Search results

Search for "carrier mobility" in Full Text gives 83 result(s) in Beilstein Journal of Nanotechnology.

Impact of contact resistance on the electrical properties of MoS2 transistors at practical operating temperatures

  • Filippo Giannazzo,
  • Gabriele Fisichella,
  • Aurora Piazza,
  • Salvatore Di Franco,
  • Giuseppe Greco,
  • Simonpietro Agnello and
  • Fabrizio Roccaforte

Beilstein J. Nanotechnol. 2017, 8, 254–263, doi:10.3762/bjnano.8.28

Graphical Abstract
  • (water/oxygen) [9] with respect to single or few layer devices [11], for which encapsulation is instead required to achieve good electrical performance [3]. Furthermore, as reported in the literature, carrier mobility is only slightly dependent on MoS2 thickness for transistors fabricated on ≈20 to ≈70
PDF
Album
Full Research Paper
Published 25 Jan 2017

Nitrogen-doped twisted graphene grown on copper by atmospheric pressure CVD from a decane precursor

  • Ivan V. Komissarov,
  • Nikolai G. Kovalchuk,
  • Vladimir A. Labunov,
  • Ksenia V. Girel,
  • Olga V. Korolik,
  • Mikhail S. Tivanov,
  • Algirdas Lazauskas,
  • Mindaugas Andrulevičius,
  • Tomas Tamulevičius,
  • Viktoras Grigaliūnas,
  • Šarunas Meškinis,
  • Sigitas Tamulevičius and
  • Serghej L. Prischepa

Beilstein J. Nanotechnol. 2017, 8, 145–158, doi:10.3762/bjnano.8.15

Graphical Abstract
  • charge carrier mobility [1], it has huge functional ability in many applications, especially in high frequency electronics. The increase in the number of layers with conventional Bernal stacking strongly affects the electronic properties of graphene. Contrary to monolayer graphene, in Bernal-stacked
PDF
Album
Full Research Paper
Published 16 Jan 2017

Tandem polymer solar cells: simulation and optimization through a multiscale scheme

  • Fanan Wei,
  • Ligang Yao,
  • Fei Lan,
  • Guangyong Li and
  • Lianqing Liu

Beilstein J. Nanotechnol. 2017, 8, 123–133, doi:10.3762/bjnano.8.13

Graphical Abstract
  • simulations were carried out to compute the effective charge carrier mobility and recombination rate. Firstly, the internal morphology in active layers was generated through a simulated annealing method [27]. In the simulated annealing method, the Ising model is adopted to generate the morphology with desired
  • one series of morphologies of 1:1 P3HT/PCBM is related to the domain size and displayed in Figure 4b. Through the MC simulation, we evaluated EDE, carrier mobility, recombination rate, and also clarified their dependence on domain size and electric field; corresponding plots of these data are shown in
  • explanation is that many of the carriers can be captured in dead ends or traps because of the complex inner structures in the blend. In such a case, the high electric field will reduce the possibility for the trapped carriers to jump out from the traps, which leads to a lower effective carrier mobility
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2017

Layered composites of PEDOT/PSS/nanoparticles and PEDOT/PSS/phthalocyanines as electron mediators for sensors and biosensors

  • Celia García-Hernández,
  • Cristina García-Cabezón,
  • Fernando Martín-Pedrosa,
  • José Antonio De Saja and
  • María Luz Rodríguez-Méndez

Beilstein J. Nanotechnol. 2016, 7, 1948–1959, doi:10.3762/bjnano.7.186

Graphical Abstract
  • on the material deposited on the PEDOT/PSS layer [29][30][31]. In the case of CuPc or AuNPs, the improvement in the conductance can be due to the increase in the charge carrier mobility and/or in the large effective surface provided by the metallic AuNPs. In the case of LuPc2, which is an intrinsic
PDF
Album
Full Research Paper
Published 08 Dec 2016

Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals

  • Ivan Shtepliuk,
  • Jens Eriksson,
  • Volodymyr Khranovskyy,
  • Tihomir Iakimov,
  • Anita Lloyd Spetz and
  • Rositsa Yakimova

Beilstein J. Nanotechnol. 2016, 7, 1800–1814, doi:10.3762/bjnano.7.173

Graphical Abstract
  • to literature, graphene oxide is more toxic than pristine graphene [27], has a lower carrier mobility [28], higher thermal noise and a natural tendency to agglomerate [29]. In addition, because of the high material inhomogeneity and small domain sizes, it is complicated to fabricate sensing devices
PDF
Album
Full Research Paper
Published 22 Nov 2016

Role of RGO support and irradiation source on the photocatalytic activity of CdS–ZnO semiconductor nanostructures

  • Suneel Kumar,
  • Rahul Sharma,
  • Vipul Sharma,
  • Gurunarayanan Harith,
  • Vaidyanathan Sivakumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2016, 7, 1684–1697, doi:10.3762/bjnano.7.161

Graphical Abstract
  • [11], ozonization [12] and adsorption [13], as these methods are unable to remove the contaminants completely. Some recent studies have reported ZnO as a better photocatalytic material in the degradation of organic dyes in aqueous solutions, because of high charge carrier mobility and significantly
PDF
Album
Full Research Paper
Published 11 Nov 2016

Nanostructured germanium deposited on heated substrates with enhanced photoelectric properties

  • Ionel Stavarache,
  • Valentin Adrian Maraloiu,
  • Petronela Prepelita and
  • Gheorghe Iordache

Beilstein J. Nanotechnol. 2016, 7, 1492–1500, doi:10.3762/bjnano.7.142

Graphical Abstract
  • ≈ 42 µs) [49] or Ge–graphene–ZnO heterostructure infrared photodetectors (tr ≈ 40 µs and tf ≈ 90 µs) [50]. More importantly, these are the best results reported so far for photodetectors based on Ge-nps. We attribute this relatively fast response to the extremely high carrier mobility resulting from
PDF
Album
Full Research Paper
Published 21 Oct 2016

Metal oxide-graphene field-effect transistor: interface trap density extraction model

  • Faraz Najam,
  • Kah Cheong Lau,
  • Cheng Siong Lim,
  • Yun Seop Yu and
  • Michael Loong Peng Tan

Beilstein J. Nanotechnol. 2016, 7, 1368–1376, doi:10.3762/bjnano.7.128

Graphical Abstract
  • . Its 2D nature along with its significantly high carrier mobility (≈15,000 cm2/(V·s)) make it an ideal material to replace silicon [1] in the more than Moore era. During deposition of the dielectric layer on graphene as well as from deposition of graphene on the substrate defects may be formed in the
PDF
Album
Full Research Paper
Published 30 Sep 2016

Case studies on the formation of chalcogenide self-assembled monolayers on surfaces and dissociative processes

  • Yongfeng Tong,
  • Tingming Jiang,
  • Azzedine Bendounan,
  • Makri Nimbegondi Kotresh Harish,
  • Angelo Giglia,
  • Stefan Kubsky,
  • Fausto Sirotti,
  • Luca Pasquali,
  • Srinivasan Sampath and
  • Vladimir A. Esaulov

Beilstein J. Nanotechnol. 2016, 7, 263–277, doi:10.3762/bjnano.7.24

Graphical Abstract
  • versatility, intrinsic charge transport behavior with high carrier mobility, and high light harvesting efficiency. Their use includes application in field effect transistors, solar cells and light emitting diodes. A number of studies have been devoted to the assembly of these molecules on metallic electrodes
  • ), and the polymer (PEDOT). The dissociation process would not, in this case, depend on the number of units. A recent detailed study [63] was performed for the case of α,ω-dihexylquaterthiophene (DH4T) which, because of its high carrier mobility [63], is of great interest for organic electronics. We
PDF
Album
Supp Info
Full Research Paper
Published 17 Feb 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
  • graphene oxide CVD Synthesis on SiC Each of these methods has its advantages and disadvantages in terms of quality, yield production and applications, as summarized in Table 1. In particular, mechanical exfoliation most likely produces the best samples in terms of charge carrier mobility but is probably
  • structure, decreasing the carrier mobility and concentration. Current research in rGO is not only focused on removing the functional groups but also on recovering the network of the graphene lattice [110]. In fact, rGO results in a much lower conductivity when compared to pristine graphene because of large
  • catalytically inactive Cu2O layer and to extend the graphene growth to 48 h. With this method, they were able to achieve 5 mm wide, monolayer graphene with a high carrier mobility of 16,000 cm2 V−1 s−1. The groups of Luo and Ruoff then adopted a similar strategy and were able to produce centimeter-scale, single
PDF
Album
Review
Published 01 Feb 2016

Charge injection and transport properties of an organic light-emitting diode

  • Peter Juhasz,
  • Juraj Nevrela,
  • Michal Micjan,
  • Miroslav Novota,
  • Jan Uhrik,
  • Lubica Stuchlikova,
  • Jan Jakabovic,
  • Ladislav Harmatha and
  • Martin Weis

Beilstein J. Nanotechnol. 2016, 7, 47–52, doi:10.3762/bjnano.7.5

Graphical Abstract
  • density and carrier mobility, it reflects the impact of charge traps on the carrier transport as well as that of energy barriers on the carrier injection. Figure 5b depicts the voltage dependence of the activation energies estimated from the steady-state current–voltage and impedance spectroscopy
PDF
Album
Full Research Paper
Published 14 Jan 2016

High Ion/Ioff current ratio graphene field effect transistor: the role of line defect

  • Mohammad Hadi Tajarrod and
  • Hassan Rasooli Saghai

Beilstein J. Nanotechnol. 2015, 6, 2062–2068, doi:10.3762/bjnano.6.210

Graphical Abstract
  • carrier mobility and velocity of graphene is utilized in ballistic and high switching speeds devices [3][4]. However, the very large off-current of graphene at room temperature, which is associated with the small band gap, renders it incapable of being integrated as a building block for pure carbon-based
PDF
Album
Full Research Paper
Published 23 Oct 2015

Simulation of thermal stress and buckling instability in Si/Ge and Ge/Si core/shell nanowires

  • Suvankar Das,
  • Amitava Moitra,
  • Mishreyee Bhattacharya and
  • Amlan Dutta

Beilstein J. Nanotechnol. 2015, 6, 1970–1977, doi:10.3762/bjnano.6.201

Graphical Abstract
  • for next generation transistor devices. The radial heterostructure offers the advantage of control of the band gap and charge carrier mobility by tuning their size [5] and selecting suitable impurity doping scheme [3][6]. In addition, they exhibit significantly suppressed phonon thermal conductivity
  • ], it is prohibitively difficult to experimentally measure the thermal load on ultrathin CSNWs. The effect of thermal stress on the performance of the device is again two-fold. The mechanical load would alter its electronic band structure and charge carrier mobility [11][12][13], which is particularly
PDF
Album
Full Research Paper
Published 02 Oct 2015

Current–voltage characteristics of manganite–titanite perovskite junctions

  • Benedikt Ifland,
  • Patrick Peretzki,
  • Birte Kressdorf,
  • Philipp Saring,
  • Andreas Kelling,
  • Michael Seibt and
  • Christian Jooss

Beilstein J. Nanotechnol. 2015, 6, 1467–1484, doi:10.3762/bjnano.6.152

Graphical Abstract
PDF
Album
Full Research Paper
Published 07 Jul 2015

Attenuation, dispersion and nonlinearity effects in graphene-based waveguides

  • Almir Wirth Lima Jr.,
  • João Cesar Moura Mota and
  • Antonio Sergio Bezerra Sombra

Beilstein J. Nanotechnol. 2015, 6, 1221–1228, doi:10.3762/bjnano.6.125

Graphical Abstract
  • isomorphic insulator in which the boron and nitrogen atoms occupy positions A and B in the Bernal structure. Therefore, the atomic structure of h-BN is similar (hexagonal) to the structure of graphene. It is worth noting that graphene on a layer of h-BN has a charge carrier mobility value and homogeneity of
PDF
Album
Full Research Paper
Published 28 May 2015

Electronic interaction in composites of a conjugated polymer and carbon nanotubes: first-principles calculation and photophysical approaches

  • Florian Massuyeau,
  • Jany Wéry,
  • Jean-Luc Duvail,
  • Serge Lefrant,
  • Abu Yaya,
  • Chris Ewels and
  • Eric Faulques

Beilstein J. Nanotechnol. 2015, 6, 1138–1144, doi:10.3762/bjnano.6.115

Graphical Abstract
  • polymer matrix increases. In the composite the SWNTs operate as exciton dissociation centers. The augmented carrier mobility is confirmed by the photoconductive behavior of the composites and is consistent with our DFT calculations showing strong coupling between PPV and semiconducting SWNT electronic
PDF
Album
Full Research Paper
Published 08 May 2015

Charge carrier mobility and electronic properties of Al(Op)3: impact of excimer formation

  • Andrea Magri,
  • Pascal Friederich,
  • Bernhard Schäfer,
  • Valeria Fattori,
  • Xiangnan Sun,
  • Timo Strunk,
  • Velimir Meded,
  • Luis E. Hueso,
  • Wolfgang Wenzel and
  • Mario Ruben

Beilstein J. Nanotechnol. 2015, 6, 1107–1115, doi:10.3762/bjnano.6.112

Graphical Abstract
  • carrier mobility of the organic semiconductor tris(1-oxo-1H-phenalen-9-olate)aluminium(III) (Al(Op)3) both experimentally and theoretically. We experimentally estimated the HOMO and LUMO energy levels to be −5.93 and −3.26 eV, respectively, which were close to the corresponding calculated values. Al(Op)3
  • the formation of excimers in the solid state, which is crucial for the transport properties. The incorporation of Al(Op)3 into organic thin film transistors (TFTs) was performed in order to measure the charge carrier mobility. The experimental setup detected no electron mobility, while a hole mobility
  • . Keywords: charge carrier mobility; HOMO–LUMO energy levels; photophysical characterization; TFT devices; tris-(1-oxo-1H-phenalen-9-olate)aluminum(III); Introduction Since the field of organic electronics has emerged, interest in organic semiconductors (OSCs) has substantially increased [1]. The efficiency
PDF
Album
Full Research Paper
Published 05 May 2015

Microwave assisted synthesis and characterisation of a zinc oxide/tobacco mosaic virus hybrid material. An active hybrid semiconductor in a field-effect transistor device

  • Shawn Sanctis,
  • Rudolf C. Hoffmann,
  • Sabine Eiben and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2015, 6, 785–791, doi:10.3762/bjnano.6.81

Graphical Abstract
  • current and voltage of 40 mA and 40 kV, respectively. FET characterizations were measured in the dark, using an HP 4155A semiconductor parameter analyzer (Agilent) in a glove box under constant O2 and H2O (<0.5 ppm). Charge carrier mobility in the saturation regime µSAT and the threshold voltage Vth were
  • the zinc oximato complex as precursor [13]. The transistor behaviour of the wt TMV/ZnO hybrid material was then optimized based on the crucial characteristic FET values, current on/off ratio (Ion/off), threshold voltage (Vth) and charge carrier mobility (µ) which are considered to be essential
PDF
Album
Supp Info
Video
Full Research Paper
Published 20 Mar 2015

Electroburning of few-layer graphene flakes, epitaxial graphene, and turbostratic graphene discs in air and under vacuum

  • Andrea Candini,
  • Nils Richter,
  • Domenica Convertino,
  • Camilla Coletti,
  • Franck Balestro,
  • Wolfgang Wernsdorfer,
  • Mathias Kläui and
  • Marco Affronte

Beilstein J. Nanotechnol. 2015, 6, 711–719, doi:10.3762/bjnano.6.72

Graphical Abstract
  • process in multilayered graphene microstructures, employing thin discs of turbostratically stacked graphene (TG, see Experimental for details on the preparation). These discs are comprise up to 100 graphene layers exhibiting a rather large charge carrier mobility in the range of 105 cm2/V·s which
PDF
Album
Supp Info
Full Research Paper
Published 11 Mar 2015

Nanoporous Ge thin film production combining Ge sputtering and dopant implantation

  • Jacques Perrin Toinin,
  • Alain Portavoce,
  • Khalid Hoummada,
  • Michaël Texier,
  • Maxime Bertoglio,
  • Sandrine Bernardini,
  • Marco Abbarchi and
  • Lee Chow

Beilstein J. Nanotechnol. 2015, 6, 336–342, doi:10.3762/bjnano.6.32

Graphical Abstract
  • applications, since they can lead to multiple exciton generation [7]. In particular, multiple exciton generation has been previously demonstrated in Si nanostructures [8]. Ge has a similar structure to Si, however, it offers several benefits compared to Si such as faster carrier mobility, smaller band gap and
PDF
Album
Full Research Paper
Published 30 Jan 2015

Characterization of 10,12-pentacosadiynoic acid Langmuir–Blodgett monolayers and their use in metal–insulator–metal tunnel devices

  • Saumya Sharma,
  • Mohamad Khawaja,
  • Manoj K. Ram,
  • D. Yogi Goswami and
  • Elias Stefanakos

Beilstein J. Nanotechnol. 2014, 5, 2240–2247, doi:10.3762/bjnano.5.233

Graphical Abstract
  • the π bond conjugation, which provides high carrier mobility, there is still a very low concentration of carriers, as can be seen by the insulating behavior of the material [22][23]. Figure 5 shows the relation of the current density to the (scan rate)1/2, which was clearly not linear, as would be the
PDF
Album
Full Research Paper
Published 26 Nov 2014

Effect of channel length on the electrical response of carbon nanotube field-effect transistors to deoxyribonucleic acid hybridization

  • Hari Krishna Salila Vijayalal Mohan,
  • Jianing An,
  • Yani Zhang,
  • Chee How Wong and
  • Lianxi Zheng

Beilstein J. Nanotechnol. 2014, 5, 2081–2091, doi:10.3762/bjnano.5.217

Graphical Abstract
  • . Calculations The effective mobility (µe) represents the intrinsic physical charge carrier mobility of the CNT channel without including any device attributes and is given by, where G = δID/δVDS at constant VG, G is the conductance at a particular gate voltage and Vth is the threshold voltage [24]. The
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2014

Optical properties and electrical transport of thin films of terbium(III) bis(phthalocyanine) on cobalt

  • Peter Robaschik,
  • Pablo F. Siles,
  • Daniel Bülz,
  • Peter Richter,
  • Manuel Monecke,
  • Michael Fronk,
  • Svetlana Klyatskaya,
  • Daniel Grimm,
  • Oliver G. Schmidt,
  • Mario Ruben,
  • Dietrich R. T. Zahn and
  • Georgeta Salvan

Beilstein J. Nanotechnol. 2014, 5, 2070–2078, doi:10.3762/bjnano.5.215

Graphical Abstract
  • microscale. The AFM-based electrical measurements allow the local charge carrier mobility of the TbPc2 thin films to be quantified with nanoscale resolution. Keywords: current sensing AFM; ellipsometry; spintronics; TbPc2; transport properties; Introduction Molecular spintronic devices could bring a new
  • of the organic film, ε is the relative dielectric constant, ε0 is the permittivity of free space, µ is the charge carrier mobility and V is the applied voltage. From the ohmic-like regime (see Figure 7b) we obtained parameters of σ/L equal to 1.38 and 0.97 kA/cm2 V for the samples of 20 and 80 nm
  • charge density per unit volume in all films, a reduction in the ratio σ/L corresponds to a reduction in the carrier mobility in the direction perpendicular to the substrate. This is in agreement with the increasingly standing molecules. The validity of the model applied for the ohmic region should be
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2014

Electronic and electrochemical doping of graphene by surface adsorbates

  • Hugo Pinto and
  • Alexander Markevich

Beilstein J. Nanotechnol. 2014, 5, 1842–1848, doi:10.3762/bjnano.5.195

Graphical Abstract
  • behaves like an n-type doped semiconductor but exhibits a low charge carrier mobility [16]. The surface transfer doping is non-destructive and occurs due to the charge transfer between graphene and surface adsorbates. Two mechanisms of charge transfer doping can be distinguished, electronic and
  • ionized dopants become additional charge scatterers leading to a reduction in the charge carrier mobility. The electrochemical doping of graphene occurs as a result of redox reactions that can take place near the graphene surface. Unlike electronic doping it does not reduce the charge carriers mobility
PDF
Album
Review
Published 23 Oct 2014

An insight into the mechanism of charge-transfer of hybrid polymer:ternary/quaternary chalcopyrite colloidal nanocrystals

  • Parul Chawla,
  • Son Singh and
  • Shailesh Narain Sharma

Beilstein J. Nanotechnol. 2014, 5, 1235–1244, doi:10.3762/bjnano.5.137

Graphical Abstract
  • cells, the performance of OPVs is often restricted by low carrier mobility issues. The emergence of hybrid solar cells is based on the concept of promoting carrier mobility in OPV systems by the incorporation of inorganic semiconductor materials as electron acceptors into organic photovoltaics [5]. Here
  • , a charge-separation at donor–acceptor heterojunctions is a key process, which takes center stage in determining the energy conversion efficiency of hybrid photovoltaics. Hybrid solar cells enjoy an advantage of intrinsically high carrier mobility, which is caused by inorganic materials dispersed in
PDF
Album
Full Research Paper
Published 08 Aug 2014
Other Beilstein-Institut Open Science Activities