Search results

Search for "composites" in Full Text gives 305 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Synthesis and enhanced photocatalytic performance of 0D/2D CuO/tourmaline composite photocatalysts

  • Changqiang Yu,
  • Min Wen,
  • Zhen Tong,
  • Shuhua Li,
  • Yanhong Yin,
  • Xianbin Liu,
  • Yesheng Li,
  • Tongxiang Liang,
  • Ziping Wu and
  • Dionysios D. Dionysiou

Beilstein J. Nanotechnol. 2020, 11, 407–416, doi:10.3762/bjnano.11.31

Graphical Abstract
  • product was named CuO/tourmaline-1:1 (1:1 in mass ratio of the CuO/tourmaline). By controlling the dosage of Cu(CH3COO)2·H2O and NaOH in proportion the CuO/tourmaline composites in different mass ratios of the CuO/tourmaline were acquired. Characterization X-ray diffraction (XRD) patterns were obtained
  • are exhibited in Figure 6b. The k value of the CuO/tourmaline-4:1 composite was larger than that of the other composites and was three times higher than that of CuO (Figure 6c), which proved that the CuO/tourmaline composite was successfully prepared and showed higher photocatalytic organic oxidation
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2020

High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel

  • Meixia Wang,
  • Jing Zhang,
  • Xibin Yi,
  • Benxue Liu,
  • Xinfu Zhao and
  • Xiaochan Liu

Beilstein J. Nanotechnol. 2020, 11, 240–251, doi:10.3762/bjnano.11.18

Graphical Abstract
  • aerogel precursor, which was produced from microcrystalline cellulose (MC). Second, the produced CA was used as the backbone for the growth of NiMoO4 nanorods employing a hydrothermal method followed by heat treatment. By this approach, NiMoO4/CA composites were obtained, in which the NiMoO4 nanorods
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2020

Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization

  • Tuba Evgin,
  • Alpaslan Turgut,
  • Georges Hamaoui,
  • Zdenko Spitalsky,
  • Nicolas Horny,
  • Matej Micusik,
  • Mihai Chirtoc,
  • Mehmet Sarikanat and
  • Maria Omastova

Beilstein J. Nanotechnol. 2020, 11, 167–179, doi:10.3762/bjnano.11.14

Graphical Abstract
  • composites (PMCs); thermal properties; Introduction In recent years, electrically and thermally conductive polymer nanocomposites have attracted considerable attention because of their potential use in many industrial applications, such as aerospace, electronics, packaging, automotives, sensors, batteries
  • molding. The size effects of the GnPs on the morphological, thermal, electrical, and mechanical properties of the composites was studied. The small differences in the GnPs’ surfaces’ chemical composition were detected by XPS, and the highest amount of oxygen that was found was 2.6 atom % for G1. FTIR and
PDF
Album
Supp Info
Full Research Paper
Published 14 Jan 2020

Fabrication of Ag-modified hollow titania spheres via controlled silver diffusion in Ag–TiO2 core–shell nanostructures

  • Bartosz Bartosewicz,
  • Malwina Liszewska,
  • Bogusław Budner,
  • Marta Michalska-Domańska,
  • Krzysztof Kopczyński and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2020, 11, 141–146, doi:10.3762/bjnano.11.12

Graphical Abstract
  • result, to a red-shift of the plasmon resonance [20]. As can be seen from curve A in Figure 4, Ag@TiO2 CSNs have a broad absorption in the UV–vis range. This is the characteristic absorption of these composites, which does not change remarkably with a change of the shell thickness. The annealing of Ag
PDF
Album
Supp Info
Letter
Published 10 Jan 2020

Synthesis of amorphous and graphitized porous nitrogen-doped carbon spheres as oxygen reduction reaction catalysts

  • Maximilian Wassner,
  • Markus Eckardt,
  • Andreas Reyer,
  • Thomas Diemant,
  • Michael S. Elsaesser,
  • R. Jürgen Behm and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2020, 11, 1–15, doi:10.3762/bjnano.11.1

Graphical Abstract
  • fibers [7][8][9][10], N-doped 3D ordered (meso)porous carbon materials [11], N-doped carbon composites (e.g., carbon nanotubes/graphene) [12], and N-doped carbon spheres [13][14] to graphitic-C3N4 carbon nitride composites [15]. In the present work we report results of a systematic study on the synthesis
  • characteristics, but somewhat lower current densities. However, for these composites the differences in porosity/surface area between the oxynitride covered spheres and the pure nitrided carbon spheres are even more pronounced, with substantially lower surface areas for the TaON@NCS catalysts. Hence, in these
  • shell. Also when comparing the H2O2 yields of the TaON@NCS composites [33], we find no advantage of the composite catalysts since the hydrogen peroxide yields are around 40% for all catalysts, which is higher than the values obtained for the pure nitrided carbon spheres (mostly around 20%). Overall, the
PDF
Album
Full Research Paper
Published 02 Jan 2020

Synthesis and acetone sensing properties of ZnFe2O4/rGO gas sensors

  • Kaidi Wu,
  • Yifan Luo,
  • Ying Li and
  • Chao Zhang

Beilstein J. Nanotechnol. 2019, 10, 2516–2526, doi:10.3762/bjnano.10.242

Graphical Abstract
  • Kaidi Wu Yifan Luo Ying Li Chao Zhang College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, P.R. China College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, P.R. China 10.3762/bjnano.10.242 Abstract Hollow spheres of pure ZnFe2O4 and of composites
  • ; composites; gas sensor; reduced graphene oxide (rGO); ZnFe2O4 hollow spheres; Introduction As a synthetic raw material in industrial production, acetone is chemically active and extremely flammable. It is toxic if its concentration exceeds 173 ppm, and long-term exposure to acetone poses a serious threat to
  • morphology [16]. Some researchers also found that Ag-activated hollow spheres of ZnFe2O4 exhibited an excellent acetone gas-sensing performance at 175 °C [17]. Moreover, ZnFe2O4/ZnO composites showed an excellent response and recovery performance, which was attributed to their nanostructure and synergistic
PDF
Album
Full Research Paper
Published 16 Dec 2019

Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium–sulfur battery performance

  • Chengxiang Tian,
  • Juwei Wu,
  • Zheng Ma,
  • Bo Li,
  • Pengcheng Li,
  • Xiaotao Zu and
  • Xia Xiang

Beilstein J. Nanotechnol. 2019, 10, 2251–2260, doi:10.3762/bjnano.10.217

Graphical Abstract
  • specific capacity of 572 mAh·g−1 at 0.2C after 550 cycles, and 551 mAh·g−1 even at 2C, much better than that of MoS2-S nanosheets (249 mAh·g−1 and 149 mAh·g−1) and C-MoS2/rGO-S composites (334 mAh·g−1 and 382 mAh·g−1). Our intended electrode design protocol and annealing process may pave the way for the
  • composites at different temperatures has also been investigated. The annealing can improve crystallinity and increase the binding energy, and also improve the stability while maintaining high specific capacity. The defect-rich C-MoS2/rGO prepared in this work can not only kinetically accelerate the sulfur
  • 60 °C in vacuum. For comparison, the pristine MoS2 were synthesized using an identical process without GO or glucose. After that, the obtained composites were annealed at 400, 600 and 800 °C for 6 h in 10% H2/Ar atmosphere to improve the crystallinity. After thermal annealing, the samples were
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Improved adsorption and degradation performance by S-doping of (001)-TiO2

  • Xiao-Yu Sun,
  • Xian Zhang,
  • Xiao Sun,
  • Ni-Xian Qian,
  • Min Wang and
  • Yong-Qing Ma

Beilstein J. Nanotechnol. 2019, 10, 2116–2127, doi:10.3762/bjnano.10.206

Graphical Abstract
  • performance. Li et al. synthesized composites of mesoporous (001)-TiO2 and C applying a one-pot hydrothermal strategy in the presence of glucose and hydrofluoric acid (HF). The composites an exhibited excellent visible-light-driven photocatalytic performance [14]. Chen et al. synthesized a composite of g-C3N4
  • and B-doped (001)-TiO2 via a solvothermal method in order to improve the visible-light photocatalytic activity [15]. Cao et al. used first-principles simulations to study the electronic and optical properties of (001)-TiO2 and MoS2 composites. Their results suggested that the effective
PDF
Album
Full Research Paper
Published 01 Nov 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • , require consideration of bending and deformation according to typical human motions. Someya and co-workers developed transparent bending-insensitive pressure sensors [96]. They nanoengineered pressure sensor materials from composites of carbon nanotubes and graphene with a fluorinated copolymer
PDF
Album
Review
Published 16 Oct 2019

Optimization and performance of nitrogen-doped carbon dots as a color conversion layer for white-LED applications

  • Tugrul Guner,
  • Hurriyet Yuce,
  • Didem Tascioglu,
  • Eren Simsek,
  • Umut Savaci,
  • Aziz Genc,
  • Servet Turan and
  • Mustafa M. Demir

Beilstein J. Nanotechnol. 2019, 10, 2004–2013, doi:10.3762/bjnano.10.197

Graphical Abstract
  • determined the amount of N-CDots that yielded adequate white-light properties. Finally, we showed that white light with excellent properties could be generated by employing both of the fabricated N-CDot composites either as drop-cast films or composite fibers. Hence, N-CDots provide a promising alternative
  • properties of the N-CDots in PVP The PVP/N-CDot composites were prepared and drop-cast on glass slides using a fixed PVP content but varying amounts of N-CDots ranging from 15 to 50 µL. To investigate the effect of the N-CDot concentration on the resulting white-light properties, these composites were
  • employed as color conversion layers over a blue LED chip (driving current of 0.25 mA). Figure 3a presents the PL spectra of the drop-cast green PVP/N-CDot composites on the glass slides. There are two different signals: the first one, at 450 nm, originates from the blue LED source, and the other one, at
PDF
Album
Supp Info
Full Research Paper
Published 15 Oct 2019

Porous silver-coated pNIPAM-co-AAc hydrogel nanocapsules

  • William W. Bryan,
  • Riddhiman Medhi,
  • Maria D. Marquez,
  • Supparesk Rittikulsittichai,
  • Michael Tran and
  • T. Randall Lee

Beilstein J. Nanotechnol. 2019, 10, 1973–1982, doi:10.3762/bjnano.10.194

Graphical Abstract
  • advantages over bulk materials in terms of reactive surface area, mobility, carrier capacity, bioavailability, and absorption/scattering across a broad range of wavelengths, even into the near-infrared (NIR) [7][8][9][10]. Nanostructured composites have been reported in a variety of shapes, sizes, and
  • compositions [11][12][13][14][15]. Core–shell nanostructured composites have been the focus of recent work due to their structural simplicity and ability to introduce multifunctional properties into their structure [16][17][18][19][20]. One typical structure is that of an exogenous spherical capsule containing
  • increase in size to 866 ± 97 nm, as judged by the SEM images in Figure 1. Notably, the slight distortions in the images of the bare hydrogel composites (i.e., blurring and stretching apparent in Figure 1a and 1b) arise from surface charge build up from the SEM beam. Conversely, the conductive surfaces of
PDF
Album
Full Research Paper
Published 04 Oct 2019

Facile synthesis of carbon nanotube-supported NiO//Fe2O3 for all-solid-state supercapacitors

  • Shengming Zhang,
  • Xuhui Wang,
  • Yan Li,
  • Xuemei Mu,
  • Yaxiong Zhang,
  • Jingwei Du,
  • Guo Liu,
  • Xiaohui Hua,
  • Yingzhuo Sheng,
  • Erqing Xie and
  • Zhenxing Zhang

Beilstein J. Nanotechnol. 2019, 10, 1923–1932, doi:10.3762/bjnano.10.188

Graphical Abstract
  • materials with metal oxides [17]. Among them, carbon nanotubes combined with Fe2O3 have attracted considerable attention. Fe2O3 is attractive for its low cost, abundance, nontoxicity, and eco-friendliness [18][19][20]. Some great results on CNT@Fe2O3 composites have been achieved. For example, Guan et al
  • Fe2O3 on a carbon cloth–carbon nanotubes (CC-CNT) substrate with NaBH4 as reductant and ferric chloride as the reactant. NaBH4 is an active reducing agent with which most metal chlorides can be reduced to metal [22][23][24] and then be oxidized in air to form CNT@metal oxide composites. We also adapted
  • this method to prepare CNT@NiO composites. NiO is a potential positive material offering high theoretical capacity, nontoxicity, and environmentally benign nature [25]. Through aqueous reduction, Fe2O3-coated CNT on carbon cloth (CC-CNT@Fe2O3) as anode and NiO-coated CNT on carbon cloth (CC-CNT@NiO) as
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2019

TiO2/GO-coated functional separator to suppress polysulfide migration in lithium–sulfur batteries

  • Ning Liu,
  • Lu Wang,
  • Taizhe Tan,
  • Yan Zhao and
  • Yongguang Zhang

Beilstein J. Nanotechnol. 2019, 10, 1726–1736, doi:10.3762/bjnano.10.168

Graphical Abstract
  • be suppressed due to the presence of oxygen functional groups on the surface of GO, electrostatic repulsion and steric exclusion [33][34]. However, as far as we know, no study has been reported applying TiO2/GO composites as a functional interlayer in Li/S batteries. Herein, a three-dimensional TiO2
  • and GO sheets exhibit excellent adhesion, which ensures efficient electron transfer from the GO sheet to nanoporous TiO2. The use of TiO2/GO composites as an interlayer can greatly suppress the migration of polysulfides due to their physical and chemical interactions with dissolved polysulfides
  • (DI) water (18.2 MΩ cm) and ethyl alcohol. Then, the powder was vacuum dried (−0.08 MPa) for 8 h. To synthesize the TiO2/GO composites, 1 g of nanoporous TiO2 (≈40 nm) and 100 mL of graphene oxide (GO) solution were dispersed into 100 mL of deionized water and ultrasonically mixed for 2 h, followed by
PDF
Album
Full Research Paper
Published 19 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • reported. Jayavel, Shrestha, and co-workers demonstrated the enhanced performance of electrochemical supercapacitors using composites of cobalt oxide nanoparticles and reduced graphene oxide, which are zero-dimensional and two-dimensional nanomaterials, respectively [86]. Leong and co-workers reported a
PDF
Album
Review
Published 30 Jul 2019

High-temperature resistive gas sensors based on ZnO/SiC nanocomposites

  • Vadim B. Platonov,
  • Marina N. Rumyantseva,
  • Alexander S. Frolov,
  • Alexey D. Yapryntsev and
  • Alexander M. Gaskov

Beilstein J. Nanotechnol. 2019, 10, 1537–1547, doi:10.3762/bjnano.10.151

Graphical Abstract
  • high temperatures in the range of 300–800 °C. The development of high-temperature gas sensors requires the creation of new materials that are stable under these conditions. The stability of nanostructured semiconductor oxides at high temperature can be enhanced by creating composites with highly
  • , ultrathin fibers of SiC and metal oxides as well as MO/SiC composites from polymer solutions [16][17][18][19]. The combination of unlimited length, highly porous microstructure, and high surface area come together to create ideal gas sensor materials. In this work, we prepared ZnO/SiC nanocomposite
  • -type gas sensors based on ZnO/SiC composites and studying the sensor performance towards the main components of the exhaust gases CO and NH3 in air at a temperature range of 400–550 °C. Results and Discussion The nanocomposite synthesis scheme is shown in Figure 1 and described in detail in the
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

Flexible freestanding MoS2-based composite paper for energy conversion and storage

  • Florian Zoller,
  • Jan Luxa,
  • Thomas Bein,
  • Dina Fattakhova-Rohlfing,
  • Daniel Bouša and
  • Zdeněk Sofer

Beilstein J. Nanotechnol. 2019, 10, 1488–1496, doi:10.3762/bjnano.10.147

Graphical Abstract
  • devices where high flexibility and mechanical strength are desired. Keywords: flexible composites; hydrogen evolution reaction (HER); lithium ion batteries (LIBs); molybdenum disulfide; nanoarchitectonics; supercapacitors; Introduction The world’s growing population has a nearly ever-increasing demand
  • graphite (372 mA·h·g−1) [6]. However, poor electrical conductivity, capacity fading and large volume changes upon charge and discharge make the commercialization of MoS2 in LIBs problematic [6][7]. In order to address this issue, the fabrication of MoS2 composites and carbonaceous support materials (such
  • as amorphous carbon [8], carbon nanofibers [7], carbon nanotubes [8] and graphene [9]) has already been demonstrated to be quite attractive. Typically, the electrodes are prepared by mixing these composites as active material with a polymeric binder, conductive carbon and an organic solvent to form a
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Hierarchically structured 3D carbon nanotube electrodes for electrocatalytic applications

  • Pei Wang,
  • Katarzyna Kulp and
  • Michael Bron

Beilstein J. Nanotechnol. 2019, 10, 1475–1487, doi:10.3762/bjnano.10.146

Graphical Abstract
  • to solve these issues are focused on the optimization of the catalyst, such as alloying Pt with a second metal such as Ni, Ru and Pd [20][21][22][23][24] or using Pt-metal oxide composites such as Pt/SnO2 and Pt/CeO2 [24][25][26][27][28]. Additionally, a variety of catalyst preparation methods, e.g
  • is the growth of secondary CNTs on primary CNTs [52][53][54][55][56]. It was shown that such nanostructured CNT–CNT composites exhibit enhanced specific surface area as well as increased specific double-layer capacitance. Additionally, the presence of the secondary CNTs can reduce the equivalent
  • series resistance to promote electron transfer. CNT–CNT composites have been successfully employed as catalyst supports. Kundu et al. reported that Pt supported on such hierarchical structures showed enhanced surface atomic concentration, indicating an improved Pt dispersion. The oxygen reduction
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Magnetic segregation effect in liquid crystals doped with carbon nanotubes

  • Danil A. Petrov,
  • Pavel K. Skokov,
  • Alexander N. Zakhlevnykh and
  • Dmitriy V. Makarov

Beilstein J. Nanotechnol. 2019, 10, 1464–1474, doi:10.3762/bjnano.10.145

Graphical Abstract
  • tricritical behavior is related to the redistribution of the carbon nanotubes (segregation effect) inside the layer. Keywords: carbon nanotubes; liquid crystal; magnetic field; orientational transitions; segregation effect; Introduction Composites of liquid crystals (LCs) and nanoparticles are actively
  • [1][11][12]. Thus, the idea of controlling the features of composites by adding a small amount of nanoparticles to an LC matrix is of great interest from a physical point of view. Carbon nanotubes (CNTs) [13] are a popular material to be embedded in LCs [9][14][15][16][17]. Due to a large aspect
PDF
Album
Full Research Paper
Published 22 Jul 2019

Selective gas detection using Mn3O4/WO3 composites as a sensing layer

  • Yongjiao Sun,
  • Zhichao Yu,
  • Wenda Wang,
  • Pengwei Li,
  • Gang Li,
  • Wendong Zhang,
  • Lin Chen,
  • Serge Zhuivkov and
  • Jie Hu

Beilstein J. Nanotechnol. 2019, 10, 1423–1433, doi:10.3762/bjnano.10.140

Graphical Abstract
  • detection. The devices displayed different sensing responses toward different gases at specific temperatures. The gas sensing performance of Mn3O4/WO3 composites (especially at 3 atom % Mn) were far improved compared to sensors based on pure WO3, where the improvement is related to the heterojunction formed
  • door for potential applications in gas recognition and detection. Keywords: Mn3O4/WO3 composites; heterojunctions; working temperature; gas sensing; selectivity; Introduction Tungsten oxide (WO3) is a highly stable, classical transition metal oxide. When synthesized, WO3 usually presents a yellowish
  • material for selective detection of gases [12]. Herein, we prepared pure WO3 and Mn3O4/WO3 composites with different concentrations of Mn (1 atom %, 3 atom % and 5 atom % Mn) by a facile hydrothermal method followed by calcination. The gas sensing performance under different temperatures to H2S, NH3 and CO
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2019

BiOCl/TiO2/diatomite composites with enhanced visible-light photocatalytic activity for the degradation of rhodamine B

  • Minlin Ao,
  • Kun Liu,
  • Xuekun Tang,
  • Zishun Li,
  • Qian Peng and
  • Jing Huang

Beilstein J. Nanotechnol. 2019, 10, 1412–1422, doi:10.3762/bjnano.10.139

Graphical Abstract
  • obtained by dissolving 0.12 g of KCl in 5 mL distilled water was dripped into the above mixed mannitol solution under stirring, and the resulting mixed solution was filtered to obtain a solid. After washing, drying and calcining at 400 °C for 2 h, the BiOCl/TiO2/diatomite (BTD) composites were prepared
  • temperature of TiO2 in the composites. This speculation is based on previous reports that some modification methods may lead to crystal transformation and grain size change [27][32]. The photocatalytic activity of the catalyst is related to its specific surface area. Generally, the larger the specific surface
  • spectrum (Figure 3a) clearly shows the signals of Ti, O, Cl, Bi and Si. The two peaks corresponding to 159.35 and 164.65 eV belong to Bi 4f7/2 and Bi 4f5/2 respectively in the Bi 4f spectrum [34] (Figure 3b), indicating that Bi3+ is the main chemical state of Bi in the composites. In the Si 2p spectrum
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2019

Highly ordered mesoporous silica film nanocomposites containing gold nanoparticles for the catalytic reduction of 4-nitrophenol

  • Mohamad Azani Jalani,
  • Leny Yuliati,
  • Siew Ling Lee and
  • Hendrik O. Lintang

Beilstein J. Nanotechnol. 2019, 10, 1368–1379, doi:10.3762/bjnano.10.135

Graphical Abstract
  • competition of a reduction process and the decomposition of organic components. Of interest is the thermal hydrogen reduction at 250 °C which gave even better quality silica film composites compared to the best results using the calcination method. In our previous reports [31][32], we highlighted the
  • morphology of mesoporous silica composites after both types of heat treatments at 450 and 250 °C by calcination for 3 hours and thermal hydrogen reduction for 2 hours. In this current work, we have only selected the best two samples from each heat treatment process (calcination at 250 °C and thermal hydrogen
  • composites showed AuNPs with an indexed reflection in the FFT pattern corresponding to d111 with a face centered cubic (fcc) structure at 2θ = 38.2° and a fringe spacing of 0.23 nm (ICDD 98-005-0876). Based on Figure 7, we have also observed from the TEM images that the AuNPs cover the external silicate
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2019

Construction of a 0D/1D composite based on Au nanoparticles/CuBi2O4 microrods for efficient visible-light-driven photocatalytic activity

  • Weilong Shi,
  • Mingyang Li,
  • Hongji Ren,
  • Feng Guo,
  • Xiliu Huang,
  • Yu Shi and
  • Yubin Tang

Beilstein J. Nanotechnol. 2019, 10, 1360–1367, doi:10.3762/bjnano.10.134

Graphical Abstract
  • composites with 2.5 wt % Au NPs was 4.76 times as high as that of bare CBO microrods. Additionally, the 0D/1D Au/CBO composite also exhibited ideal stability. The significant improvement of the photocatalytic performance could be attributed to the improved light harvesting and increased specific surface area
  • affect the SPR of Au NPs. The Au NPs promote the rapid separation of charge carriers of semiconductor [10][26][27]. Thus, we attempt to use 0D Au NPs to decorate 1D CuBi2O4 (CBO) microrods to obtain a new type of efficient 0D/1D composite photocatalyst. Herein, 0D/1D Au NP/CBO microrod composites were
  • rationally designed and prepared by a facile in situ thermal reduction–precipitation method. The fabricated Au/CBO composites showed a higher photocatalytic activity in the removal of a typical antibiotic (tetracycline, TC, 10 mg/L) under visible-light irradiation (λ > 420 nm) than pristine CBO. Furthermore
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2019

Nanoscale spatial mapping of mechanical properties through dynamic atomic force microscopy

  • Zahra Abooalizadeh,
  • Leszek Josef Sudak and
  • Philip Egberts

Beilstein J. Nanotechnol. 2019, 10, 1332–1347, doi:10.3762/bjnano.10.132

Graphical Abstract
  • properties, the surface displacement map in CR mode can qualitatively reflect the elastic modulus with higher sensitivity as compared to other dynamic modes [14]. The FMM and CR AFM techniques are widely used for mapping the local, nanoscale elastic properties of polymers, rubber, composites, and biological
PDF
Album
Full Research Paper
Published 03 Jul 2019

Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices

  • Giulia Lo Dico,
  • Bernd Wicklein,
  • Lorenzo Lisuzzo,
  • Giuseppe Lazzara,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2019, 10, 1303–1315, doi:10.3762/bjnano.10.129

Graphical Abstract
  • nanoclays and GNPs without 2θ displacement (Figure S3, Supporting Information File 1). This suggests that, in contrast to other polymer–HNT composites, no intercalation of chitosan into the halloysite interlayer spacing occurred, and thus, halloysite still remains in its dehydrated form (Figure S4
  • form a conducting network within the matrix of the bionanocomposite. In any case, the percolation threshold is on par or slightly lower than the values for related MWCNT–polymer composites, which are in the range of 4–9 wt % [56][57]. The bionanocomposite sample Film-1 was used to evaluate the
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

A silver-nanoparticle/cellulose-nanofiber composite as a highly effective substrate for surface-enhanced Raman spectroscopy

  • Yongxin Lu,
  • Yan Luo,
  • Zehao Lin and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2019, 10, 1270–1279, doi:10.3762/bjnano.10.126

Graphical Abstract
  • . This low-cost, highly sensitive, and biocompatible paper-based SERS substrate holds considerable potentials for the detection and analyses of chemical and biomolecular species. Keywords: cellulose nanofiber; composites; nanoarchitectonics; silver nanoparticle; surface-enhanced Raman spectroscopy
  • (XRD) patterns of the prepared Ag-NP/cellulose-NF composites. Two series of diffraction peaks were observed. The ones located at 2θ = 15.0°, 16.5°, 22.8°, and 34.1° are ascribed to the (), (101), (002), and (040) planes of crystalline cellulose, respectively [61]; and the other ones located at 2θ
  • in all the experiments was purified by using a Milli-Q Advantage A10 system (Millipore, Bedford, MA, USA) with a resistivity higher than 18.2 MΩ·cm. Fabrication of the paper-based Ag-NP/cellulose-NF composites The silver nanoparticles (Ag-NPs) were deposited onto the surface of the cellulose
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2019
Other Beilstein-Institut Open Science Activities