Search results

Search for "anatase" in Full Text gives 100 result(s) in Beilstein Journal of Nanotechnology.

Advanced scanning probe lithography using anatase-to-rutile transition to create localized TiO2 nanorods

  • Julian Kalb,
  • Vanessa Knittel and
  • Lukas Schmidt-Mende

Beilstein J. Nanotechnol. 2019, 10, 412–418, doi:10.3762/bjnano.10.40

Graphical Abstract
  • probe lithography method in which a silicon tip, commonly used for atomic force microscopy, was pulled across an anatase TiO2 film. This process scratches the film causing tiny anatase TiO2 nanoparticles to form on the surface. According to previous reports, these anatase particles convert into rutile
  • directly on polycrystalline anatase TiO2 films. The resulting nanorod arrangements are compared with similar structures obtained with conventional electron-beam lithography, which is a more expensive and laborious procedure. The method is drafted in Figure 1. A silicon tip, as it is used in a conventional
  • atomic force microscope (AFM), was pulled across an anatase film. During this process, surface defects are created as well as dust that contains tiny anatase TiO2 nanoparticles. Due to the lattice mismatch between anatase and rutile, in general, rutile nanorods do not grow on anatase crystal facets. The
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

Biocompatible organic–inorganic hybrid materials based on nucleobases and titanium developed by molecular layer deposition

  • Leva Momtazi,
  • Henrik H. Sønsteby and
  • Ola Nilsen

Beilstein J. Nanotechnol. 2019, 10, 399–411, doi:10.3762/bjnano.10.39

Graphical Abstract
  • 2.19 over the temperature range of 225 to 350 °C. The density of all the systems increased with deposition temperature from roughly 1.7 g cm−3 at 225 °C to 2.3 g cm−3 at 350 °C. For comparison, the refractive index and density of anatase TiO2 films deposited at 225 °C is 2.36 and 3.78 g cm−3
  • the initial 15 minutes of immersion in water, one may question the bioactivity of these films in comparison to pure TiO2. Clearly, these films obtained a lower density, amorphous structure (except for thymine deposited at 250 °C) with porous morphology, when compared to anatase TiO2. This is verified
  • by our characterization of density and index of refraction of the films, even after leaching. We have recently compared the bioactivity of these films by growth of goblet cells showing comparable cell adhesion, viability and proliferation as anatase TiO2, however, all being significantly better than
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

One-step nonhydrolytic sol–gel synthesis of mesoporous TiO2 phosphonate hybrid materials

  • Yanhui Wang,
  • P. Hubert Mutin and
  • Johan G. Alauzun

Beilstein J. Nanotechnol. 2019, 10, 356–362, doi:10.3762/bjnano.10.35

Graphical Abstract
  • infrared spectroscopy, Raman spectroscopy, X-ray diffraction, and nitrogen physisorption. For P/Ti ratios up to 0.1, the hybrid materials can be described as aggregated, roughly spherical, crystalline anatase nanoparticles grafted by octylphosphonate groups via Ti–O–P bonds. The crystallite size decreases
  • modified by octylphosphonate units, where the octyl chains form an organic continuous matrix. Keywords: anatase; mesoporous; nonaqueous sol–gel; phosphonate; Introduction The development of porous hybrid organic–inorganic materials has been a major goal for materials scientists for more than 25 years [1
  • the 10 to 35 ppm range. Similar broad resonances have been reported for TiO2–phenylphosphonate hybrid materials prepared in a two-step sol–gel process from Ti(OiPr)4 and PhPO3H2 [15], whereas the hybrid materials obtained by surface modification of anatase supports usually show narrower resonances [36
PDF
Album
Full Research Paper
Published 05 Feb 2019

Uniform Sb2S3 optical coatings by chemical spray method

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Ilona Oja Acik,
  • Arvo Mere and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 198–210, doi:10.3762/bjnano.10.18

Graphical Abstract
  • ) samples (3-200-As-dep., 3-210-As-dep., Figure 1A; 6-200-As-dep., Figure 1B). The band centered at 145 cm−1 is a low frequency Eg vibrational mode of anatase-TiO2 [17], which is observed due to the laser beam penetrating to the substrate [12][16] through the discontinuous Sb2S3 layers. The TiO2 vibrational
  • and samples containing XRD-amorphous Sb2S3 (3-200-As-dep., 3-210-As-dep., Figure 2A; 6-200-As-dep., Figure 2B) show only diffraction peaks corresponding to cubic In2O3 (2θ = 21.3°, 30.4°, 35.3°, 37.4°, 41.4°, 45.3°, ICDD PDF 03-065-3170) and anatase-TiO2 (25.3°, 48.2°, ICDD PDF 00-016-0617). The
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2019

New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water

  • Emmanuel I. Unuabonah,
  • Robert Nöske,
  • Jens Weber,
  • Christina Günter and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2019, 10, 119–131, doi:10.3762/bjnano.10.11

Graphical Abstract
  • 750 °C for one hour. The originally used raw kaolinite is composed of kaolinite (k), quartz (qtz) and feldspar (microcline (kfs) and plagioclase (plg)) and small amounts of illite (il, JCPDF 98-009-0144) and anatase (TiO2, JCPDF 98-009-6946, at 2θ values of 25.29°). As already mentioned, the kaolinite
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Amorphous NixCoyP-supported TiO2 nanotube arrays as an efficient hydrogen evolution reaction electrocatalyst in acidic solution

  • Yong Li,
  • Peng Yang,
  • Bin Wang and
  • Zhongqing Liu

Beilstein J. Nanotechnol. 2019, 10, 62–70, doi:10.3762/bjnano.10.6

Graphical Abstract
  • the samples. All three samples displayed characteristic anatase TiO2 diffraction peaks of (101), (004), (200), (105), (211), (204), (116), and (215) (JCPDS card No. 21-1272) and the Ti peak at (101) [27]. No diffraction peaks related to Ni–P or NiCoP crystallites was found, illustrating that the
  • anatase peak intensities. The top-view FE-SEM images of TNAs and NixCoyP/TNAs are shown in Figure 2. It is obvious that the openings of the TNAs were smooth with even wall thickness. After electrodeposition of NiCoP, the openings of sample NixCoyP/TNAs were coarse with apparent deposit attached. Figure 3
  • demonstrates the TEM and HR-TEM images of NixCoyP/TNAs. The lattice spacing of 0.35 nm is ascribed to anatase TiO2 (101) plane [28], and no lattice fringe that corresponds to NiCoP can be finely resolved. Combining the XRD and SEM results, we conclude that amorphous NiCoP particles of ≈6 nm were attached to
PDF
Album
Supp Info
Full Research Paper
Published 07 Jan 2019

Impact of the anodization time on the photocatalytic activity of TiO2 nanotubes

  • Jesús A. Díaz-Real,
  • Geyla C. Dubed-Bandomo,
  • Juan Galindo-de-la-Rosa,
  • Luis G. Arriaga,
  • Janet Ledesma-García and
  • Nicolas Alonso-Vante

Beilstein J. Nanotechnol. 2018, 9, 2628–2643, doi:10.3762/bjnano.9.244

Graphical Abstract
  • sections. XRD The structure and crystallinity of the samples were studied by means of XRD and the diffractograms are presented in Figure 3. The Bragg–Brentano geometry was preferred for our work with thin films. After being thermally treated, all the samples exhibited the typical Bragg positions of anatase
  • peak exhibits an increasing relative intensity with higher ta, surpassing that of the (101) plane, and the ratios of the peak intensities for those planes are reported in Table 2. Acevedo-Peña et al. observed an enhancement of the thermal stability in anatase nanotubes with a preferred orientation
  • transport [46]. While the observed metallic Ti is attributed to the metal substrate, no significant contribution of the rutile phase was observed. The latter is also consistent with the observations of Dozzi et al., where even small amounts of F dopant atoms prevented the thermal transition from anatase to
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2018

Localized photodeposition of catalysts using nanophotonic resonances in silicon photocathodes

  • Evgenia Kontoleta,
  • Sven H. C. Askes,
  • Lai-Hung Lai and
  • Erik C. Garnett

Beilstein J. Nanotechnol. 2018, 9, 2097–2105, doi:10.3762/bjnano.9.198

Graphical Abstract
  • -electrochemical performance [39][40][41]. The amorphous TiO2 layer was further annealed at 350 °C for 3 h to form crystalline anatase TiO2, which led to an improved performance. The final TiO2 layers were characterized with X-ray diffraction (XRD) (Figure S2, Supporting Information File 1) and ellipsometry
  • (Figure S3, Supporting Information File 1) to verify their quality. Both the XRD pattern and optical constants (n and k values) matched the literature values for thin anatase TiO2 films [42]. The photocarrier density distribution under monochromatic illumination (532 or 638 nm) in the Si–TiO2
  • . Post-annealing of the samples in a tube oven, in air, at 350 °C for 3 h with a ramp of 11 °C/min was needed for the formation of anatase TiO2 (Figure S2, Supporting Information File 1). Photo-electrochemical deposition For the deposition of platinum nanoparticles, a photo-electrochemical cell (Zahner
PDF
Album
Supp Info
Full Research Paper
Published 03 Aug 2018

A scanning probe microscopy study of nanostructured TiO2/poly(3-hexylthiophene) hybrid heterojunctions for photovoltaic applications

  • Laurie Letertre,
  • Roland Roche,
  • Olivier Douhéret,
  • Hailu G. Kassa,
  • Denis Mariolle,
  • Nicolas Chevalier,
  • Łukasz Borowik,
  • Philippe Dumas,
  • Benjamin Grévin,
  • Roberto Lazzaroni and
  • Philippe Leclère

Beilstein J. Nanotechnol. 2018, 9, 2087–2096, doi:10.3762/bjnano.9.197

Graphical Abstract
  • bias, while fixing the growth temperature to 450 °C and the tilt angle between the substrate and the cathode axis to 60°. Anatase TiO2 layers with a 200 nm thick nanocolumnar morphology have been deposited on 85 nm-thick ITO-coated glass substrates (Naranjo B.V., sheet resistance of 15 Ω·sq). The
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2018

A visible-light-controlled platform for prolonged drug release based on Ag-doped TiO2 nanotubes with a hydrophobic layer

  • Caihong Liang,
  • Jiang Wen and
  • Xiaoming Liao

Beilstein J. Nanotechnol. 2018, 9, 1793–1801, doi:10.3762/bjnano.9.170

Graphical Abstract
  • . Only the peaks of titanium can be observed for the sample before heat treatment in Figure 2a. On the contrary, it can be observed that the peaks of anatase phase appear for the samples shown in Figure 2b while the weak peak of rutile appears at around 28.7° (marked by blue stars). The loading of Zn2
  • air atmosphere to form anatase phase. Decoration with Ag nanoparticles Chemical reduction was applied to decorate the nanotubes with Ag nanoparticles (AgNPs). The annealed TNTs were soaked in 4 mL 200 mM AgNO3 for 50 min in darkness and then dipped in 6 mL 5 mM NaBH4 for another 50 min. The resulting
PDF
Album
Full Research Paper
Published 14 Jun 2018

Controllable one-pot synthesis of uniform colloidal TiO2 particles in a mixed solvent solution for photocatalysis

  • Jong Tae Moon,
  • Seung Ki Lee and
  • Ji Bong Joo

Beilstein J. Nanotechnol. 2018, 9, 1715–1727, doi:10.3762/bjnano.9.163

Graphical Abstract
  • particles. When uniform, amorphous TiO2 particles were calcined at an optimal temperature (500 °C), the final sample exhibited beneficial characteristics such as high anatase crystallinity with a mixed phase of anatase and rutile and relatively high surface area. The photocatalytic efficiency of the uniform
  • TiO2 sample with high anatase crystallinity with mixed phase and high surface area was dramatically enhanced towards RhB degradation under UV–vis irradiation. We systemically discuss the relationship between the synthetic parameters in our synthesis and the properties of the final TiO2 products, as
  • crystallite, which results in a charge delocalization that leads to a decreasing chance of electron–hole recombination [19]. In addition, even though the well-crystallized anatase phase is superior for photocatalysis under UV conditions due to its intrinsic properties (e.g., low recombination rate of
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2018

Sulfur-, nitrogen- and platinum-doped titania thin films with high catalytic efficiency under visible-light illumination

  • Boštjan Žener,
  • Lev Matoh,
  • Giorgio Carraro,
  • Bojan Miljević and
  • Romana Cerc Korošec

Beilstein J. Nanotechnol. 2018, 9, 1629–1640, doi:10.3762/bjnano.9.155

Graphical Abstract
  • HCl (thermal treatment at 450 °C) or H2SO4 (thermal treatment at 600 °C), S1–S5 and the structural evolution of sample S4 as a function of thermal treatment temperature are shown in Figure 2. All of the samples have one major peak at 2θ ≈ 25.3°, which corresponds to the reflections of anatase phase
  • . Some patterns also show peaks at 2θ ≈ 29° and 2θ ≈ 32°, which correspond to reflections of silicon in the case of very thin films, which do not fully cover the substrate. Anatase is the only polymorphic modification of TiO2 present in the samples. Table 1 shows the average calculated crystallite size
  • of anatase in the thin films, calculated with Scherrer’s formula (Equation 1), for different samples. In Equation 1, L represents the calculated crystallite size, K is a dimensionless shape factor, λ is the X-ray wavelength, β is the peak width at half the maximum intensity (FWHM) and θ is the Bragg
PDF
Album
Full Research Paper
Published 04 Jun 2018

Light extraction efficiency enhancement of flip-chip blue light-emitting diodes by anodic aluminum oxide

  • Yi-Ru Huang,
  • Yao-Ching Chiu,
  • Kuan-Chieh Huang,
  • Shao-Ying Ting,
  • Po-Jui Chiang,
  • Chih-Ming Lai,
  • Chun-Ping Jen,
  • Snow H. Tseng and
  • Hsiang-Chen Wang

Beilstein J. Nanotechnol. 2018, 9, 1602–1612, doi:10.3762/bjnano.9.152

Graphical Abstract
  • traditional LED by producing a TiO2 microstructure array on p-GaN through dipping and rapid convective deposition and using noncrystalline TiO2 and anatase TiO2 with a diameter of 520 nm [13]. Huang et al. used Zn and Mg for ion implantation at the GZO thin layer and then adopted rapid thermal annealing to
PDF
Album
Full Research Paper
Published 30 May 2018

Sheet-on-belt branched TiO2(B)/rGO powders with enhanced photocatalytic activity

  • Huan Xing,
  • Wei Wen and
  • Jin-Ming Wu

Beilstein J. Nanotechnol. 2018, 9, 1550–1557, doi:10.3762/bjnano.9.146

Graphical Abstract
  • TiO2(B) is usually adopted to construct phase junctions with anatase TiO2 for applications in photocatalysis to facilitate charge separation; its intrinsic photocatalytic activity, especially when in the form of one- or three-dimensional nanostructures, has been rarely reported. In this study, a sheet
  • safety and rate capability [11][17][18][19][20]. For photocatalytic applications, TiO2(B) is usually combined with anatase TiO2 to construct a multiphase heterostructure to enhance charge separation and in turn the photocatalytic activity [21][22][23][24][25]. For example, Yang et al. synthesized anatase
  • nanocrystals on TiO2(B) single-crystal fibrils by a two-step process [23]. Li et al. prepared a biphase TiO2 core/shell nanofiber with anatase core and TiO2(B) shell [24]. Kandiel et al. used a hydrothermal technique to synthesize TiO2(B) nanofibers simultaneously decorated with anatase nanoparticles [25]. The
PDF
Album
Supp Info
Full Research Paper
Published 24 May 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
  • increased by increasing the photocatalyst dose [154]. Ku et al. reported that the combination of ZnO on the surface of TiO2 at a higher calcination temperature (>500 °C) prevents the transformation of anatase to rutile phase. It also enhances the specific surface area of the ZnO/TiO2 composite by inhibiting
  • matrix restricts the transformation of anatase to rutile phase possibly because of the presence of Ni2+ ions that stabilize the anatase phase. Further, the presence of NiO would hinder the aggregation of TiO2 particles, resulting in increase of surface area and decrease of particle size of the
  • . The coupling of Bi2O3 not only hindered the transformation of anatase phase to rutile but also facilitated the extension of the absorption range to the visible region. It also escalated the interfacial charge transfer between Bi2O3 and TiO2. The maximum photocatalytic activity under irradiation of
PDF
Album
Review
Published 16 May 2018

Semi-automatic spray pyrolysis deposition of thin, transparent, titania films as blocking layers for dye-sensitized and perovskite solar cells

  • Hana Krýsová,
  • Josef Krýsa and
  • Ladislav Kavan

Beilstein J. Nanotechnol. 2018, 9, 1135–1145, doi:10.3762/bjnano.9.105

Graphical Abstract
  • quality of our layers was tested in the pH-independent aqueous model redox system K3[Fe(CN)6]/K4[Fe(CN)6] [3]. Nernstian pH-dependence is demonstrated by the flat-band potential, φFB, of a single-crystal anatase electrode (Equation 1) [17]: As compared to this TiO2 (anatase) flat-band potential, the redox
  • potential of [Fe(CN)]63−/[Fe(CN)]64− (0.24 V vs Ag/AgCl) is sufficiently positive in aqueous electrolyte solutions at all pH values. As a result, a rectifying interface, at which no anodic current of [Fe(CN)6]4− oxidation flows, is obtained with high-quality titania (anatase) blocking layers because at
  • previously for rutile TiO2 films [18]. However, SPD titania films are likely to be of anatase structure as shown by our XRD analysis (see Figure S1 and Figure S2 in Supporting Information File 1) and confirmed by others [3][6][13]. Figure 3a,b shows that the type of FTO substrate used significantly
PDF
Album
Supp Info
Full Research Paper
Published 10 Apr 2018

Room-temperature single-photon emitters in titanium dioxide optical defects

  • Kelvin Chung,
  • Yu H. Leung,
  • Chap H. To,
  • Aleksandra B. Djurišić and
  • Snjezana Tomljenovic-Hanic

Beilstein J. Nanotechnol. 2018, 9, 1085–1094, doi:10.3762/bjnano.9.100

Graphical Abstract
  • ][31][32]. Semiconductor defects have been touted as an promising platform for the development of a quantum computer in the solid state [33] in which the usage of TiO2 could be possible with further research into its quantum and physical properties. TiO2 crystallises into three main forms: anatase
  • manner except that the substrate temperature was set to 160 °C and annealed at 450 °C in the same manner as a-450 °C-TiO2. This sample is labelled b-450 °C-TiO2. Preparation of TiO2 nanopowder samples Two nanopowder phases, anatase and rutile (MTI Corporation) were used. The anatase (rutile) has a purity
  • of 99% with an average particle size of 30 nm (45 nm). Four nanopowder samples were prepared: anatase and rutile suspended in deionised (DI) water, and anatase and rutile suspended in isopropyl alcohol (IPA). For the nanopowder–DI water mixture, 21.0 (20.6) ± 0.2 mg of anatase (rutile) nanopowder was
PDF
Album
Full Research Paper
Published 04 Apr 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
PDF
Album
Review
Published 03 Apr 2018

Noble metal-modified titania with visible-light activity for the decomposition of microorganisms

  • Maya Endo,
  • Zhishun Wei,
  • Kunlei Wang,
  • Baris Karabiyik,
  • Kenta Yoshiiri,
  • Paulina Rokicka,
  • Bunsho Ohtani,
  • Agata Markowska-Szczupak and
  • Ewa Kowalska

Beilstein J. Nanotechnol. 2018, 9, 829–841, doi:10.3762/bjnano.9.77

Graphical Abstract
  • antimicrobial properties of noble metals with the high photocatalytic activity of modified titania should result in a high purification efficiency of noble metal-modified titania [6][46][47][48][49][50][51][52]. Indeed, in our recent study, noble metal-modified faceted anatase titania (octahedral anatase
  • (Figure 4 (right)). The intrinsic absorption of anatase titania was observed at wavelengths shorter than 400 nm (Eg > 3 eV), and LSPR peaks appeared at longer wavelengths for gold NPs (λmax at ca. 560 nm) than for silver NPs (λmax at ca. 450 nm), correlating well with reported data for spherical NPs of
  • increase in activity was observed, especially for the fine anatase sample (ST01, 93.1%). Modification with gold caused a slight increase in activity under UV irradiation reaching 96.2%, 94.2% and 77.5%, respectively. An increase in photocatalytic activity after titania modification with NPs of NMs is not
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2018

Synthesis and characterization of two new TiO2-containing benzothiazole-based imine composites for organic device applications

  • Anna Różycka,
  • Agnieszka Iwan,
  • Krzysztof Artur Bogdanowicz,
  • Michal Filapek,
  • Natalia Górska,
  • Damian Pociecha,
  • Marek Malinowski,
  • Patryk Fryń,
  • Agnieszka Hreniak,
  • Jakub Rysz,
  • Paweł Dąbczyński and
  • Monika Marzec

Beilstein J. Nanotechnol. 2018, 9, 721–739, doi:10.3762/bjnano.9.67

Graphical Abstract
  • of imine:TiO2 composites for organic device applications were examined. The investigated titanium dioxide (in anatase form, obtained via the sol–gel method) exhibited a surface area of 59.5 m2/g according to Brunauer–Emmett–Teller theory, and its structure is a combination of both meso- and
  • physical parameters of titanium dioxide TiO2 powder was prepared via the sol–gel technique using titanium(IV) isopropoxide (TIPO) as a precursor as was fully described in our previous paper [34]. The obtained TiO2 powder exhibited an anatase form, which was confirmed from X-ray diffraction (XRD
  • mixtures and their pure components, TiO2, SP1 and SP2, were obtained at room temperature. The most dominant and broad band in the spectrum of pure TiO2 in anatase form is located in the low wavenumber region below 1000 cm−1 and related to the ν(Ti–O) stretching mode. Interestingly, the FT-MIR spectra of
PDF
Album
Full Research Paper
Published 26 Feb 2018

Combined pulsed laser deposition and non-contact atomic force microscopy system for studies of insulator metal oxide thin films

  • Daiki Katsube,
  • Hayato Yamashita,
  • Satoshi Abo and
  • Masayuki Abe

Beilstein J. Nanotechnol. 2018, 9, 686–692, doi:10.3762/bjnano.9.63

Graphical Abstract
  • not required. The performance of the combined system is demonstrated for the preparation and high-resolution NC-AFM imaging of atomically flat thin films of anatase TiO2(001) and LaAlO3(100). Keywords: atomic resolution; frequency modulation atomic force microscopy; insulator thin film; pulsed laser
  • with NC-AFM. Finally, we demonstrate atomic resolution NC-AFM imaging of anatase TiO2(001) and LaAlO3(100). Both materials are important in the field of materials science, and it has been challenging to form and image atomically flat and clean surfaces of these two oxides thus far. Experimental Figure
  • determining the sample preparation conditions of anatase TiO2(001) is shown in Figure 3 [56]. Referring to previous studies [52][53], we started the PLD with the following sample parameters: temperature Ts = 700 °C, oxygen partial pressure PO ≈ 1 × 10−3 Pa, laser density I = 1.0 J/cm2, and laser repetition
PDF
Album
Full Research Paper
Published 21 Feb 2018

Fabrication and photoactivity of ionic liquid–TiO2 structures for efficient visible-light-induced photocatalytic decomposition of organic pollutants in aqueous phase

  • Anna Gołąbiewska,
  • Marta Paszkiewicz-Gawron,
  • Aleksandra Sadzińska,
  • Wojciech Lisowski,
  • Ewelina Grabowska,
  • Adriana Zaleska-Medynska and
  • Justyna Łuczak

Beilstein J. Nanotechnol. 2018, 9, 580–590, doi:10.3762/bjnano.9.54

Graphical Abstract
  • , low cost, nontoxicity and availability [5]. Despite many advantages, the commercial application of TiO2 to solve environmental problems is still limited. The main obstacle is the relatively wide band gap of 3.2 eV for anatase that limits the photoexcitation wavelength needed to activate photocatalytic
  • typical diffraction peaks corresponding to anatase phase of TiO2 (2θ = 25.3°, 37.8°, 48.1°, 54°, 54.9°, 62.7°, 68.5°, 70.2°, 75°, 82.6°) were observed for all photocatalysts. The analysis confirmed that the samples do not contain any impurities and anatase phase of high quality was formed. Based on the
  • line width analysis of the anatase (101) reflection peak, the average crystal size of the crystallites (d) forming photocatalysts with the highest (IL:TBOT molar ratio 1:3) and the lowest photoactivity (IL:TBOT molar ratio 1:10), estimated by the Scherrer equation, were determined and summarized in
PDF
Album
Full Research Paper
Published 14 Feb 2018

Influence of the preparation method on the photocatalytic activity of Nd-modified TiO2

  • Patrycja Parnicka,
  • Paweł Mazierski,
  • Tomasz Grzyb,
  • Wojciech Lisowski,
  • Ewa Kowalska,
  • Bunsho Ohtani,
  • Adriana Zaleska-Medynska and
  • Joanna Nadolna

Beilstein J. Nanotechnol. 2018, 9, 447–459, doi:10.3762/bjnano.9.43

Graphical Abstract
  • ultraviolet light irradiation for excitation (the band gap of anatase is about 3.2 eV) and low quantum yield (due to the fast recombination of electron–hole pairs) [7]. These restrictions on its application could be overcome by modifying TiO2, which results in increased activity and ability to work under
  • patterns of the examined samples are shown in Figure 1. In all synthesized photocatalysts, the diffraction pattern presents a group of lines at 2θ values of 25.4, 37.9, 48.1, 54.1, 55.1 and 62.9°, which are characteristic of anatase phase. The phase transformation to rutile has not occurred despite the
  • Nd3+ ions adsorbed either on the titania surface or Nd3+ cations were placed inside the titania lattice (titania doping) [24][31]. Using the Scherrer equation, the average crystallite size of anatase was determined and presented in Table 1. For modified samples, 0.25% Nd-TiO2(SHT) and 0.25% Nd-TiO2(HT
PDF
Album
Full Research Paper
Published 06 Feb 2018

Photocatalytic and adsorption properties of TiO2-pillared montmorillonite obtained by hydrothermally activated intercalation of titanium polyhydroxo complexes

  • Mikhail F. Butman,
  • Nikolay L. Ovchinnikov,
  • Nikita S. Karasev,
  • Nataliya E. Kochkina,
  • Alexander V. Agafonov and
  • Alexandr V. Vinogradov

Beilstein J. Nanotechnol. 2018, 9, 364–378, doi:10.3762/bjnano.9.36

Graphical Abstract
  • crystallinity (nanocrystals) representing a mixture of anatase and rutile phases. The structures exhibit improved adsorption and photocatalytic activity as a result of hydrothermally activated intercalation of titanium polyhydroxo complexes (i.e., TiCl4 hydrolysis products) in a solution with a concentration
  • the synthesis conditions with a low pH value of the medium. The diffractograms of the TiO2-pillared samples calcined at 300 °C have shown the absence of the anatase phase, and from 500 °C broad and weak peaks of both anatase (at 2θ = 25.3°, 47.8°, 54.4°) and rutile (at 2θ = 27.7°) could be identified
  • , which is in agreement with the data of [28] where the co-presence of both anatase and rutile phases at calcination temperatures of 450–500 °C has been established. The TiO2-PMMHx samples (Figure 2) showed significantly more sharp and intense peaks of the anatase and rutile phases at the above mentioned
PDF
Album
Full Research Paper
Published 31 Jan 2018

Bombyx mori silk/titania/gold hybrid materials for photocatalytic water splitting: combining renewable raw materials with clean fuels

  • Stefanie Krüger,
  • Michael Schwarze,
  • Otto Baumann,
  • Christina Günter,
  • Michael Bruns,
  • Christian Kübel,
  • Dorothée Vinga Szabó,
  • Rafael Meinusch,
  • Verónica de Zea Bermudez and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2018, 9, 187–204, doi:10.3762/bjnano.9.21

Graphical Abstract
  • reported. All materials are monoliths with diameters of up to ca. 4.5 cm. The materials are macroscopically homogeneous and porous with surface areas between 170 and 210 m2/g. The diameter of the TiO2 nanoparticles (NPs) – mainly anatase with a minor fraction of brookite – and the Au NPs are on the order
  • authors also showed that methanol is the most efficient sacrificial agent when compared to isopropanol, glycerol, and glucose [25]. A further study by Jose et al. focused on the effect of TiO2 modification (anatase and/or rutile). These authors observed that TiO2 P25/Au mixed systems performed best in the
  • entire UV–visible range when the TiO2 is composed of 75% of anatase and 25% of rutile with identical AuNPs [26]. In an interesting new approach, Zhang et al. found that Janus particles (rather than the core–shell or randomly organized materials described so far) based on large TiO2 particles with
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2018
Other Beilstein-Institut Open Science Activities