Search results

Search for "Si substrate" in Full Text gives 185 result(s) in Beilstein Journal of Nanotechnology.

Patterning of supported gold monolayers via chemical lift-off lithography

  • Liane S. Slaughter,
  • Kevin M. Cheung,
  • Sami Kaappa,
  • Huan H. Cao,
  • Qing Yang,
  • Thomas D. Young,
  • Andrew C. Serino,
  • Sami Malola,
  • Jana M. Olson,
  • Stephan Link,
  • Hannu Häkkinen,
  • Anne M. Andrews and
  • Paul S. Weiss

Beilstein J. Nanotechnol. 2017, 8, 2648–2661, doi:10.3762/bjnano.8.265

Graphical Abstract
  • on the Au-on-Si substrate, from which Au complexes were removed, appeared as recessed circles, demonstrating that lift-off occurred in a chemically selective manner. The X-ray photoelectron spectroscopy (XPS) spectra of patterned PDMS illustrated the presence of Au in the regions predominantly
PDF
Album
Supp Info
Full Research Paper
Published 08 Dec 2017

Direct writing of gold nanostructures with an electron beam: On the way to pure nanostructures by combining optimized deposition with oxygen-plasma treatment

  • Domagoj Belić,
  • Mostafa M. Shawrav,
  • Emmerich Bertagnolli and
  • Heinz D. Wanzenboeck

Beilstein J. Nanotechnol. 2017, 8, 2530–2543, doi:10.3762/bjnano.8.253

Graphical Abstract
  • introduced into the high-vacuum chamber of a custom-modified SEM via home-built gas injection system (GIS) [42], in such a way that a nozzle was brought into close vicinity (≈200 μm) of the intended deposition spot on a prepared p-type Si substrate. When a beam of primary electrons impacts on the surface
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2017

Comparing postdeposition reactions of electrons and radicals with Pt nanostructures created by focused electron beam induced deposition

  • Julie A. Spencer,
  • Michael Barclay,
  • Miranda J. Gallagher,
  • Robert Winkler,
  • Ilyas Unlu,
  • Yung-Chien Wu,
  • Harald Plank,
  • Lisa McElwee-White and
  • D. Howard Fairbrother

Beilstein J. Nanotechnol. 2017, 8, 2410–2424, doi:10.3762/bjnano.8.240

Graphical Abstract
  • smooth nature of the Mo/Si substrate as well as the presence of an ≈100 nm high feature which can reasonably be assumed to be purified Pt. Figure 5 shows the evolution of a PtCl2 deposit as it was exposed to increasing doses of AH from the high-pressure source. After this deposit was first exposed to the
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2017

Electron beam induced deposition of silacyclohexane and dichlorosilacyclohexane: the role of dissociative ionization and dissociative electron attachment in the deposition process

  • Ragesh Kumar T P,
  • Sangeetha Hari,
  • Krishna K Damodaran,
  • Oddur Ingólfsson and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2017, 8, 2376–2388, doi:10.3762/bjnano.8.237

Graphical Abstract
  • better estimate of the number of low-energy electrons in the relevant energy range, a Monte Carlo simulation of the angular distribution of electrons escaping from a Si half sphere on the top of a Si surface was conducted. The sample for the simulation was a flat Si substrate with a 1 nm diameter Si half
  • sphere on top, resembling a tiny Si deposit on a Si substrate (Figure 10a). The simulator contains the best possible physics models and runs on a GPU [48][49]. A “zero-diameter” 20 keV incident electron beam is directed on top of the half sphere, and subsequently all electrons emitted from the sample are
  • ) SCH. The first (1) and last (25) pillars are indicated and the order of deposition is as shown in Figure 7b. Monte Carlo simulation of the angular distribution of electrons emitted from a flat Si substrate with a 1 nm diameter Si half sphere on top (a), upon exposure with a “zero-diameter” 20 keV
PDF
Album
Full Research Paper
Published 10 Nov 2017

Optical contrast and refractive index of natural van der Waals heterostructure nanosheets of franckeite

  • Patricia Gant,
  • Foad Ghasemi,
  • David Maeso,
  • Carmen Munuera,
  • Elena López-Elvira,
  • Riccardo Frisenda,
  • David Pérez De Lara,
  • Gabino Rubio-Bollinger,
  • Mar Garcia-Hernandez and
  • Andres Castellanos-Gomez

Beilstein J. Nanotechnol. 2017, 8, 2357–2362, doi:10.3762/bjnano.8.235

Graphical Abstract
  • Gelpak®) carrier substrate and then transferred to a SiO2/Si substrate by means of an all-dry transfer technique [24]. We employed two different nominal SiO2 thicknesses (ca. 90 and ca. 290 nm) to probe the role of the SiO2 thickness on the optical identification process. We selected those thickness
  • substrates at first glance. Figure 2d–f shows similar information as Figure 2a–c but for flakes transferred onto a 92 nm SiO2/Si substrate. Below Figure 2d–f, we include another colour chart for the quick identification of franckeite flakes on 92 nm SiO2 substrates. Another method to estimate the thickness
  • technique. By measuring the light reflected by the bare SiO2/Si substrate (Is) and by the flake laying on the SiO2/Si substrate (If) one can determine the optical contrast, C, defined as [2]: Figure 4 shows some optical contrast spectra acquired on franckeite flakes with different thicknesses transferred
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2017

Expanding the molecular-ruler process through vapor deposition of hexadecanethiol

  • Alexandra M. Patron,
  • Timothy S. Hooker,
  • Daniel F. Santavicca,
  • Corey P. Causey and
  • Thomas J. Mullen

Beilstein J. Nanotechnol. 2017, 8, 2339–2344, doi:10.3762/bjnano.8.233

Graphical Abstract
  • lowest-intensity region between the two Au regions corresponds to the nanogap where the Si substrate is exposed. This nanogap measures 26.0 ± 4.3 nm and is consistent with the thickness of the Cu-ligated MHDA decalayer measured via spectroscopic ellipsometry (24.8 ± 0.1 nm) and the thickness of Cu
PDF
Album
Supp Info
Letter
Published 07 Nov 2017

Fabrication of gold-coated PDMS surfaces with arrayed triangular micro/nanopyramids for use as SERS substrates

  • Jingran Zhang,
  • Yongda Yan,
  • Peng Miao and
  • Jianxiong Cai

Beilstein J. Nanotechnol. 2017, 8, 2271–2282, doi:10.3762/bjnano.8.227

Graphical Abstract
  • approximately 1 μm. The signal detector used a Renishaw CCD camera (1040 × 256) a grating size of 1800 lines/mm was employed. The exposure time was set to 1 s and one accumulation scan was made. The mapping images of the micro-Raman spectrum were scanned over a 20 × 20 μm2 area. Before the tests, a standard Si
  • substrate was employed to rectify the Raman spectrum, and no specific peaks were found. The Raman intensity R6G probe peak was chosen as 1362 cm−1 for the experiment, which is the major Raman peak for R6G molecules. A Dimension Icon AFM system (Bruker, Germany) was used to observe the topography of the
PDF
Album
Full Research Paper
Published 01 Nov 2017

Substrate and Mg doping effects in GaAs nanowires

  • Perumal Kannappan,
  • Nabiha Ben Sedrine,
  • Jennifer P. Teixeira,
  • Maria R. Soares,
  • Bruno P. Falcão,
  • Maria R. Correia,
  • Nestor Cifuentes,
  • Emilson R. Viana,
  • Marcus V. B. Moreira,
  • Geraldo M. Ribeiro,
  • Alfredo G. de Oliveira,
  • Juan C. González and
  • Joaquim P. Leitão

Beilstein J. Nanotechnol. 2017, 8, 2126–2138, doi:10.3762/bjnano.8.212

Graphical Abstract
  • -doped GaAs nanowires, grown on a GaAs(111)B substrate, with approximately constant diameters (≈190 nm) along the axis, onto a heavily doped Si substrate covered by a 300 nm thick SiO2 layer. Standard photolithography methods were used to define several contact lines, with a lateral separation of 3 to 9
  • GaAs nanowires grown on a Si(111) substrate, which could be due to a higher density of defects as a result of the lattice mismatch between GaAs nanowires and the Si substrate. In the case of the nanowires grown on a Si(111) substrate, the transition at 1.461 eV, observed up to room temperature, almost
PDF
Album
Supp Info
Full Research Paper
Published 11 Oct 2017

High-stress study of bioinspired multifunctional PEDOT:PSS/nanoclay nanocomposites using AFM, SEM and numerical simulation

  • Alfredo J. Diaz,
  • Hanaul Noh,
  • Tobias Meier and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 2069–2082, doi:10.3762/bjnano.8.207

Graphical Abstract
  • in Figure 5b. The measurement shows a thickness of approximately 3 nm (red curve) in lightly repulsive imaging mode (free amplitude of 60 nm). This sample was prepared by diluting the “as prepared” dispersion and depositing it onto a Si substrate in order to separate the individual nanoplatelets (the
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2017

Advances and challenges in the field of plasma polymer nanoparticles

  • Andrei Choukourov,
  • Pavel Pleskunov,
  • Daniil Nikitin,
  • Valerii Titov,
  • Artem Shelemin,
  • Mykhailo Vaidulych,
  • Anna Kuzminova,
  • Pavel Solař,
  • Jan Hanuš,
  • Jaroslav Kousal,
  • Ondřej Kylián,
  • Danka Slavínská and
  • Hynek Biederman

Beilstein J. Nanotechnol. 2017, 8, 2002–2014, doi:10.3762/bjnano.8.200

Graphical Abstract
  • ; b) GLAD of nylon-sputtered plasma polymer over the preseeded NPs. SEM images with combined top view and cross-sections of the deposits produced as a result of RF magnetron sputtering of nylon: a) normal deposition on blank Si substrate; b) GLAD at 80° on blank Si substrate; c) normal deposition over
PDF
Album
Review
Published 25 Sep 2017

Identifying the nature of surface chemical modification for directed self-assembly of block copolymers

  • Laura Evangelio,
  • Federico Gramazio,
  • Matteo Lorenzoni,
  • Michaela Gorgoi,
  • Francisco Miguel Espinosa,
  • Ricardo García,
  • Francesc Pérez-Murano and
  • Jordi Fraxedas

Beilstein J. Nanotechnol. 2017, 8, 1972–1981, doi:10.3762/bjnano.8.198

Graphical Abstract
  • oxide between the brush layer and the SiO2/Si substrate. Experimental Preparation and chemical modification of brush layers The starting substrates were <100> silicon wafers (p-type silicon of 4–40 Ω·cm resistivity) with a native silicon oxide layer on top. A thin film of hydroxyl-terminated polystyrene
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2017

Imidazolium-based ionic liquids used as additives in the nanolubrication of silicon surfaces

  • Patrícia M. Amorim,
  • Ana M. Ferraria,
  • Rogério Colaço,
  • Luís C. Branco and
  • Benilde Saramago

Beilstein J. Nanotechnol. 2017, 8, 1961–1971, doi:10.3762/bjnano.8.197

Graphical Abstract
  • the first time that these ILs are successfully tested as additives to base lubricants. Strong adsorption of [EtSO4] on the surface oxide that covers the Si substrate should be responsible for this behavior. The S–O bond of this anion is known to interact with the silica surface to yield Si–O–S bonds
PDF
Album
Full Research Paper
Published 20 Sep 2017

Intercalation of Si between MoS2 layers

  • Rik van Bremen,
  • Qirong Yao,
  • Soumya Banerjee,
  • Deniz Cakir,
  • Nuri Oncel and
  • Harold J. W. Zandvliet

Beilstein J. Nanotechnol. 2017, 8, 1952–1960, doi:10.3762/bjnano.8.196

Graphical Abstract
  • reveal no noteworthy differences. (4) Spatial maps of dI/dz reveal that the surface exhibits a uniform work function and a lattice constant of 3.16 Å. (5) X-ray photo-electron spectroscopy measurements reveal that sputtering of the MoS2/Si substrate does not lead to a decrease, but an increase of the
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2017

Growth and characterization of textured well-faceted ZnO on planar Si(100), planar Si(111), and textured Si(100) substrates for solar cell applications

  • Chin-Yi Tsai,
  • Jyong-Di Lai,
  • Shih-Wei Feng,
  • Chien-Jung Huang,
  • Chien-Hsun Chen,
  • Fann-Wei Yang,
  • Hsiang-Chen Wang and
  • Li-Wei Tu

Beilstein J. Nanotechnol. 2017, 8, 1939–1945, doi:10.3762/bjnano.8.194

Graphical Abstract
  • , and CL as well. The reflectance spectra of these three samples show that the antireflection function provided by theses samples mostly results from the nanometer-scaled texture of the ZnO films, while the micrometer-scaled texture of the Si substrate has a limited contribution. The results of this
  • sunlight from the metals, but they can also serve the function of antireflection coating (ARC) films, given proper design of the film thickness. A ZnO thin film with appropriate doping could potentially act as the emitter with a Si substrate base to form a heterostructure solar cell. Therefore, in the most
  • -sized texture of the Si substrate has a limited contribution. Discussion The main grain orientation, surface morphology, AFM surface roughness (Rq) from AFM, average grain size (D), strain (ε), and CL intensity of samples ZnOp(100), ZnOp(111), and ZnOt(100) are shown in Table 1. The results clearly
PDF
Album
Full Research Paper
Published 15 Sep 2017

Laser processing of thin-film multilayer structures: comparison between a 3D thermal model and experimental results

  • Babak B. Naghshine and
  • Amirkianoosh Kiani

Beilstein J. Nanotechnol. 2017, 8, 1749–1759, doi:10.3762/bjnano.8.176

Graphical Abstract
  • sample. Laser processing of Si substrate (bulk material) The melting and boiling points of silicon are 1414 °C and 3538 °C respectively and the heats of fusion and vaporization are 1788 and 13637 kJ/kg [22]. After introducing all the physical properties and the plasma absorption of the silicon, the
  • , Canada 10.3762/bjnano.8.176 Abstract In this research, a numerical model is introduced for simulation of laser processing of thin film multilayer structures, to predict the temperature and ablated area for a set of laser parameters including average power and repetition rate. Different thin-films on Si
  • substrate were processed by nanosecond Nd:YAG laser pulses and the experimental and numerical results were compared to each other. The results show that applying a thin film on the surface can completely change the temperature field and vary the shape of the heat affected zone. The findings of this paper
PDF
Album
Full Research Paper
Published 24 Aug 2017

Fixation mechanisms of nanoparticles on substrates by electron beam irradiation

  • Daichi Morioka,
  • Tomohiro Nose,
  • Taiki Chikuta,
  • Kazutaka Mitsuishi and
  • Masayuki Shimojo

Beilstein J. Nanotechnol. 2017, 8, 1523–1529, doi:10.3762/bjnano.8.153

Graphical Abstract
  • , the diameters of which are 100 nm and 20 nm, fixed on the Si substrate by a line scan of the electron beam at an accelerating voltage of 2 kV. The particles were fixed on lines with finite widths. The widths of the particle lines are 0.5 μm and 0.3 μm for particle sizes of 100 nm and 20 nm
  • also demonstrated. Figure 11 shows silica nanoparticles fixed on a Au-coated Si substrate. As the surface of colloidal silica particles was modified with –COOH groups, a dissociation of the organic shells occurs and the particles are fixed on the substrate. Conclusion The mechanism of fixing
  • schematic illustration of this experimental technique is shown in Figure 12. A Si substrate was immersed in the colloidal Au solution for 24 h at room temperature to place nanoparticles uniformly over the surface of the substrate. Then a focused electron beam was scanned in a line over the substrate with
PDF
Album
Full Research Paper
Published 26 Jul 2017

A top-down approach for fabricating three-dimensional closed hollow nanostructures with permeable thin metal walls

  • Carlos Angulo Barrios and
  • Víctor Canalejas-Tejero

Beilstein J. Nanotechnol. 2017, 8, 1231–1237, doi:10.3762/bjnano.8.124

Graphical Abstract
  • of arrays of closed cylindrical nanocages of Al on a Si substrate. In addition, relevant optical and sensing properties of the hollow configuration are studied by reflectance measurements and simulations. Results and Discussion Scanning electron microscope (SEM) photographs in Figure 1 illustrate the
  • fabrication sequence of an array of closed nanocages (hollow nanopillars) made of thin-walled Al. First, an array of SU-8 negative resist nanopillars are created by electron-beam lithography (EBL) on an Al-coated Si substrate (Figure 1a). The SU-8 nanopillars exhibit a smooth surface with rounded top edges
  • measured spectral reflectance of a 600 nm period, square lattice of SU-8 nanopillars fabricated on an Al-coated Si substrate (blue curve), the same structure after the deposition of a 40 nm thick Al film (red curve), and the latter structure after an oxygen-plasma treatment (black curve). As analyzed in a
PDF
Album
Full Research Paper
Published 08 Jun 2017

Growth, structure and stability of sputter-deposited MoS2 thin films

  • Reinhard Kaindl,
  • Bernhard C. Bayer,
  • Roland Resel,
  • Thomas Müller,
  • Viera Skakalova,
  • Gerlinde Habler,
  • Rainer Abart,
  • Alexey S. Cherevan,
  • Dominik Eder,
  • Maxime Blatter,
  • Fabian Fischer,
  • Jannik C. Meyer,
  • Dmitry K. Polyushkin and
  • Wolfgang Waldhauser

Beilstein J. Nanotechnol. 2017, 8, 1115–1126, doi:10.3762/bjnano.8.113

Graphical Abstract
  • measurements suggest directions for future work on our PVD MoS2 films. Keywords: electrode; hydrogen evolution reaction (HER); magnetron sputter deposition; MoS2; reticulated vitreous carbon (RVC) foam; SiO2/Si substrate; Introduction Molybdenum disulphide (MoS2) is a layered chemical compound comprised of
PDF
Album
Full Research Paper
Published 22 May 2017

The integration of graphene into microelectronic devices

  • Guenther Ruhl,
  • Sebastian Wittmann,
  • Matthias Koenig and
  • Daniel Neumaier

Beilstein J. Nanotechnol. 2017, 8, 1056–1064, doi:10.3762/bjnano.8.107

Graphical Abstract
  • Society. Schematic illustration of the basic approach for the method of direct growth of graphene on a SiO2 surface. (a) A thin Ni film is deposited on a SiO2/Si substrate. (b) Plasma CVD is performed. (c) Carbon atoms diffuse into the Ni film, and graphene is preferentially grown along the interface
  • between the Ni and SiO2 layers. (d) Graphene on a SiO2/Si substrate is realized by removing the Ni film using a chemical etching technique. Reprinted with permission from [29], copyright 2012 American Chemical Society. Schematic illustration of the mobility (experiment) as a function of the ratio between
PDF
Album
Review
Published 15 May 2017

CVD transfer-free graphene for sensing applications

  • Chiara Schiattarella,
  • Sten Vollebregt,
  • Tiziana Polichetti,
  • Brigida Alfano,
  • Ettore Massera,
  • Maria Lucia Miglietta,
  • Girolamo Di Francia and
  • Pasqualina Maria Sarro

Beilstein J. Nanotechnol. 2017, 8, 1015–1022, doi:10.3762/bjnano.8.102

Graphical Abstract
  • of graphene down to micrometre-size dimensions. A photo-lithographic process, combined with SF6 dry etching, has been used to shape the Mo in the desired form. Graphene layers have then been grown on pre-patterned Mo/SiO2/Si substrate by means of AIXTRON BlackMagic Pro equipment, setting the
PDF
Album
Full Research Paper
Published 08 May 2017

Nanoantenna-assisted plasmonic enhancement of IR absorption of vibrational modes of organic molecules

  • Alexander G. Milekhin,
  • Olga Cherkasova,
  • Sergei A. Kuznetsov,
  • Ilya A. Milekhin,
  • Ekatherina E. Rodyakina,
  • Alexander V. Latyshev,
  • Sreetama Banerjee,
  • Georgeta Salvan and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2017, 8, 975–981, doi:10.3762/bjnano.8.99

Graphical Abstract
  • ) were deposited on the antenna arrays and a Si substrate. The homogeneity of the CoPc films deposited on the arrays was probed using micro-Raman mapping. The Raman spectra of the CoPc films deposited on a Si substrate (Figure 2a) reveal a rich spectrum of CoPc vibrational modes similar to that observed
  • to the most intense mode of the Si substrate (observed at 520.5 cm−1), the RRS spectrum (Figure 2) is dominated by the vibrational mode at 1543 cm−1 assigned to the C=N stretching mode [23]. The chemical structure of CoPc is shown in the inset of Figure 2a. The mode frequencies observed at 683, 750
  • from natural silicon oxide covering the Si substrate [33]. The deposition of thin CoPc films on the nanoantenna arrays leads to intensity enhancement for the vibrational modes at 724 and 755 cm−1, which are inherent to CoPc in the spectral range of the LSPR band. Note that for the 3 nm thick CoPc film
PDF
Album
Full Research Paper
Published 03 May 2017

Triptycene-terminated thiolate and selenolate monolayers on Au(111)

  • Jinxuan Liu,
  • Martin Kind,
  • Björn Schüpbach,
  • Daniel Käfer,
  • Stefanie Winkler,
  • Wenhua Zhang,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2017, 8, 892–905, doi:10.3762/bjnano.8.91

Graphical Abstract
  • vaporisator (Leybold Univex 300). Gold (Chempur, 99.995%) layers with a thickness of 150 nm were deposited at a rate of 1 nm/s. An 8 nm titanium (Chempur, 99.8%) layer was deposited at a rate of 0.15 nm/s as an adhesion layer between the Si substrate and the Au layer. The deposition rate and thickness were
PDF
Album
Supp Info
Full Research Paper
Published 20 Apr 2017

Relationships between chemical structure, mechanical properties and materials processing in nanopatterned organosilicate fins

  • Gheorghe Stan,
  • Richard S. Gates,
  • Qichi Hu,
  • Kevin Kjoller,
  • Craig Prater,
  • Kanwal Jit Singh,
  • Ebony Mays and
  • Sean W. King

Beilstein J. Nanotechnol. 2017, 8, 863–871, doi:10.3762/bjnano.8.88

Graphical Abstract
  • before patterning using a Thermo Scientific Nicolet 6700 FTIR spectrometer and deuterated L-alanine doped triglycine sulfate (DLaTGS) detector. The spectra were acquired from 400–7000 cm−1 with 4 cm−1 resolution and the signal was averaged over 128 scans. The absorption spectrum of the Si substrate and
PDF
Album
Full Research Paper
Published 13 Apr 2017

Investigation of growth dynamics of carbon nanotubes

  • Marianna V. Kharlamova

Beilstein J. Nanotechnol. 2017, 8, 826–856, doi:10.3762/bjnano.8.85

Graphical Abstract
  • SiCl4. As soon as the liquid alloy particle was supersaturated, the growth of the whisker started. It occurred by the precipitation of Si atoms from the droplet at the interface between solid Si and liquid alloy. As a result, the alloy droplet was displaced from the Si substrate crystal to the tip of
PDF
Album
Review
Published 11 Apr 2017

3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity

  • Brett B. Lewis,
  • Robert Winkler,
  • Xiahan Sang,
  • Pushpa R. Pudasaini,
  • Michael G. Stanford,
  • Harald Plank,
  • Raymond R. Unocic,
  • Jason D. Fowlkes and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2017, 8, 801–812, doi:10.3762/bjnano.8.83

Graphical Abstract
  • using an FEI NOVA 600 dual-beam system equipped with multiple gas injection systems (GIS). Before loading the Si substrate, it was cleaned via sonication in acetone for 5 minutes and rinsed in isopropanol before drying. The precursor gas was injected using a FEI GIS and the temperature was held at 45 °C
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2017
Other Beilstein-Institut Open Science Activities