Search results

Search for "CdSe" in Full Text gives 73 result(s) in Beilstein Journal of Nanotechnology.

Aero-ZnS prepared by physical vapor transport on three-dimensional networks of sacrificial ZnO microtetrapods

  • Veaceslav Ursaki,
  • Tudor Braniste,
  • Victor Zalamai,
  • Emil Rusu,
  • Vladimir Ciobanu,
  • Vadim Morari,
  • Daniel Podgornii,
  • Pier Carlo Ricci,
  • Rainer Adelung and
  • Ion Tiginyanu

Beilstein J. Nanotechnol. 2024, 15, 490–499, doi:10.3762/bjnano.15.44

Graphical Abstract
  • metal oxides [1][9][10]. Metal oxides include TiO2, ZnO, Al2O3, WO3, Cu2O, CuO, SnO2, Fe2O3, Bi2O3, Ag3PO4, BiWO4, BiVO4, BiFeO3, and SeTiO3, while chalcogenides are represented by ZnS, ZnSe, CdS, PbS, CdSe, SnS2, and Bi2S3. Among porous semiconductor materials, recently developed super-lightweight ones
PDF
Album
Full Research Paper
Published 02 May 2024

Multiscale modelling of biomolecular corona formation on metallic surfaces

  • Parinaz Mosaddeghi Amini,
  • Ian Rouse,
  • Julia Subbotina and
  • Vladimir Lobaskin

Beilstein J. Nanotechnol. 2024, 15, 215–229, doi:10.3762/bjnano.15.21

Graphical Abstract
  • (TiO2, SiO2, and Fe2O3), carbonaceous NPs (graphene, carbon nanotubes, and carbon black), semiconductors (CdSe) [26], and polymers [27], it lacks the set of short-range potentials required for calculating milk protein-aluminum adsorption energies. Here, we compute potentials of mean force (PMF) for Al
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2024

CdSe/ZnS quantum dots as a booster in the active layer of distributed ternary organic photovoltaics

  • Gabriela Lewińska,
  • Piotr Jeleń,
  • Zofia Kucia,
  • Maciej Sitarz,
  • Łukasz Walczak,
  • Bartłomiej Szafraniak,
  • Jerzy Sanetra and
  • Konstanty W. Marszalek

Beilstein J. Nanotechnol. 2024, 15, 144–156, doi:10.3762/bjnano.15.14

Graphical Abstract
  • studies on CdSe/ZnS nanodots as dopants in a polymer–fullerene matrix for application in organic solar cells. An assembly of poly(3-hexylthiophene-2,5-diyl) and 6,6-phenyl-C71-butyric acid methyl ester was used as the active reference layer. Absorption and luminescence spectra as well as the dispersion
  • publication aims to validate the potential of CdSe/ZnS quantum dots for the enrichment of the active layer and, ultimately, for application in the active layer of organic BHJ cells. An illustrative QD synthesis was described by Dabbousi and co-workers [38]. Methods and approaches were intensively developed
  • [39][40]. One of the main existing challenges in synthesizing QDs is to increase their photoluminescence efficiency while simultaneously shifting the photoluminescence maximum to longer wavelengths. Initial applications focused on OLEDs. CdSe/ZnS quantum dots are luminescent inorganic nanostructures
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2024

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • , and SrTiO3), sulfates (e.g., MoS2 and Bi2S3), selenides (e.g., MoSe2 and CdSe), and phosphates (e.g., Ag3PO4) [8][9][10][11][12][13][14][15]. The bandgap of photocatalysts sensitive to visible light is smaller than 3 eV. Wide-bandgap photocatalysts can only be stimulated by ultraviolet light, which
PDF
Album
Review
Published 11 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • -cdse/ZnS quantum dots. This type of tracer has a significant signal amplification effect. Vesicle composite probes were generated using aptamer-labeled SSB/L-QD and nanogold (Au-Apt). Since Au-aptas receptors burst the signal of SSB/L-QD, this type of probe cannot fluoresce "off". To solve this problem
PDF
Album
Review
Published 03 Nov 2022

Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review

  • Keshav Nagpal,
  • Erwan Rauwel,
  • Frédérique Ducroquet and
  • Protima Rauwel

Beilstein J. Nanotechnol. 2021, 12, 1078–1092, doi:10.3762/bjnano.12.80

Graphical Abstract
  • semiconductors and emit from the UV to the red region of the visible spectrum via bandgap tuning (i.e., on alloying with In and Al [5][6][7]). Similarly, other active materials for quantum dot light-emitting diodes (QLED), such as the II–VI semiconductor family include ZnO, CdSe, CdS, CdTe, ZnSe, ZnS, ZnTe, and
  • saturated colors with a narrow bandwidth of EL (full width at half maximum ≈30 nm) have made the QLED attractive [90][91]. In effect, owing to the quantum confinement of CdSe QD, a decrease in particle size blueshifts the emission. Thus, their emission can be tuned to the entire visible spectrum by varying
PDF
Album
Review
Published 24 Sep 2021

Luminescent gold nanoclusters for bioimaging applications

  • Nonappa

Beilstein J. Nanotechnol. 2020, 11, 533–546, doi:10.3762/bjnano.11.42

Graphical Abstract
  • ) such as CdSe, CdTe, CdS, ZnS, ZnSe, PbS and PbSe have widely been studied as luminescent nanomaterials [24][25]. This is attributed to the possibilities to tune their size, surface functionalities, quantum confinement and high quantum yield (60–90%) [26][27]. Importantly, SCQDs display a broad spectrum
PDF
Album
Review
Published 30 Mar 2020

pH-Controlled fluorescence switching in water-dispersed polymer brushes grafted to modified boron nitride nanotubes for cellular imaging

  • Saban Kalay,
  • Yurij Stetsyshyn,
  • Volodymyr Donchak,
  • Khrystyna Harhay,
  • Ostap Lishchynskyi,
  • Halyna Ohar,
  • Yuriy Panchenko,
  • Stanislav Voronov and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2019, 10, 2428–2439, doi:10.3762/bjnano.10.233

Graphical Abstract
  • ][31][32][33][34]. In [35], the fluorescent CdSe quantum dots were attached to BNNT surfaces, and in [36] the halloysite nanotubes were modified with carbon dots and used for cellular imaging. Another approach is surface modification with grafted polymers bearing organic fluorophores. One of the most
PDF
Album
Supp Info
Full Research Paper
Published 10 Dec 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • as an alternative to commercial photodetector devices with CdS and CdSe. Enhanced photoluminescence and photoelectrochemical properties of one-dimensional Lu2@C82 nanorods prepared through liquid–liquid interfacial precipitation between carbon disulfide and 2-propanol were demonstrated by Lu and co
PDF
Album
Review
Published 30 Jul 2019

Structural and optical properties of penicillamine-protected gold nanocluster fractions separated by sequential size-selective fractionation

  • Xiupei Yang,
  • Zhengli Yang,
  • Fenglin Tang,
  • Jing Xu,
  • Maoxue Zhang and
  • Martin M. F. Choi

Beilstein J. Nanotechnol. 2019, 10, 955–966, doi:10.3762/bjnano.10.96

Graphical Abstract
  • common method that has been used to the size fraction nanomaterial dispersions such as CdS and CdSe. However, this method has been mainly carried out to separate water-insoluble nanoparticles from organic solvents. On the other hand, it is also understood that the photophysical, electrochemical and other
PDF
Album
Full Research Paper
Published 25 Apr 2019

Deposition of metal particles onto semiconductor nanorods using an ionic liquid

  • Michael D. Ballentine,
  • Elizabeth G. Embry,
  • Marco A. Garcia and
  • Lawrence J. Hill

Beilstein J. Nanotechnol. 2019, 10, 718–724, doi:10.3762/bjnano.10.71

Graphical Abstract
  • an ionic liquid, and the effect this has on catalytic performance. Platinum, gold, and silver nanoparticles were deposited onto CdSe@CdS (core@shell) nanorods from metal salts in an ionic liquid (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) without additional surfactants or reducing
  • be used to deposit nanoscopic noble metal particles onto a well-defined semiconductor nanorod substrate with diameters less than 10 nm. We found that photodeposition of platinum onto CdSe@CdS (core@shell) nanorods proceeded readily from Pt(acac)2 in the ionic liquid 1-butyl-3-methylimidazolium bis
  • (trifluoromethylsulfonyl)imide ([bmim][Tf2N]) without needing to add any additional reagents. We also deposited platinum nanoparticle cocatalysts onto CdSe@CdS nanorods using a traditional organic system (toluene/triethylamine) as shown in Scheme 1, and the two catalysts prepared in different solvents had remarkably
PDF
Album
Supp Info
Letter
Published 14 Mar 2019

Review of time-resolved non-contact electrostatic force microscopy techniques with applications to ionic transport measurements

  • Aaron Mascaro,
  • Yoichi Miyahara,
  • Tyler Enright,
  • Omur E. Dagdeviren and
  • Peter Grütter

Beilstein J. Nanotechnol. 2019, 10, 617–633, doi:10.3762/bjnano.10.62

Graphical Abstract
  • information about charge generation and transport in the sample. This was first performed by Krauss et al. who observed charging of photoexcited CdSe nanocrystals by direct frequency shift measurements after illumination [26]. The concept outlined above can be applied to measure ionic transport in ionic
PDF
Album
Supp Info
Review
Published 01 Mar 2019

Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots

  • Siyi Hu,
  • Yu Ren,
  • Yue Wang,
  • Jinhua Li,
  • Junle Qu,
  • Liwei Liu,
  • Hanbin Ma and
  • Yuguo Tang

Beilstein J. Nanotechnol. 2019, 10, 22–31, doi:10.3762/bjnano.10.3

Graphical Abstract
  • nanoparticle comprised of CdSe/ZnS QDs and gold nanorods (GNRs) where the GNRs were applied to enhance the photoluminescence (PL) of the CdSe/ZnS QDs. In particular, we have obtained the scattering PL spectrum of a single CdSe/ZnS QD and GNR@CdSe/ZnS nanoparticle and comparison results show that the CdSe/ZnS
  • QDs have an apparent PL enhancement of four-times after binding with GNRs. In addition, in vitro experimental results show that the biostability of the GNR@CdSe/ZnS nanoparticles can be improved by using folic acid. A bioimaging study has also been performed where GNR@CdSe/ZnS nanoparticles were used
  • with them [6][7][8][9][10][11][12]. Research conducted to date shows that the fluorescence intensity of QDs changes when other chemical materials or ions are added. The CdSe/ZnS heterostructures of QDs are of interest due to their high quantum efficiency [13][14][15]. Furthermore, the heterostructure
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2019

Two-dimensional semiconductors pave the way towards dopant-based quantum computing

  • José Carlos Abadillo-Uriel,
  • Belita Koiller and
  • María José Calderón

Beilstein J. Nanotechnol. 2018, 9, 2668–2673, doi:10.3762/bjnano.9.249

Graphical Abstract
  • analysed materials. The range of values for masses and gaps available in the literature and summarised in Table 1 are shown by the extended symbols next to the corresponding material composition. Effective masses and band-gap energies of selected 2D materials. ZnS, CdS, CdSe and SiC have a direct band gap
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2018

Nanoantenna structures for the detection of phonons in nanocrystals

  • Alexander G. Milekhin,
  • Sergei A. Kuznetsov,
  • Ilya A. Milekhin,
  • Larisa L. Sveshnikova,
  • Tatyana A. Duda,
  • Ekaterina E. Rodyakina,
  • Alexander V. Latyshev,
  • Volodymyr M. Dzhagan and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2018, 9, 2646–2656, doi:10.3762/bjnano.9.246

Graphical Abstract
  • of organic and inorganic materials deposited onto the arrays to be analyzed. The Langmuir–Blodgett technology was used for homogeneous deposition of CdSe, CdS, and PbS NC monolayers on the antenna arrays. The structural parameters of the arrays were confirmed by scanning electron microscopy. 3D full
  • been extensively examined to date. Recently, A. Toma et al. [21] published the first report on SEIRA for detection of an optical phonon mode (so-called Froehlich mode) from a monolayer of CdSe NCs deposited on Au nanoantenna arrays. The SEIRA enhancement induced by the nanoantennas was estimated to be
  • ], nanorings [28], and nanoslits [29]. A detailed description of various nanoantenna geometries can be found in the comprehensive review [30]. In this paper, we report on a systematic study of the effect of SEIRA by the phonon response from monolayers of CdSe, CdS, and PbS NCs deposited on periodic arrays of
PDF
Album
Full Research Paper
Published 05 Oct 2018

Droplet-based synthesis of homogeneous magnetic iron oxide nanoparticles

  • Christian D. Ahrberg,
  • Ji Wook Choi and
  • Bong Geun Chung

Beilstein J. Nanotechnol. 2018, 9, 2413–2420, doi:10.3762/bjnano.9.226

Graphical Abstract
  • ]. Therefore, microfluidic reactors are a promising option for lab scale production of nanoparticles. Continuous production of nanoparticles inside of a microfluidic reactor has been shown with CdSe nanoparticles, demonstrating precise control over the particle morphology [23]. Furthermore, a microfluidic
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2018

Photoluminescence of CdSe/ZnS quantum dots in nematic liquid crystals in electric fields

  • Margarita A. Kurochkina,
  • Elena A. Konshina and
  • Daria Khmelevskaia

Beilstein J. Nanotechnol. 2018, 9, 1544–1549, doi:10.3762/bjnano.9.145

Graphical Abstract
  • , Russia 10.3762/bjnano.9.145 Abstract We have experimentally investigated the effect of the reorientation of a nematic liquid crystal (LC) in an electric field on the photoluminescence (PL) of CdSe/ZnS semiconductor quantum dots (QDs). To the LC with positive dielectric anisotropy, 1 wt % QDs with a core
  • spectral luminescence properties of the nematic LCs with a positive dielectric anisotropy doped with semiconductor CdSe/ZnS quantum dots [18][19][20]. The luminescence quenching of a planar oriented liquid crystal depended not only on the size but also on the concentration of QDs [18]. The PL intensity of
  • the LC suspension doped with CdSe/ZnS QDs having a core size of 3.5 nm in the planar oriented cell decreased exponentially with an increase of the electric field strength [20]. We showed that the decrease of PL intensity correlated with the increase of dielectric losses in a nematic associated with
PDF
Album
Full Research Paper
Published 23 May 2018

Cathodoluminescence as a probe of the optical properties of resonant apertures in a metallic film

  • Kalpana Singh,
  • Evgeniy Panchenko,
  • Babak Nasr,
  • Amelia Liu,
  • Lukas Wesemann,
  • Timothy J. Davis and
  • Ann Roberts

Beilstein J. Nanotechnol. 2018, 9, 1491–1500, doi:10.3762/bjnano.9.140

Graphical Abstract
  • demonstrated [50]. The spectral properties of core–shell CdSe/CdS quantum dots have also been studied using CL in a transmission electron microscope [51]. The same technique has been used to generate single photons and to characterize quantum states and the nature of the emitted beam with subwavelength
PDF
Album
Supp Info
Full Research Paper
Published 18 May 2018

Dynamic behavior of nematic liquid crystal mixtures with quantum dots in electric fields

  • Emil Petrescu,
  • Cristina Cirtoaje and
  • Octavian Danila

Beilstein J. Nanotechnol. 2018, 9, 399–406, doi:10.3762/bjnano.9.39

Graphical Abstract
  • CdSe/ZnS quantum dots in electric fields was theoretically studied. The model was based on elastic continuum theory considering the interaction of the nematic molecules with the surrounding molecules, with the quantum dots and with the electric field. Experimental data obtained by dynamic measurements
  • on a sample containing 0.89% (mass fraction) of CdSe/ZnS quantum dots revealed a decrease of the relaxation time compared to pure 5CB. Keywords: Fréedericksz transition; nematic liquid crystals; quantum dots; Introduction The expansion of liquid crystal (LC)-based devices in common life domains as
  • quantum dot surface. Dynamic experiments performed in alternating electric fields proved that by adding a small amount of CdSe/ZnS quantum dots in thermotropic nematic liquid crystal with positive dielectric anisotropy, we obtain a decrease of the relaxation time. When an external electric field higher
PDF
Album
Full Research Paper
Published 01 Feb 2018

Nanoparticle delivery to metastatic breast cancer cells by nanoengineered mesenchymal stem cells

  • Liga Saulite,
  • Karlis Pleiko,
  • Ineta Popena,
  • Dominyka Dapkute,
  • Ricardas Rotomskis and
  • Una Riekstina

Beilstein J. Nanotechnol. 2018, 9, 321–332, doi:10.3762/bjnano.9.32

Graphical Abstract
  • temperature. Flow cytometry data were acquired on a Guava EasyCyte 8HT flow cytometer and analysed by ExpressPro software (Millipore, MA, USA). Quantum dots Qdot® 655 ITK™ non-targeted carboxyl-coated quantum dots were purchased from Thermo Fisher Scientific, USA. The QDs are composed of a CdSe core and ZnS
PDF
Album
Supp Info
Full Research Paper
Published 29 Jan 2018

CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity

  • Fakher Laatar,
  • Hatem Moussa,
  • Halima Alem,
  • Lavinia Balan,
  • Emilien Girot,
  • Ghouti Medjahdi,
  • Hatem Ezzaouia and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2017, 8, 2741–2752, doi:10.3762/bjnano.8.273

Graphical Abstract
  • rue Jean Starcky, 68093 Mulhouse, France 10.3762/bjnano.8.273 Abstract CdSe nanorods (NRs) with an average length of ≈120 nm were prepared by a solvothermal process and associated to TiO2 nanoparticles (Aeroxide® P25) by annealing at 300 °C for 1 h. The content of CdSe NRs in CdSe/TiO2 composites was
  • varied from 0.5 to 5 wt %. The CdSe/TiO2 heterostructured materials were characterized by XRD, TEM, SEM, XPS, UV–visible spectroscopy and Raman spectroscopy. TEM images and XRD patterns show that CdSe NRs with wurtzite structure are associated to TiO2 particles. The UV–visible spectra demonstrate that
  • the narrow bandgap of CdSe NRs serves to increase the photoresponse of CdSe/TiO2 composites until ≈725 nm. The CdSe (2 wt %)/TiO2 composite exhibits the highest photocatalytic activity for the degradation of rhodamine B in aqueous solution under simulated sunlight or visible light irradiation. The
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2017

PTFE-based microreactor system for the continuous synthesis of full-visible-spectrum emitting cesium lead halide perovskite nanocrystals

  • Chengxi Zhang,
  • Weiling Luan,
  • Yuhang Yin and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2017, 8, 2521–2529, doi:10.3762/bjnano.8.252

Graphical Abstract
  • , there is no report on the continuous synthesis of perovskite nanocrystals via microreactor systems, even though these systems have been successfully used to synthesize CdSe [25], CdSe/ZnS [26], CdSexTe1−x [27], and CdS [28] QDs, as well as monodisperse Au–Ag alloy nanoparticles [29]. In this work, we
  • rhodamine 6G, the QY = 95% in ethanol) than the highly luminescent CdSe QDs reported in literature [25][34][35][36][37]. The green QDs have a QY of 90.55%. The QDs with the Stokes shift from 13–35 nm are highly suitable for applications in white-light diodes (WLEDs) [1]. To study the effect of the reaction
PDF
Album
Supp Info
Full Research Paper
Published 28 Nov 2017

Evaluation of quantum dot conjugated antibodies for immunofluorescent labelling of cellular targets

  • Jennifer E. Francis,
  • David Mason and
  • Raphaël Lévy

Beilstein J. Nanotechnol. 2017, 8, 1238–1249, doi:10.3762/bjnano.8.125

Graphical Abstract
  • of cadmium selenium (CdSe) and an inorganic zinc sulfide (ZnS) shell and have been applied as fluorescent probes for the labelling of biological structures [1][2]. To make Qdots water soluble, and thus suitable for biological applications, their surface is modified either by coating with hydrophilic
PDF
Album
Supp Info
Full Research Paper
Published 09 Jun 2017

Nano-engineered skin mesenchymal stem cells: potential vehicles for tumour-targeted quantum-dot delivery

  • Liga Saulite,
  • Dominyka Dapkute,
  • Karlis Pleiko,
  • Ineta Popena,
  • Simona Steponkiene,
  • Ricardas Rotomskis and
  • Una Riekstina

Beilstein J. Nanotechnol. 2017, 8, 1218–1230, doi:10.3762/bjnano.8.123

Graphical Abstract
  • modifications increase the potential of QDs for the use in targeted cancer diagnostics and therapies. There is still doubt regarding the potential harmful effects of NPs or QDs on the differentiation capacity and self-renewal ability of adult stem cells. CdSe/ZnS QD labelling has been reported to adversely
  • materials. Unless coatings are damaged, QDs are mainly non-toxic [37]. Recently, Yaghini et al., by using non-photolytic visible wavelength excitation, have shown the formation of superoxide anion radicals by photoexcited CdSe/ZnS QDs [38]. Thus, the QDs may induce phototoxic reactions in labelled cells
  • Thermo Fisher Scientific, USA. QDs are composed of a CdSe core with a ZnS shell that are coated with amphiphilic polymers and functionalized with carboxylate. The QDs have an emission maximum at 655 nm. Xu et al. measured the hydrodynamic diameter of the nanoparticles to be 14.55 ± 4.157 nm and a zeta
PDF
Album
Full Research Paper
Published 07 Jun 2017

AgCl-doped CdSe quantum dots with near-IR photoluminescence

  • Pavel A. Kotin,
  • Sergey S. Bubenov,
  • Natalia E. Mordvinova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2017, 8, 1156–1166, doi:10.3762/bjnano.8.117

Graphical Abstract
  • Abstract We report the synthesis of colloidal CdSe quantum dots doped with a novel Ag precursor: AgCl. The addition of AgCl causes dramatic changes in the morphology of synthesized nanocrystals from spherical nanoparticles to tetrapods and finally to large ellipsoidal nanoparticles. Ellipsoidal
  • investigated. The optimal conditions for maximizing both the reaction yield and IR photoluminescence quantum yield are found. Keywords: Ag doping; CdSe quantum dots; doped semiconductor nanocrystals; IR photoluminescence; tetrapods; Introduction Colloidal quantum dots (QDs) have attracted considerable
  • devices. CdSe QDs deserve special attention because of their bright photoluminescence (PL), photostability, and a considerable number of methods for their synthesis. For many of the practical applications of QDs infrared PL (IR-PL) is very important: for the fabrication of optical fibers, lasers
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2017
Other Beilstein-Institut Open Science Activities