with a large gap between a singly occupied molecular orbital (SOMO) and a singly unoccupied molecular orbital (SUMO). In addition, PT confirms an integer charge transfer, which would be expected to result from tunneling [15]. However, using the ability to tune the MgO(100
  • results. On some preparations, no molecular emissions were observed in the MgO bandgap, whereas on others, distinctive features appeared in the gap at 0.5 and 2.5 eV below the Fermi level. The momentum maps of these molecular emissions (Figure 3) can be unambiguously assigned to the orbitals and the
  • , indicated by the crosses in Figure 3, are displayed in Figure 4b. For ΦMgO greater than 2.8 eV, no significant orbital emissions are found in the gap, implying that no charged molecules are present on the surface. For ΦMgO below 2.8 eV, molecular emissions arise at 2.52 and 0.55 eV with respect to EF. Their
PDF
Album
Full Research Paper
Published 01 Oct 2020

A wideband cryogenic microwave low-noise amplifier

  • Boris I. Ivanov,
  • Dmitri I. Volkhin,
  • Ilya L. Novikov,
  • Dmitri K. Pitsun,
  • Dmitri O. Moskalev,
  • Ilya A. Rodionov,
  • Evgeni Il’ichev and
  • Aleksey G. Vostretsov

Beilstein J. Nanotechnol. 2020, 11, 1484–1491, doi:10.3762/bjnano.11.131

Graphical Abstract
  • minimum qubit energy gap of Δ = 6.625 GHz. The qubit spectrum as a function of the current is shown in Figure 7. Here, the transition |g⟩–|e⟩ is shown. Conclusion The characteristics of a low-noise cryogenic microwave amplifier and the measurement of a superconducting X-mon qubit are shown. The amplifier
PDF
Album
Full Research Paper
Published 30 Sep 2020

Self-assembly and spectroscopic fingerprints of photoactive pyrenyl tectons on hBN/Cu(111)

  • Domenik M. Zimmermann,
  • Knud Seufert,
  • Luka Ðorđević,
  • Tobias Hoh,
  • Sushobhan Joshi,
  • Tomas Marangoni,
  • Davide Bonifazi and
  • Willi Auwärter

Beilstein J. Nanotechnol. 2020, 11, 1470–1483, doi:10.3762/bjnano.11.130

Graphical Abstract
  • . Scanning tunneling microscopy (STM) and spectroscopy (STS) measurements of the pyrene derivatives adsorbed on a Cu(111)-supported hexagonal boron nitride (hBN) decoupling layer provided access to spatially and energetically resolved molecular electronic states. We demonstrate that the pyrene electronic gap
  • experiments, the photophysical characterization in solution, and the DFT modeling (in vacuum and with toluene solvation) evidence a reduction of the molecular gap when proceeding from di- to tetrasubstituted pyrene derivatives, but with effects that are different depending on the chemical surrounding. Results
  • that governed the shrinking of the HOMO–LUMO gap upon the derivatization with pyridin-4-ylethynyl groups. The picture of the orbital interactions was similar in the di- and tetrapyrenyl derivatives, with the HOMO–LUMO gap being influenced mostly by the number of substituents. The molecular gap of the
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2020

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • from light irradiation to excite and mobilize an electron from the valence band to the conduction band, leaving a highly reactive gap (H+). This zone becomes a ROS source as it interacts with H2O or OH− that surrounds the nanoparticles [152]. In addition to molecules such as ascorbic acid, carotene
PDF
Album
Review
Published 25 Sep 2020

Impact of fluorination on interface energetics and growth of pentacene on Ag(111)

  • Qi Wang,
  • Meng-Ting Chen,
  • Antoni Franco-Cañellas,
  • Bin Shen,
  • Thomas Geiger,
  • Holger F. Bettinger,
  • Frank Schreiber,
  • Ingo Salzmann,
  • Alexander Gerlach and
  • Steffen Duhm

Beilstein J. Nanotechnol. 2020, 11, 1361–1370, doi:10.3762/bjnano.11.120

Graphical Abstract
  • to EF (marked with an asterisk) could be ascribed to a charge transfer from the substrate [28]. The transport gap of PEN is 2.20 eV [88]. Similar transport gaps can be expected for PFP and F4PEN, which puts the Fermi level rather close to the LUMO. Moreover, in the vicinity of a metal surface, the
  • gap has been found to decrease, and the molecular energy levels become broadened [1][89][90], which is expected to promote the charge transfer to the LUMO [7][8]. The positions of the HOMO levels of molecular monolayers on metal substrates depend also on the magnitude of the above mentioned screening
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2020
Other Beilstein-Institut Open Science Activities