Search results

Search for "carbon" in Full Text gives 1096 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • ]. This viewpoint was confirmed by many experiments later, such as the electrical signal generated by the flow of water through single-walled carbon nanotubes [7], carbon nanosheets [8], and nanoparticles [9]. Regarding the principle of this phenomenon, the common explanation is that charge transfer
  • improve the efficiency of energy harvesting in MEGs, and a considerable number of studies have focused on nanomaterials [9][21]. The generation of a flowing current through the injection of water flow into carbon nanotubes was one of the initial studies of MEGs [4][5][10][22][23]. Since then, more works
  • , photolithography, embossing, deposition, and sol–gel nanofabrication, all of which can provide high specific surface areas [19][24][25][26][27][28]. Nanomaterials can also be divided into inorganic nanomaterials and organic nanomaterials. In inorganic nanomaterials, metal nanomaterials and carbon nanomaterials
PDF
Album
Review
Published 25 Oct 2022

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • (PEGDA) [132] and poly(acrylic-co-maleic) acid (PAMA) [133]. It is also important to notice that there are numerous studies describing the use of composite materials containing combinations of various substances, both organic and inorganic. For example, studies involving PLA and carbon nanotubes [134
PDF
Album
Review
Published 24 Oct 2022

Rapid fabrication of MgO@g-C3N4 heterojunctions for photocatalytic nitric oxide removal

  • Minh-Thuan Pham,
  • Duyen P. H. Tran,
  • Xuan-Thanh Bui and
  • Sheng-Jie You

Beilstein J. Nanotechnol. 2022, 13, 1141–1154, doi:10.3762/bjnano.13.96

Graphical Abstract
  • pollutants with light under ambient conditions [10]. Due to its unique properties, such as high chemical stability and low synthesis cost, graphitic carbon nitride has attracted considerable attention in the realm of environmental remediation [11][12][13]. It is an organic semiconductor that effectively
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • , Charsadda Road, Larama, Peshawar, Pakistan Department of Botany, Government College Women University, Sialkot, Pakistan College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China 10.3762/bjnano.13.93 Abstract Carbon dots (CDs) show extensive potential in various fields such as
  • especially focuses on the recent advancement (2015–2022) in the green synthesis of CDs, their application in metal ions sensing and microbial bioimaging, detection, and viability studies as well as their applications in pathogenic control and plant growth promotion. Keywords: bioimaging; carbon dots; carbon
  • quantum dots; green synthesis; plant growth promotion; sensing; Introduction Carbon dots (CDs) are a carbon-based nanomaterial with a few nanometers feature sizes. CDs consist of a carbon core, the surface of which is functionalized with various groups. Xu et al. accidentally discovered fluorescent
PDF
Album
Review
Published 05 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • , researchers have tried several ways to develop different materials using chitosan-based nanocomposites of silver, copper, gold, zinc oxide, titanium oxide, carbon nanotubes, graphene oxide, and biosilica. The combination of materials helps in the expression of ideal bone formation genes of alkaline
  • oxide, zinc oxide, carbon nanotubes, graphene oxide, and biosilica was developed to improve bone scaffolds for better bone tissue repair and regeneration [11]. In tissue engineering applications, nanoscale topological characteristics influence cell adhesion, survival, proliferation, and differentiation
  • and regeneration [14]. Nanomaterials such as silver [15], gold [16][17], titanium oxide [18], zinc oxide [19][20], carbon nanotubes [21][22], graphene [23] and biosilica have been studied in terms of their osteogenic potential in stem cell differentiation. Chitosan materials are often combined with
PDF
Review
Published 29 Sep 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • use carbon nanotubes or carbon quantum dots to modify MIL101(Fe) to enhance its conductivity and broaden its visible-light response [37][38]. Another strategy is to construct MIL101-based heterostructures with the aid of narrow-gap semiconductors to promote the separation and transfer of
  • Bi2O3/MIL101(Fe) heterojunction [57]. In the C 1s spectrum (Figure 4d), peaks at 284.8, 285.6, and 288.8 eV can be assigned to the carbon atom bond (C–C) in the benzoic rings and carbon organic linkers (C–O and O–C=O) of the H2BDC ligand, respectively [37]. Optical and electronic properties To
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • effects, and carbon monoxide poisoning [16][17]. The electrocatalytic reactivity (mechanism and kinetics) of silver has similarities to that of Pt regarding the ORR performance, with considerably high onset potential, half-wave potential, current density, and number of transferred electrons. The important
  • -workers reported the ORR activity of Ag–Co NPs dispersed on Vulcan XC72 carbon by incipient-wetness impregnation [22]. In general, the addition of a third metal to a bimetallic composition is considered to be an effective method to augment the absorption energy and improve the kinetics of the ORR [23]. Gu
  • to the O–C linkage (Figure 6d). The peaks at 286 and 284.7 eV (Figure S10b, Supporting Information File 1) signify the graphitic nature of the carbon and C–O functional groups, respectively, which come from the supporting matrix. After successfully analysing the morphology and the active sites of ACC
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Effects of focused electron beam irradiation parameters on direct nanostructure formation on Ag surfaces

  • Jānis Sniķeris,
  • Vjačeslavs Gerbreders,
  • Andrejs Bulanovs and
  • Ēriks Sļedevskis

Beilstein J. Nanotechnol. 2022, 13, 1004–1010, doi:10.3762/bjnano.13.87

Graphical Abstract
  • emitted from an area much larger than the size of EB. The size of this area and the amount and energy of emitted SE depend on several factors, including the energy, current, and angle of incidence of the EB, as well as the material and thickness of the target [20][21]. The formation of carbon layers is a
  • and prevent a buildup of carbon in the irradiated area. Baking can be used to desorb light molecules with a high vapour pressure at the baking temperature; however, it is a slow process. Plasma cleaning procedures can rapidly remove contamination; however, they can damage some sensitive samples [24
  • ][25]. It should be noted that the growth rate of carbon layers under EB irradiation is also affected by the types of hydrocarbon molecules present in the vacuum chamber [26]. Normally, the deposition of carbon via focused EB irradiation is viewed as a simple addition of mass to the irradiated area
PDF
Album
Full Research Paper
Published 22 Sep 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
PDF
Album
Review
Published 08 Sep 2022

Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants

  • Chao-Wei Huang,
  • Shu-Yu Hsu,
  • Jun-Han Lin,
  • Yun Jhou,
  • Wei-Yu Chen,
  • Kun-Yi Andrew Lin,
  • Yu-Tang Lin and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 882–895, doi:10.3762/bjnano.13.79

Graphical Abstract
  • Fenton method exhibits high oxidation capability and low selectivity for removing most organic substances. It can decompose organic pollutants into smaller organic molecules and generate carbon dioxide, water, and inorganic ions [17]. Generally, the ferrous ion employed in the Fenton reaction is from
  • [24], carbon spheres [25], BiOBr [26], and Ag2CrO4 [27]) to form heterojunction structures or doping other atoms into LaFeO3 [28] are comprehensively developed. For instance, Orak et al. impregnated LaFeO3 or LaTi0.15Fe0.85O3 on the monolithic cordierite structure, which could provide light
  • . EDS detection showed that the synthesized samples exhibited the accurate Fe/Ni atomic ratios as designed. The detailed EDS data was provided in Table S3. The lanthanum, nickel, iron, and oxygen were analyzed from the samples, and the carbon was detected from the carbon tape. MB removal test using
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2022

Temperature and chemical effects on the interfacial energy between a Ga–In–Sn eutectic liquid alloy and nanoscopic asperities

  • Yujin Han,
  • Pierre-Marie Thebault,
  • Corentin Audes,
  • Xuelin Wang,
  • Haiwoong Park,
  • Jian-Zhong Jiang and
  • Arnaud Caron

Beilstein J. Nanotechnol. 2022, 13, 817–827, doi:10.3762/bjnano.13.72

Graphical Abstract
  • 1s orbital of carbon. We attribute these contributions (CO32−, C–C/C–H, and C–O) to contamination from the ambient. As mentioned above, we performed the XPS measurements on these liquid samples without prior Ar+-ion sputtering or further heating inside the vacuum chamber of the XPS instrument. Given
PDF
Album
Full Research Paper
Published 23 Aug 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • sp2 carbon atoms [23], and its position displays a blueshift as the charge carrier concentration rises. That is, the frequency shift of the G band is proportional to |EF|, which sets the carrier concentration. Due to the method and materials employed for the graphene transfer being the same except for
  • on the graphene surface mainly feature three peaks resulting from C–C bonds and carbon–oxygen-related bonds (i.e., methoxy and carboxy functional groups). After PMMA has been removed in the acetone bath, the peak of the C–H bond can rarely be observed because of a broader merger with the peak of sp3
  • structure of PMMA. XPS C1s spectra of graphene samples transferred using (b) C4 and (c) B2. The normalized spectra are fitted by Gaussian–Lorentzian curves. The solid blue and grey fills identify, respectively, sp2- and sp3-hybridized carbon bonds in graphene, located at ca. 284.4 and 285.0 eV, respectively
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Efficient liquid exfoliation of KP15 nanowires aided by Hansen's empirical theory

  • Zhaoxuan Huang,
  • Zhikang Jiang,
  • Nan Tian,
  • Disheng Yao,
  • Fei Long,
  • Yanhan Yang and
  • Danmin Liu

Beilstein J. Nanotechnol. 2022, 13, 788–795, doi:10.3762/bjnano.13.69

Graphical Abstract
  • improved by adjusting the composition and type of solutions used in the liquid-phase exfoliation [15][16][17]. This theory has been successfully used for improving the exfoliation efficiency in several low-dimensional materials, such as carbon, graphene, metal oxides, and fibrous phosphorus. [18]. In a
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • coordination polymer shells, flow syntheses have been used recently [107][108]. The encapsulation of networks can help to regulate the properties of monocrystalline coordination polymers. Bare or modified carbon nanotubes could be modified to allow coordination polymers to grow around [109][110]. This is used
  • graphene oxide networks, (c) carbon nanotubes, and (d) boron nitride networks. Figure 4 was reprinted with permission from [111], Copyright 2021 American Chemical Society. This content is not subject to CC BY 4.0. (a) Schematic illustration of synthesis of SOM-ZIF-8. SOM stands for single-crystal ordered
  • . Illustration of the possible structure of water inside the Ni–CN–Ni nanosheets. The green balls represent carbon. The red balls represent nickel. The yellow balls represent nitrogen. The blue balls represent oxygen. The gray balls represent hydrogen. Figure 9 was used with permission of The Royal Society of
PDF
Album
Review
Published 12 Aug 2022

Hierarchical Bi2WO6/TiO2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants

  • Zehao Lin,
  • Zhan Yang and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

Graphical Abstract
  • using a reference to the peak of the surface adventitious carbon (284.8 eV) in the high-resolution spectrum of the C 1s region. The N2 adsorption−desorption isotherms were recorded at −196 °C on a Micromeritics ASAP 2020 analyzer, while the specific surface area and pore distribution curve were
  • homogeneous suspension. The suspension was then dropped onto an Al foil to be observed via field-emission scanning electron microscopy (FE-SEM), and onto a carbon-supported copper grid for examination via transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HR-TEM
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • , selective, sensitive, and point-of-care (POC) analytical tools for monitoring environmental pollutants [2][11]. They can also detect residual OPs based on their electrocatalytic activity and affinity toward nanomaterials, such as nanoparticles, carbon nanomaterials, and metal oxides [11]. In a few reports
  • , hybrid carbon nanomaterials such as ferrocene-thiophene modified by carbon nanotubes, zinc(II) phthalocyanine-boron dipyrromethene attached single-walled carbon nanotubes were used for the direct detection of pesticides [12][13][14][15]. So far, only limited electrochemical nanosensors modified by
  • nanoribbons doped with silver nanoparticles, rGO doped with ZrO2, and CuO–TiO2 hybrid nanocomposites were proposed to detect methyl parathion [19][20][21][22]. Rajaji et al. (2019) modified glassy carbon electrodes with graphene oxide encapsulated 3D porous chalcopyrite (CuFeS2) nanocomposites to detect
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Nanoarchitectonics of the cathode to improve the reversibility of Li–O2 batteries

  • Hien Thi Thu Pham,
  • Jonghyeok Yun,
  • So Yeun Kim,
  • Sang A Han,
  • Jung Ho Kim,
  • Jong-Won Lee and
  • Min-Sik Park

Beilstein J. Nanotechnol. 2022, 13, 689–698, doi:10.3762/bjnano.13.61

Graphical Abstract
  • -trip efficiency and cycling performance of nonaqueous lithium–oxygen batteries are governed by minimizing the discharge products, such as Li2O and Li2O2. Recently, a metal–organic framework has been directly pyrolyzed into a carbon frame with controllable pore volume and size. Furthermore, selective
  • metallic catalysts can also be obtained by adjusting metal ions for outstanding electrochemical reactions. In this study, various bimetallic zeolitic imidazolate framework (ZIF)-derived carbons were designed by varying the ratio of Zn to Co ions. Moreover, carbon nanotubes (CNTs) are added to improve the
  • electrical conductivity further, ultimately leading to better electrochemical stability in the cathode. As a result, the optimized bimetallic ZIF–carbon/CNT composite exhibits a high discharge capacity of 16,000 mAh·g−1, with a stable cycling performance of up to 137 cycles. This feature is also beneficial
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2022

Tunable high-quality-factor absorption in a graphene monolayer based on quasi-bound states in the continuum

  • Jun Wu,
  • Yasong Sun,
  • Feng Wu,
  • Biyuan Wu and
  • Xiaohu Wu

Beilstein J. Nanotechnol. 2022, 13, 675–681, doi:10.3762/bjnano.13.59

Graphical Abstract
  • change the structural parameters and the other is to add tunable materials, such as phase change materials, graphene, or liquid crystals. Among them, graphene has attracted much attention in optics and optoelectronics [30][31][32][33][34]. As a single layer of carbon atoms arranged in a honeycomb
PDF
Album
Full Research Paper
Published 19 Jul 2022

Sodium doping in brookite TiO2 enhances its photocatalytic activity

  • Boxiang Zhuang,
  • Honglong Shi,
  • Honglei Zhang and
  • Zeqian Zhang

Beilstein J. Nanotechnol. 2022, 13, 599–609, doi:10.3762/bjnano.13.52

Graphical Abstract
  • ). (1) Brookite—platy grains. Energy-dispersive X-ray spectroscopy (EDX) results of platy grains (Figure 4b) indicate that Na can be well identified besides Ti and O (note that the characteristic peak of C comes from the carbon conducting resin, Al from the sample holder, and Si from the silicon wafer
  • wafer pasted on an aluminum sample holder by a carbon conducting resin. The EDX spectra were acquired from individual morphologies or grains in the samples. Electron diffraction and high-resolution imaging experiments were carried out on a high-resolution transmission electron microscope (JEOL JEM-2100
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

A new method for obtaining the magnetic shape anisotropy directly from electron tomography images

  • Cristian Radu,
  • Ioana D. Vlaicu and
  • Andrei C. Kuncser

Beilstein J. Nanotechnol. 2022, 13, 590–598, doi:10.3762/bjnano.13.51

Graphical Abstract
  • microscopy (STEM) operation mode, using the high-angle annular dark-field (HAADF) detectors and an appropriate camera length. The TEM specimen was prepared by a standard powder method, using a 300 Mesh, lacey Carbon, Cu grid. X-ray diffraction (XRD) has been performed on MNPs using a Bruker D8 Advance
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Influence of thickness and morphology of MoS2 on the performance of counter electrodes in dye-sensitized solar cells

  • Lam Thuy Thi Mai,
  • Hai Viet Le,
  • Ngan Kim Thi Nguyen,
  • Van La Tran Pham,
  • Thu Anh Thi Nguyen,
  • Nguyen Thanh Le Huynh and
  • Hoang Thai Nguyen

Beilstein J. Nanotechnol. 2022, 13, 528–537, doi:10.3762/bjnano.13.44

Graphical Abstract
  • to a uniform thin layer when changing the ED technique from potentiostatic (PS) mode to potential-reversal (PR) mode. This resulted in an improvement in PCE from 6.89% to 8.77% [24]. In general, above studies still have limits such as depositing MoS2 on graphene or carbon dots, instead of directly
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2022

Investigation of electron-induced cross-linking of self-assembled monolayers by scanning tunneling microscopy

  • Patrick Stohmann,
  • Sascha Koch,
  • Yang Yang,
  • Christopher David Kaiser,
  • Julian Ehrens,
  • Jürgen Schnack,
  • Niklas Biere,
  • Dario Anselmetti,
  • Armin Gölzhäuser and
  • Xianghui Zhang

Beilstein J. Nanotechnol. 2022, 13, 462–471, doi:10.3762/bjnano.13.39

Graphical Abstract
  • simulations, we propose that these voids may correspond to free volumes inside a cross-linked monolayer. Keywords: carbon nanomembranes; electron-induced cross-linking; scanning tunneling microscopy; self-assembled monolayers; subnanometer pores; Introduction Electron-induced chemistry plays an essential
  • create ultrathin carbon nanomembranes (CNMs) [25][26]. Depending on the precursor molecules and the exposure conditions, thickness [27], mechanical stiffness [28], and electronic transport characteristics [29][30] of CNMs can be tailored. Carbon nanomembranes have been applied as electron microscopy
  • initiates a reaction with an adjacent molecule and generates another new radical carbon center, which may react with other molecules. According to Amiaud et al. [53], the formation of first radicals can be caused either by electronic rearrangement or dissociative electron attachment of the negative ion
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2022

Tubular glassy carbon microneedles with fullerene-like tips for biomedical applications

  • Sharali Malik and
  • George E. Kostakis

Beilstein J. Nanotechnol. 2022, 13, 455–461, doi:10.3762/bjnano.13.38

Graphical Abstract
  • /bjnano.13.38 Abstract Glassy carbon, in general, is made by the pyrolysis of polymeric materials and has been the subject of research for at least fifty years. However, as understanding its microstructure is far from straightforward, it continues to be an area of active research. Glassy carbon adopts
  • the nanoarchitectonics concept of bottom-up creation of functional materials, we use methane rather than a polymer to form glassy carbon. Here we show that tubular glassy carbon microneedles with fullerene-like tips form when methane undergoes pyrolysis on a curved alumina surface. X-ray diffraction
  • of these glassy carbon tubules shows long-range order with a d-spacing of 4.89 Å, which is indicative of glassy carbon. Raman spectroscopy shows the material to be graphitic in nature, and SEM shows the fullerene-like structure of the material. This work provides new insights into the structure of
PDF
Album
Full Research Paper
Published 19 May 2022

A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures

  • Irena Mihailova,
  • Vjaceslavs Gerbreders,
  • Marina Krasovska,
  • Eriks Sledevskis,
  • Valdis Mizers,
  • Andrejs Bulanovs and
  • Andrejs Ogurcovs

Beilstein J. Nanotechnol. 2022, 13, 424–436, doi:10.3762/bjnano.13.35

Graphical Abstract
  • ]. Nanostructured materials are widely used as the working surface of the electrode [47][48][49]. The most common are transition metal nanoparticles [33][37][50][51][52][53][54], carbon nanotubes [8], metal oxides [55][56][57][58][59][60][61][62][63][64], graphene [32][33], and ordered mesoporous carbon [38][65][66
PDF
Album
Full Research Paper
Published 03 May 2022

A chemiresistive sensor array based on polyaniline nanocomposites and machine learning classification

  • Jiri Kroutil,
  • Alexandr Laposa,
  • Ali Ahmad,
  • Jan Voves,
  • Vojtech Povolny,
  • Ladislav Klimsa,
  • Marina Davydova and
  • Miroslav Husak

Beilstein J. Nanotechnol. 2022, 13, 411–423, doi:10.3762/bjnano.13.34

Graphical Abstract
  • 1999/2, 182 21 Prague, Czech Republic 10.3762/bjnano.13.34 Abstract The selective detection of ammonia (NH3), nitrogen dioxide (NO2), carbon oxides (CO2 and CO), acetone ((CH3)2CO), and toluene (C6H5CH3) is investigated by means of a gas sensor array based on polyaniline nanocomposites. The array
  • (carbon nanotubes (CNT), SnO2, TiO2) materials in a gas sensors based on nanocomposite layers with good sensitivity, temperature stability, reversibility, which was operating at room temperature. Herein, we extended our study by applying other nanocomposite sensing layers, namely PANI/ZnO, PANI/WO3
  • (nanopowder), PANI/WO3 (nanotubes), PANI/In2O3, PANI/C60 (fullerene), PANI/nanocrystalline diamond (NCD), and PANI/BaTiO3, deposited on a flexible sensor array platform with a new design. Seven different nanocomposite sensing layers deposited on the array were exposed to six different gases (ammonia, carbon
PDF
Album
Full Research Paper
Published 27 Apr 2022
Other Beilstein-Institut Open Science Activities