Search results

Search for "biosensing" in Full Text gives 86 result(s) in Beilstein Journal of Nanotechnology.

Porous silver-coated pNIPAM-co-AAc hydrogel nanocapsules

  • William W. Bryan,
  • Riddhiman Medhi,
  • Maria D. Marquez,
  • Supparesk Rittikulsittichai,
  • Michael Tran and
  • T. Randall Lee

Beilstein J. Nanotechnol. 2019, 10, 1973–1982, doi:10.3762/bjnano.10.194

Graphical Abstract
  • delivery, biosensing, chemical separation, nanoscale reactors, and catalysis [31][32][33][34][35][36][37][38][39][40]. While these examples represent a vast array of potential applications using nanocapsules, one particularly interesting application involves the use of NIR-responsive metal nanoparticles to
PDF
Album
Full Research Paper
Published 04 Oct 2019

A biomimetic nanofluidic diode based on surface-modified polymeric carbon nitride nanotubes

  • Kai Xiao,
  • Baris Kumru,
  • Lu Chen,
  • Lei Jiang,
  • Bernhard V. K. J. Schmidt and
  • Markus Antonietti

Beilstein J. Nanotechnol. 2019, 10, 1316–1323, doi:10.3762/bjnano.10.130

Graphical Abstract
  • Chemistry, Beihang University, 100191 Beijing, P.R. China 10.3762/bjnano.10.130 Abstract A controllable ion transport including ion selectivity and ion rectification across nanochannels or porous membranes is of great importance because of potential applications ranging from biosensing to energy conversion
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2019

Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices

  • Giulia Lo Dico,
  • Bernd Wicklein,
  • Lorenzo Lisuzzo,
  • Giuseppe Lazzara,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2019, 10, 1303–1315, doi:10.3762/bjnano.10.129

Graphical Abstract
  • ][33][34]. This type of hybrid material offers the advantage of a large interface improving the contact efficiency between the entrapped active molecules and the external environment allowing for the development of promising devices for biosensing [35][36] and enzymatic biofuel cells (EBCs) [37][38
  • analyzer) was carried out to estimate the amount of GOx loaded into the HNTs. Biosensing test Cyclic voltammetry (CV) was performed with a standard three-electrode electrochemical cell connected to a Solartron 1480 MultiStat potentiostat. A platinum wire was used as a counter electrode and Ag|AgCl (soaked
  • in 1.0 M KCl) was used as a reference electrode. In the biosensing tests, the working electrode was a film of 30 × 5 mm × 0.014 (3.49 mg, containing 0.028 mg of immobilized GOx) immersed in a potassium ferricyanide solution (0.2 mM) as mediator containing 0.1 M of phosphate buffered solution (pH 7
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

Experimental study of an evanescent-field biosensor based on 1D photonic bandgap structures

  • Jad Sabek,
  • Francisco Javier Díaz-Fernández,
  • Luis Torrijos-Morán,
  • Zeneida Díaz-Betancor,
  • Ángel Maquieira,
  • María-José Bañuls,
  • Elena Pinilla-Cienfuegos and
  • Jaime García-Rupérez

Beilstein J. Nanotechnol. 2019, 10, 967–974, doi:10.3762/bjnano.10.97

Graphical Abstract
  • , biofunctionalization is a key step for providing a label-free biosensing device able to analyze a chemical or a biological sample without requiring any pre-treatment (as for example labeling). Since the operation of photonic biosensors based on evanescent waves relies on the interaction between the target analytes and
  • the immobilization density by fluorescence microarray measurements, densities corresponding to a close-packed monolayer of the half-antibodies were obtained with standard deviation of 8% indicating a good reproducibility of the immobilization method [13]. Biosensing experiment Figure 7 shows the
  • results obtained for one of the groups of PBG sensing structures in the biosensing experiments carried out. After an initial flow of PBS-T buffer (phosphate buffered saline + 0.01% Tween 20) over a period of 10 min to establish the baseline, BSA 1 µg/mL in PBS-T was flowed over the biofunctionalized PBG
PDF
Album
Full Research Paper
Published 26 Apr 2019

On the transformation of “zincone”-like into porous ZnO thin films from sub-saturated plasma enhanced atomic layer deposition

  • Alberto Perrotta,
  • Julian Pilz,
  • Stefan Pachmajer,
  • Antonella Milella and
  • Anna Maria Coclite

Beilstein J. Nanotechnol. 2019, 10, 746–759, doi:10.3762/bjnano.10.74

Graphical Abstract
  • orientation. The insight obtained in this study could foster further research on Zn-alkoxide-derived porous ZnO, with important applications, e.g., in photocatalysis and biosensing. a) Growth per cycle (GPC) as a function of the plasma dose time. The saturation of the PE-ALD ZnO recipe was reached at 6 s of
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2019

Commercial polycarbonate track-etched membranes as substrates for low-cost optical sensors

  • Paula Martínez-Pérez and
  • Jaime García-Rupérez

Beilstein J. Nanotechnol. 2019, 10, 677–683, doi:10.3762/bjnano.10.67

Graphical Abstract
  • recognition to happen inside the structure, the whole optical field interacts with the target substances. Furthermore, as the porous structure implies an increase in the surface-to-volume ratio, more receptors and, consequently, more analytes bind to the surface in biosensing applications. This allows the
PDF
Album
Full Research Paper
Published 07 Mar 2019

Advanced scanning probe lithography using anatase-to-rutile transition to create localized TiO2 nanorods

  • Julian Kalb,
  • Vanessa Knittel and
  • Lukas Schmidt-Mende

Beilstein J. Nanotechnol. 2019, 10, 412–418, doi:10.3762/bjnano.10.40

Graphical Abstract
  • optoelectronic characteristics. The fabrication of nanostructured TiO2 is inexpensive and hence employed in many applications such as photodetectors [2], photovoltaics [3][4][5][6], photocatalysis [7][8][9][10][11], surficial disinfection [12], biosensing [13], gas sensing [14][15][16], dewetting [17][18][19
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

Biocompatible organic–inorganic hybrid materials based on nucleobases and titanium developed by molecular layer deposition

  • Leva Momtazi,
  • Henrik H. Sønsteby and
  • Ola Nilsen

Beilstein J. Nanotechnol. 2019, 10, 399–411, doi:10.3762/bjnano.10.39

Graphical Abstract
  • and therapy, and probes for biosensing [1]. Nucleobases are constituents of DNA and RNA and can interact with different metals to form several molecular assemblies [2][3]. In the 1960s, a powerful antitumor agent named cisplatin (cis-[Pt(NH3)2Cl2]) was discovered by Rosenberg [4]. Later it was
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots

  • Siyi Hu,
  • Yu Ren,
  • Yue Wang,
  • Jinhua Li,
  • Junle Qu,
  • Liwei Liu,
  • Hanbin Ma and
  • Yuguo Tang

Beilstein J. Nanotechnol. 2019, 10, 22–31, doi:10.3762/bjnano.10.3

Graphical Abstract
  • can be easily tuned from the visible to the near-infrared (NIR) spectrum. QDs have emerged as the next generation of luminescence materials, and they have been widely used as nanoprobes for bioimaging and biosensing. As semiconductor nanocrystals, their large surface-to-volume ratio is advantageous
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2019

Accurate control of the covalent functionalization of single-walled carbon nanotubes for the electro-enzymatically controlled oxidation of biomolecules

  • Naoual Allali,
  • Veronika Urbanova,
  • Mathieu Etienne,
  • Xavier Devaux,
  • Martine Mallet,
  • Brigitte Vigolo,
  • Jean-Joseph Adjizian,
  • Chris P. Ewels,
  • Sven Oberg,
  • Alexander V. Soldatov,
  • Edward McRae,
  • Yves Fort,
  • Manuel Dossot and
  • Victor Mamane

Beilstein J. Nanotechnol. 2018, 9, 2750–2762, doi:10.3762/bjnano.9.257

Graphical Abstract
  • surface of the CNTs. This system can be applied to biosensing, as exemplified for glucose detection. The well-controlled and well-characterized functionalization of essentially clean SWCNTs enabled us to establish the maximum level of impurity content, below which the f-SWCNT intrinsic electrochemical
  • activity is not jeopardized. Keywords: biosensing; carbon nanotubes; covalent functionalization; electrocatalysis; ferrocene; Introduction Carbon nanotubes (CNTs) have been recognized as interesting candidates for developing electrochemical sensors for almost two decades [1][2][3]. They have been used to
  • application of these f-SWCNTs in biosensing, the electrode was further modified with HIPCO-H2SO4-FcEtG2, diaphorase, NADH and glucose dehydrogenase (GDH). Upon addition of glucose into the solution, the molecules were oxidized by GDH in gluconolactone and NADH cofactor was simultaneously produced. NADH was
PDF
Album
Supp Info
Full Research Paper
Published 26 Oct 2018

Self-assembled quasi-hexagonal arrays of gold nanoparticles with small gaps for surface-enhanced Raman spectroscopy

  • Emre Gürdal,
  • Simon Dickreuter,
  • Fatima Noureddine,
  • Pascal Bieschke,
  • Dieter P. Kern and
  • Monika Fleischer

Beilstein J. Nanotechnol. 2018, 9, 1977–1985, doi:10.3762/bjnano.9.188

Graphical Abstract
  • remarkable optical properties make them attractive for applications in biosensing, biomedical science and as optical antennas [6][7][8]. In particular, metal nanoparticles can be employed to strongly enhance the signal intensity in chemically specific Raman sensing [9]. This technique is known as surface
PDF
Album
Full Research Paper
Published 12 Jul 2018

Excitation of nonradiating magnetic anapole states with azimuthally polarized vector beams

  • Aristeidis G. Lamprianidis and
  • Andrey E. Miroshnichenko

Beilstein J. Nanotechnol. 2018, 9, 1478–1490, doi:10.3762/bjnano.9.139

Graphical Abstract
  • useful applications in biosensing, i.e., in the detection of molecules that interact strongly once exposed to magnetic field hotspots, which nanoparticles in a magnetic anapole state can offer in their near field. Moreover, the signal-to-noise ratio of an MRI machine, that is defined as the ratio of the
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
PDF
Album
Review
Published 03 Apr 2018

Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition

  • Nagamalai Vasimalai,
  • Vânia Vilas-Boas,
  • Juan Gallo,
  • María de Fátima Cerqueira,
  • Mario Menéndez-Miranda,
  • José Manuel Costa-Fernández,
  • Lorena Diéguez,
  • Begoña Espiña and
  • María Teresa Fernández-Argüelles

Beilstein J. Nanotechnol. 2018, 9, 530–544, doi:10.3762/bjnano.9.51

Graphical Abstract
  • , multiplexing capabilities, cost-effectiveness and ease of use [1]. Although inorganic semiconductor quantum dots are the most widely studied fluorescent nanoparticles in bioimaging, biosensing and drug delivery applications, carbon-based ultra-small nanoparticles including carbon quantum dots (C-dots) and
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2018

Fabrication of gold-coated PDMS surfaces with arrayed triangular micro/nanopyramids for use as SERS substrates

  • Jingran Zhang,
  • Yongda Yan,
  • Peng Miao and
  • Jianxiong Cai

Beilstein J. Nanotechnol. 2017, 8, 2271–2282, doi:10.3762/bjnano.8.227

Graphical Abstract
  • detection of chemical molecules and biological species at low concentrations. SERS has recently attracted wide-ranging attention from researchers in many fields, including biosensing and bioanalysis [1][2][3], cancer cell work [4], virus identification [5][6], food safety [7][8] and gas vapor research [9
PDF
Album
Full Research Paper
Published 01 Nov 2017

Carbon nano-onions as fluorescent on/off modulated nanoprobes for diagnostics

  • Stefania Lettieri,
  • Marta d’Amora,
  • Adalberto Camisasca,
  • Alberto Diaspro and
  • Silvia Giordani

Beilstein J. Nanotechnol. 2017, 8, 1878–1888, doi:10.3762/bjnano.8.188

Graphical Abstract
  • biocompatibility [20]. We have previously shown that the pH-dependent switching ability of a dye is preserved when attached to CNOs [21] and on single-wall carbon nanotubes, [22] both in solution and in vitro. Thus, CNOs are suitable nanomaterials for biosensing applications. We exploited the photoinduced electron
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2017

Near-infrared-responsive, superparamagnetic Au@Co nanochains

  • Varadee Vittur,
  • Arati G. Kolhatkar,
  • Shreya Shah,
  • Irene Rusakova,
  • Dmitri Litvinov and
  • T. Randall Lee

Beilstein J. Nanotechnol. 2017, 8, 1680–1687, doi:10.3762/bjnano.8.168

Graphical Abstract
  • various applications, such as energy conversion in solar cells [10][11], biosensing [12], photothermal therapy [13], and biomedical imaging [14]. Surface modification with an inorganic coating, such as silica, can lend biocompatibility to the nanoparticles [15][16][17][18]. A gold shell on magnetic
PDF
Album
Full Research Paper
Published 14 Aug 2017

Uptake and intracellular accumulation of diamond nanoparticles – a metabolic and cytotoxic study

  • Antonín Brož,
  • Lucie Bačáková,
  • Pavla Štenclová,
  • Alexander Kromka and
  • Štěpán Potocký

Beilstein J. Nanotechnol. 2017, 8, 1649–1657, doi:10.3762/bjnano.8.165

Graphical Abstract
  • in its nanostructured forms (nanoparticles, nanostructured diamond films and composite scaffolds) [9]. ND particles can act in the single particle form (bioimaging and biosensing) [10][11], can serve as a stable delivery platform for therapeutic antibodies [12], or can be incorporated into various
PDF
Album
Supp Info
Full Research Paper
Published 10 Aug 2017

Nanostructures for sensors, electronics, energy and environment III

  • Nunzio Motta

Beilstein J. Nanotechnol. 2017, 8, 1530–1531, doi:10.3762/bjnano.8.154

Graphical Abstract
  • ., silicene, phosphorene, transition metal dichalcogenides, MXenes), which now number more than 6,000. The topic of nanoparticles is the focus of this Thematic Series, the use of which spans from biosensing to gas detection and from removing pollutants from water to new generations of solar cells. The
  • interaction between light and plasma electrons generated by gold nanoparticles is critical for the development of biosensing platforms [2] and for sensors based on surface enhanced Raman scattering [3]. New methods for creating thin films are expected to provide enhanced efficiency in solar cells [4] at a
PDF
Editorial
Published 27 Jul 2017

A biofunctionalizable ink platform composed of catechol-modified chitosan and reduced graphene oxide/platinum nanocomposite

  • Peter Sobolewski,
  • Agata Goszczyńska,
  • Małgorzata Aleksandrzak,
  • Karolina Urbaś,
  • Joanna Derkowska,
  • Agnieszka Bartoszewska,
  • Jacek Podolski,
  • Ewa Mijowska and
  • Mirosława El Fray

Beilstein J. Nanotechnol. 2017, 8, 1508–1514, doi:10.3762/bjnano.8.151

Graphical Abstract
  • polymerase chain reaction (PCR) products and low non-specific binding. Our results demonstrate that catechol-modified chitosan/rGO–Pt nanocomposites can be used as inks for piezoelectric printing and facilitate the attachment of biorecognition elements for biosensor applications. Keywords: biosensing
  • . The seminal work of Novoselov and Geim [2] introduced graphene, a two-dimensional sheet form of carbon. From the point of view of biosensing, graphene possesses a number of extremely attractive properties [3], including large specific surface area and high electron mobility. Importantly, graphene can
  • aqueous polymer solution and can be printed by using a commercial non-contact piezoelectric microplotter. While the application of chitosan/graphene nanocomposites for biosensing is established [4], to our knowledge, this is the first time that such a nanocomposite has been formulated as ink. Importantly
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2017

Selective detection of Mg2+ ions via enhanced fluorescence emission using Au–DNA nanocomposites

  • Tanushree Basu,
  • Khyati Rana,
  • Niranjan Das and
  • Bonamali Pal

Beilstein J. Nanotechnol. 2017, 8, 762–771, doi:10.3762/bjnano.8.79

Graphical Abstract
  • nanoparticles (AuNPs) have attracted a great deal of research interest for various applications in biosensing. AuNPs have strong binding capability to the phosphate and sugar groups in DNA, rendering unique physicochemical properties for detection of metal ions. The formation of Au–DNA nanocomposites is evident
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2017

Comparison of four methods for the biofunctionalization of gold nanorods by the introduction of sulfhydryl groups to antibodies

  • Xuefeng Wang,
  • Zhong Mei,
  • Yanyan Wang and
  • Liang Tang

Beilstein J. Nanotechnol. 2017, 8, 372–380, doi:10.3762/bjnano.8.39

Graphical Abstract
  • GNR biofunctionalization and can be easily extended to other sensing applications based on other gold nanostructures or new biomolecules. Keywords: biofunctionalization; biosensing; four methods; gold nanorod; introduction of sulfhydryl groups; Introduction Gold nanorods (GNRs) are widely used in
  • biomedicine, including biosensing [1][2][3], photothermal therapy [4][5][6], molecular imaging [7][8], and controlled drug delivery [5][9] because of their distinct optical properties, i.e., high refractive index sensitivity and a tunable longitudinal plasmon band by varying the aspect ratio [10][11]. However
  • bond, respectively [22][23]. Joshi et al. reported that antibodies can directly bind with GNRs via modified Fc portions for specific molecular imaging by using PEG6-CONHNH2 [23]. However, the preparation of GNRs for biosensing through PEG6-CONHNH2 modification has yet to be examined. Another
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2017

Flexible photonic crystal membranes with nanoparticle high refractive index layers

  • Torben Karrock,
  • Moritz Paulsen and
  • Martina Gerken

Beilstein J. Nanotechnol. 2017, 8, 203–209, doi:10.3762/bjnano.8.22

Graphical Abstract
  • gratings properties, the waveguide properties, and the angle of incidence. Many different fabrication approaches have been presented and recent publications show high potential for future products, including multiparametric label-free biosensing [4], photonic crystal enhanced microscopy [5], single
PDF
Album
Full Research Paper
Published 20 Jan 2017

Tunable plasmons in regular planar arrays of graphene nanoribbons with armchair and zigzag-shaped edges

  • Cristian Vacacela Gomez,
  • Michele Pisarra,
  • Mario Gravina and
  • Antonello Sindona

Beilstein J. Nanotechnol. 2017, 8, 172–182, doi:10.3762/bjnano.8.18

Graphical Abstract
  • been attracting significant interest, due their capability to couple with light and other charged particles, thus paving the way to novel applications in a wide range of technologies, as diverse as biosensing, light harvesting or quantum information [1][2][3][4][5]. On more fundamental grounds, plasmon
PDF
Album
Full Research Paper
Published 17 Jan 2017

Surface-enhanced Raman scattering of self-assembled thiol monolayers and supported lipid membranes on thin anodic porous alumina

  • Marco Salerno,
  • Amirreza Shayganpour,
  • Barbara Salis and
  • Silvia Dante

Beilstein J. Nanotechnol. 2017, 8, 74–81, doi:10.3762/bjnano.8.8

Graphical Abstract
  • a functional substrate for biosensing based on SERS effect are presented. In particular, it is reported on SERS effect on SLBs obtained from spontaneous lipid vesicle fusion and representing a simplified model of living cells membrane. Since the vesicle fusion is not trivial to achieve on Au
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2017
Other Beilstein-Institut Open Science Activities