Search results

Search for "dynamics" in Full Text gives 513 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Construction of a 0D/1D composite based on Au nanoparticles/CuBi2O4 microrods for efficient visible-light-driven photocatalytic activity

  • Weilong Shi,
  • Mingyang Li,
  • Hongji Ren,
  • Feng Guo,
  • Xiliu Huang,
  • Yu Shi and
  • Yubin Tang

Beilstein J. Nanotechnol. 2019, 10, 1360–1367, doi:10.3762/bjnano.10.134

Graphical Abstract
  • /CBO composite. (a) TEM and (b) HRTEM images of the 2.5 wt % Au/CBO composite. XPS high-resolution spectra of the 2.5 wt % Au/CBO composite: (a) Au 4f; (b) Cu 2p; (c) Bi 4f and (d) O 1s. (a) TC degradation dynamics under visible-light irradiation. (b) Changes of the characteristic absorption of TC when
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2019

Nanoscale spatial mapping of mechanical properties through dynamic atomic force microscopy

  • Zahra Abooalizadeh,
  • Leszek Josef Sudak and
  • Philip Egberts

Beilstein J. Nanotechnol. 2019, 10, 1332–1347, doi:10.3762/bjnano.10.132

Graphical Abstract
  • dynamics without any normalization, it can be seen from Figure 10 that the assumption of the viscous element resulted in erroneous determination of the elastic modulus on a graphite terrace. Influence of applied normal force As discussed earlier, the measured amplitude response using FMM can be influenced
  • excluded as a contributing factor to elastic modulus maps produced using dynamic AFM. CR-AFM showed a larger variation in amplitude over the step edges compared with FMM AFM. The quantification of the elastic modulus on the HOPG terrace was performed using FMM AFM and through analysis of the dynamics of
PDF
Album
Full Research Paper
Published 03 Jul 2019

Green fabrication of lanthanide-doped hydroxide-based phosphors: Y(OH)3:Eu3+ nanoparticles for white light generation

  • Tugrul Guner,
  • Anilcan Kus,
  • Mehmet Ozcan,
  • Aziz Genc,
  • Hasan Sahin and
  • Mustafa M. Demir

Beilstein J. Nanotechnol. 2019, 10, 1200–1210, doi:10.3762/bjnano.10.119

Graphical Abstract
  • atoms slightly enlarges (0.5%) the bonds between neighboring atoms belonging to the Y(OH)3 crystal. Regarding the stability or robustness of Eu dopants in the host material, molecular dynamics calculations show that Eu atoms, covalently attached to the host lattice with a binding energy of 2.34 eV
PDF
Album
Full Research Paper
Published 07 Jun 2019

Fe3O4 nanoparticles as a saturable absorber for giant chirped pulse generation

  • Ji-Shu Liu,
  • Xiao-Hui Li,
  • Abdul Qyyum,
  • Yi-Xuan Guo,
  • Tong Chai,
  • Hua Xu and
  • Jie Jiang

Beilstein J. Nanotechnol. 2019, 10, 1065–1072, doi:10.3762/bjnano.10.107

Graphical Abstract
  • fixed fundamental repetition rate (RPR) of 4.63 MHz, whose spectra and pulse dynamics are different from the mode-locked lasers reported previously. It is demonstrated that the proposed fiber laser based on a FONP SA operates in the giant-chirp mode-locked regime. The most important result is the
PDF
Album
Full Research Paper
Published 20 May 2019

Tailoring the stability/aggregation of one-dimensional TiO2(B)/titanate nanowires using surfactants

  • Atiđa Selmani,
  • Johannes Lützenkirchen,
  • Kristina Kučanda,
  • Dario Dabić,
  • Engelbert Redel,
  • Ida Delač Marion,
  • Damir Kralj,
  • Darija Domazet Jurašin and
  • Maja Dutour Sikirić

Beilstein J. Nanotechnol. 2019, 10, 1024–1037, doi:10.3762/bjnano.10.103

Graphical Abstract
  • , there are not many studies where a comprehensive experimental and theoretical approach was applied. The most recent one is by Tagavifar et al. [57] where the pH effect on anionic surfactant adsorption on limestone was studied in order to investigate the dynamics of surfactant adsorption. To the best of
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2019

In situ AFM visualization of Li–O2 battery discharge products during redox cycling in an atmospherically controlled sample cell

  • Kumar Virwani,
  • Younes Ansari,
  • Khanh Nguyen,
  • Francisco José Alía Moreno-Ortiz,
  • Jangwoo Kim,
  • Maxwell J. Giammona,
  • Ho-Cheol Kim and
  • Young-Hye La

Beilstein J. Nanotechnol. 2019, 10, 930–940, doi:10.3762/bjnano.10.94

Graphical Abstract
  • scanned on the glassy carbon surface, vivid information about the dynamics of deposit formation during discharge and dissolution during recharge is visualized in Movie 2 (Supporting Information File 3). Each of the nine areas scanned in a spiral pattern shows the similar behavior of the sudden appearance
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2019

Fabrication of silver nanoisland films by pulsed laser deposition for surface-enhanced Raman spectroscopy

  • Bogusław Budner,
  • Mariusz Kuźma,
  • Barbara Nasiłowska,
  • Bartosz Bartosewicz,
  • Malwina Liszewska and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2019, 10, 882–893, doi:10.3762/bjnano.10.89

Graphical Abstract
  • shape. At a temperature of 340 ± 3 °C, the islands that are formed have a clearly cubic shape (comparing Figure 2F to 2H and 2G to 2I) which is related to different dynamics of the layer growth process and translates into their higher crystallization. The dimensions of the silver nanoislands are
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2019

Co-doped MnFe2O4 nanoparticles: magnetic anisotropy and interparticle interactions

  • Bagher Aslibeiki,
  • Parviz Kameli,
  • Hadi Salamati,
  • Giorgio Concas,
  • Maria Salvador Fernandez,
  • Alessandro Talone,
  • Giuseppe Muscas and
  • Davide Peddis

Beilstein J. Nanotechnol. 2019, 10, 856–865, doi:10.3762/bjnano.10.86

Graphical Abstract
  • . A dipolar-based interaction regime is detected for all samples; in addition, the intensity of the interactions shows a possible relation with the single particle anisotropy. Finally, the sample with the strongest interaction regime shows a superspin glass state confirmed by memory effect dynamics
  • . Keywords: cobalt doping; collective dynamics; ferrite nanoparticles; interparticle interactions; magnetic properties; Introduction A strong scientific interest has driven the fundamental research on magnetic nanoparticles in the last decades [1][2][3][4], with interest constantly fed by their wide range
  • . Magnetization dynamics All of the Co-doped samples showed irreversibility in the FC and ZFC curves (Supporting Information File 1, Figure S2). It is well known that in ensembles of magnetic nanoparticles, the FC curve diverges from the ZFC curve, and the system shows magnetic irreversibility behaviour below a
PDF
Album
Supp Info
Full Research Paper
Published 12 Apr 2019

The effect of translation on the binding energy for transition-metal porphyrines adsorbed on Ag(111) surface

  • Luiza Buimaga-Iarinca and
  • Cristian Morari

Beilstein J. Nanotechnol. 2019, 10, 706–717, doi:10.3762/bjnano.10.70

Graphical Abstract
  • a qualitative picture of the dynamics of the adsorbate on the surface as well as hints on the self-assembly and formation of covalently bonded structures. Differences in binding energies are an indicator of how easy the molecules change their positions on the surface in order to produce self
  • understanding the whole process. Since the energy depends almost linearly on the position for TM = (Cr, Fe, Co and Ni) it is reasonable to assume that in these cases the process will follow similar dynamics. For VPP, and partially for MnPP, a larger gap occurs between the “i” and “h” position, suggesting that
  • close to those) to another. We thus estimate the repulsion energy of the dipoles by taking into account the size of the molecule (about 10 Å) and the value of 4.5 Debye (maximum value in Figure 3). The result is close to kT/2. Hence, it could play a role in the molecule dynamics on the surface at room
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2019

Self-assembly and wetting properties of gold nanorod–CTAB molecules on HOPG

  • Imtiaz Ahmad,
  • Floor Derkink,
  • Tim Boulogne,
  • Pantelis Bampoulis,
  • Harold J. W. Zandvliet,
  • Hidayat Ullah Khan,
  • Rahim Jan and
  • E. Stefan Kooij

Beilstein J. Nanotechnol. 2019, 10, 696–705, doi:10.3762/bjnano.10.69

Graphical Abstract
  • drying on a nonwetting highly ordered pyrolytic graphite (HOPG) surface have been investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Although SEM did not reveal coverage of CTAB layers, AFM showed not only CTAB assembly, but also the dynamics of the process on the
  • [57][58]. This discrepancy suggests that the molecules do not adsorb in a conformation perpendicular to the substrate. Instead, they may be compressed or, more likely, tilted with respect to the surface normal. Stripe dynamics Sequentially acquired AFM images, Figure 5, display interesting dynamics of
  • ) Sequential AFM images depicting the dynamics of self-assembled CTAB stripes on terraces; for reference, a defect which acts as a vacancy nucleation site is indicated by the white arrows. (E) After the large stripes have completely disappeared, a corrugation of the surface is still observed; the inset depicts
PDF
Album
Full Research Paper
Published 13 Mar 2019

Review of time-resolved non-contact electrostatic force microscopy techniques with applications to ionic transport measurements

  • Aaron Mascaro,
  • Yoichi Miyahara,
  • Tyler Enright,
  • Omur E. Dagdeviren and
  • Peter Grütter

Beilstein J. Nanotechnol. 2019, 10, 617–633, doi:10.3762/bjnano.10.62

Graphical Abstract
  • understanding local charge dynamics and composition of numerous materials with applications across many fields including energy generation and storage. Capturing time-resolved dynamic processes at ever-decreasing time and length scales has become of increased interest in recent years due to the importance of
  • , which is routinely employed to measure ultrafast dynamics of condensed matter systems using a variety of pulsed light sources [32][33][34][35]. In some systems the probe pulse is not even necessary as the pump both excites the response being investigated and engages the probing behaviour simultaneously
  • . One example of this is in time-resolved Kelvin probe force microscopy (KPFM) experiments that measure the surface photovoltage of a sample as a function of time after a light source is pulsed. This was first implemented by Takihara et al. to measure the photovoltage dynamics of a sample at time scales
PDF
Album
Supp Info
Review
Published 01 Mar 2019

Coexisting spin and Rabi oscillations at intermediate time regimes in electron transport through a photon cavity

  • Vidar Gudmundsson,
  • Hallmann Gestsson,
  • Nzar Rauf Abdullah,
  • Chi-Shung Tang,
  • Andrei Manolescu and
  • Valeriu Moldoveanu

Beilstein J. Nanotechnol. 2019, 10, 606–616, doi:10.3762/bjnano.10.61

Graphical Abstract
  • , into the central system and the right current, IR, out of it. The transport current can give us further insight into the dynamics in the system. It is displayed in Figure 5 for the same parameters as were used in Figure 4. The upper panel displays the current for the x-polarized cavity photon field and
  • into the dynamics in the system. We remember, as is seen in Figure 2 that and have opposite z-components of the spin as do the states and respectively, and we have no spin–orbit interaction in the system. In the upper panels of the figure (Figure 9) we see crossings of the occupation of states with
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2019

Mo-doped boron nitride monolayer as a promising single-atom electrocatalyst for CO2 conversion

  • Qianyi Cui,
  • Gangqiang Qin,
  • Weihua Wang,
  • Lixiang Sun,
  • Aijun Du and
  • Qiao Sun

Beilstein J. Nanotechnol. 2019, 10, 540–548, doi:10.3762/bjnano.10.55

Graphical Abstract
  • electrocatalyst for nitrogen fixation with a very small overpotential of only 0.19 V. In addition, through molecular dynamics modeling, they demonstrated that Mo-doped BN synthesized in acidic conditions is stable at high temperature (500 K) [45]. In our previous reports, we have studied BN nanomaterials used as
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2019

Choosing a substrate for the ion irradiation of two-dimensional materials

  • Egor A. Kolesov

Beilstein J. Nanotechnol. 2019, 10, 531–539, doi:10.3762/bjnano.10.54

Graphical Abstract
  • taking place considering the yield, one should refer to the solid curves for sputtering in Figure 1 within the range specified in Table 1. The results presented in Table 1 are in agreement with molecular dynamics simulations on the subject [1]. It should be noted that the sputtered substrate atoms can
  • active substrate participation in the defect formation in 2D materials, as well as a similar scale and energy-dependent dynamics of the effect. However, the most useful comparison can be performed with the results given in a recent work [31] for graphene, where it underwent ion irradiation both when free
PDF
Album
Full Research Paper
Published 22 Feb 2019

Mechanical and thermodynamic properties of Aβ42, Aβ40, and α-synuclein fibrils: a coarse-grained method to complement experimental studies

  • Adolfo B. Poma,
  • Horacio V. Guzman,
  • Mai Suan Li and
  • Panagiotis E. Theodorakis

Beilstein J. Nanotechnol. 2019, 10, 500–513, doi:10.3762/bjnano.10.51

Graphical Abstract
  • Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam 10.3762/bjnano.10.51 Abstract We perform molecular dynamics simulation on several relevant biological
  • experimental observations. Keywords: β-amyloid; atomic force microscopy, mechanical deformation; molecular simulation; proteins; α-synuclein; Introduction All-atom molecular dynamics (MD) simulations have been employed to study the physical and chemical behaviour of the fundamental biomolecules of life (e.g
  • native state, P0, as a function of the temperature T. We define the temperature of thermodynamic stability, Tf (folding temperature in our model), for the case P0 = 1/2. To study the thermodynamic properties of the biological fibrils, we carried out overdamped Langevin dynamics simulations. The
PDF
Album
Full Research Paper
Published 19 Feb 2019

Biocompatible organic–inorganic hybrid materials based on nucleobases and titanium developed by molecular layer deposition

  • Leva Momtazi,
  • Henrik H. Sønsteby and
  • Ola Nilsen

Beilstein J. Nanotechnol. 2019, 10, 399–411, doi:10.3762/bjnano.10.39

Graphical Abstract
  • , compared to uncoated glass coverslips using alamarBlue® proliferation assay [23]. The current contribution describes the growth of the films based on nucleobases in more detail. Results The growth dynamics of all three systems were investigated using in situ QCM, as shown in Figure 2 and Figure 3 and
  • mode dominates the overall film growth. Such a CVD contribution is limited when a practical growth mode is considered sufficient. When highlighting the overall growth dynamics, rather long pulse and purge times for all precursors are used. In this case, a pulse scheme of 7 s TTIP, 10 s purge, 15 s
  • and Ti-L-aspartic acid films where a contact angle of approximately 30° was measured on the surface of these materials in our previous study [22]. The growth dynamics of the individual systems were further investigated by adding an extra water pulse after the organic precursor to shed light on the
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

Sub-wavelength waveguide properties of 1D and surface-functionalized SnO2 nanostructures of various morphologies

  • Venkataramana Bonu,
  • Binaya Kumar Sahu,
  • Arindam Das,
  • Sankarakumar Amirthapandian,
  • Sandip Dhara and
  • Harish C. Barshilia

Beilstein J. Nanotechnol. 2019, 10, 379–388, doi:10.3762/bjnano.10.37

Graphical Abstract
  • section. OTS molecules are more reactive with –OH groups on the metal oxide surfaces [31][32][33]. Molecular dynamics simulations revealed that the OB site of SnO2 was the most preferable site for the formation of –OH groups [34][35]. Thus, OTS binds dominantly at OB sites over the OP sites of SnO2 NPs
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2019

Transport signatures of an Andreev molecule in a quantum dot–superconductor–quantum dot setup

  • Zoltán Scherübl,
  • András Pályi and
  • Szabolcs Csonka

Beilstein J. Nanotechnol. 2019, 10, 363–378, doi:10.3762/bjnano.10.36

Graphical Abstract
  • spectrum and the dynamics. Several previous works on similar systems completely neglect the possibility of EC processes [7][52][53][54][71][72]. In other works EC coupling is taken into account [44][61][64][65][67][68][73], but in most of the cases it is defined as a constant coupling term that is
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2019

Intuitive human interface to a scanning tunnelling microscope: observation of parity oscillations for a single atomic chain

  • Sumit Tewari,
  • Jacob Bakermans,
  • Christian Wagner,
  • Federica Galli and
  • Jan M. van Ruitenbeek

Beilstein J. Nanotechnol. 2019, 10, 337–348, doi:10.3762/bjnano.10.33

Graphical Abstract
  • –machine augmented system in which the operator and the machine are connected by a real-time simulation. Here, a 3D motion control system is integrated with an ultra-high vacuum (UHV) low-temperature scanning tunnelling microscope (STM). Moreover, we coupled a real-time molecular dynamics (MD) simulation
  • and combined it with a molecular dynamics (MD) simulator that simulates in real-time the manipulation process going on in the STM. The MD simulation not only provides information about the atomic scale structure of the junction, but also serves as a visual feedback to the operator in real-time who can
  • the operator does not use any feedback from the current while the manipulation is executed and thus cannot influence the trajectory in order to respond to the complex dynamics of the tip/adatom/surface system during the manipulation. In contrast, in our setup the operator receives a continuous visual
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2019

Heating ability of magnetic nanoparticles with cubic and combined anisotropy

  • Nikolai A. Usov,
  • Mikhail S. Nesmeyanov,
  • Elizaveta M. Gubanova and
  • Natalia B. Epshtein

Beilstein J. Nanotechnol. 2019, 10, 305–314, doi:10.3762/bjnano.10.29

Graphical Abstract
  • ][31] governs the dynamics of the unit magnetization vector of the ith single-domain nanoparticle of the cluster where γ is the gyromagnetic ratio, κ is phenomenological damping parameter, γ1 = γ/(1+κ2), is the effective magnetic field and is the thermal field. The effective magnetic field acting on
  • on the behavior of fractal clusters of nanoparticles arising often within the biological cells or in the intracellular space [13][24][25]. This can be done using the stochastic LL equation [22][28][29][30][31] that describes the dynamics of the particle magnetic moments taking into account both the
PDF
Album
Full Research Paper
Published 29 Jan 2019

Electromagnetic analysis of the lasing thresholds of hybrid plasmon modes of a silver tube nanolaser with active core and active shell

  • Denys M. Natarov,
  • Trevor M. Benson and
  • Alexander I. Nosich

Beilstein J. Nanotechnol. 2019, 10, 294–304, doi:10.3762/bjnano.10.28

Graphical Abstract
  • -field with the active regions. To obtain a fuller vision of the dynamics of LEP eigenvalues on the plane (λ, γ) for the plasmonic silver nanotube laser, we have computed their trajectories for a device with an active core radius a = 30 nm and an active shell thickness d = 10 nm as the tube wall
PDF
Album
Full Research Paper
Published 28 Jan 2019

Mechanism of silica–lysozyme composite formation unravelled by in situ fast SAXS

  • Tomasz M. Stawski,
  • Daniela B. van den Heuvel,
  • Rogier Besselink,
  • Dominique J. Tobler and
  • Liane G. Benning

Beilstein J. Nanotechnol. 2019, 10, 182–197, doi:10.3762/bjnano.10.17

Graphical Abstract
  • close to that of the protein molecule [22][53]. Su et al. [54] found that at small surface coverage the lysozyme attaches to silica NPs in a side on orientation, and recently the molecular dynamics simulations by Hildebrand et al. [55] also further confirmed that the side-on orientation of lysozyme with
PDF
Album
Supp Info
Full Research Paper
Published 14 Jan 2019

Sputtering of silicon nanopowders by an argon cluster ion beam

  • Xiaomei Zeng,
  • Vasiliy Pelenovich,
  • Zhenguo Wang,
  • Wenbin Zuo,
  • Sergey Belykh,
  • Alexander Tolstogouzov,
  • Dejun Fu and
  • Xiangheng Xiao

Beilstein J. Nanotechnol. 2019, 10, 135–143, doi:10.3762/bjnano.10.13

Graphical Abstract
  • under-cosine shape, in other words, the atoms are sputtered mostly in the lateral direction [5]. This effect results in another prominent phenomenon called surface smoothing. Using molecular dynamics (MD) and Monte Carlo simulations it has been shown that the effect of the cluster impact depends on the
  • nanowires. There are many molecular dynamics simulations using the collision cascade theory and, at the same time, only a few experimental studies on the interaction of monomer and cluster projectiles with nanodimensional systems. Using a MD simulation, Kissel et al. [16] have studied the effect of the
PDF
Album
Full Research Paper
Published 10 Jan 2019

Scanning probe microscopy for energy-related materials

  • Rüdiger Berger,
  • Benjamin Grévin,
  • Philippe Leclère and
  • Yi Zhang

Beilstein J. Nanotechnol. 2019, 10, 132–134, doi:10.3762/bjnano.10.12

Graphical Abstract
  • dynamics in order to study charge carrier lifetimes. This contribution focuses on a mathematical model to calculate time constants [3]. Such a model is critical for understanding the photophysics at the nanometer scale. Amelie Axt and co-workers discuss the applicability and reliability of different ways
PDF
Editorial
Published 10 Jan 2019

A comparison of tarsal morphology and traction force in the two burying beetles Nicrophorus nepalensis and Nicrophorus vespilloides (Coleoptera, Silphidae)

  • Liesa Schnee,
  • Benjamin Sampalla,
  • Josef K. Müller and
  • Oliver Betz

Beilstein J. Nanotechnol. 2019, 10, 47–61, doi:10.3762/bjnano.10.5

Graphical Abstract
  • secretion in N. nepalensis compared with that of N. vespilloides [3]. Since under the dynamics of friction regimes, the generated shear stress is largely determined by the viscosity of the fluid [46], such higher viscosities might be responsible for the observed higher friction forces of N. nepalensis on
PDF
Album
Full Research Paper
Published 04 Jan 2019
Other Beilstein-Institut Open Science Activities