Search results

Search for "defects" in Full Text gives 641 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Rapid thermal annealing for high-quality ITO thin films deposited by radio-frequency magnetron sputtering

  • Petronela Prepelita,
  • Ionel Stavarache,
  • Doina Craciun,
  • Florin Garoi,
  • Catalin Negrila,
  • Beatrice Gabriela Sbarcea and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2019, 10, 1511–1522, doi:10.3762/bjnano.10.149

Graphical Abstract
  • impurities from degassing of the deposition chamber takes place. At the same time, the improvement of surface crystallinity (Figure 2), annealing of surface structural defects and achievement of uniform films on the entire deposited surface (Figure 1) are obtained [33]. Using these structural and
  • the increase in the crystallite size (Table 2) and the reduction of structural defects. To evaluate the chemical composition of the surface for the as-deposited and RTA-processed films, the XPS spectra were recorded, as shown in Figure 3a–c. The spectra were recorded over a wide range of binding
  • size and the improvement of crystallinity led to the decrease in defects in the films, thus resulting in higher conductivity. Adding oxygen leads to improved transmission and conductivity in the ITO thin films. The conductive ITO thin films (ρ = 8.4 × 10−5 Ω cm to ρ = 7.4 × 10−5 Ω cm) were obtained by
PDF
Album
Full Research Paper
Published 25 Jul 2019

Flexible freestanding MoS2-based composite paper for energy conversion and storage

  • Florian Zoller,
  • Jan Luxa,
  • Thomas Bein,
  • Dina Fattakhova-Rohlfing,
  • Daniel Bouša and
  • Zdeněk Sofer

Beilstein J. Nanotechnol. 2019, 10, 1488–1496, doi:10.3762/bjnano.10.147

Graphical Abstract
  • composite paper as a catalyst for the hydrogen evolution reaction (HER). The results are shown in Figure 6. Apart from the pristine material, we also treated the paper with n-butyllithium (BuLi) solution to introduce new active sites in the form of edge sites as well as defects. The pristine as-prepared
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Hierarchically structured 3D carbon nanotube electrodes for electrocatalytic applications

  • Pei Wang,
  • Katarzyna Kulp and
  • Michael Bron

Beilstein J. Nanotechnol. 2019, 10, 1475–1487, doi:10.3762/bjnano.10.146

Graphical Abstract
  • /GC) were characterized by Raman spectroscopy (Figure 5) after Fe removal in concentrated HNO3 (before Pt electrodeposition). Both electrodes show the typical D-band at ≈1355 cm−1 und the G-band at ≈1600 cm−1, which are associated with structural defects within the carbon lattice and crystalline
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Direct observation of oxygen-vacancy formation and structural changes in Bi2WO6 nanoflakes induced by electron irradiation

  • Hong-long Shi,
  • Bin Zou,
  • Zi-an Li,
  • Min-ting Luo and
  • Wen-zhong Wang

Beilstein J. Nanotechnol. 2019, 10, 1434–1442, doi:10.3762/bjnano.10.141

Graphical Abstract
  • that self-adapt to keep the balance of space charges. Previous reports [14][15] have indicated that defects in Bi2WO6 affect its physical properties because defects can modify the band structure and electron–hole pairs [16][17]. Oxygen vacancies in the insulating layers of Bi2WO6 are defects that can
  • be induced by chemical doping [18][19], hydrogen reduction [16] or ultra-thinning [14][20]. Surface oxygen vacancies can efficiently separate photogenerated electron–hole pairs, resulting in enhanced photocatalytic activity. Bismuth defects or dangling bonds of bismuth atoms resulting from oxygen
  • be a fundamental step for controllable engineering of defects. Electron-beam irradiation is a powerful technique to fabricate or modify materials at the nanoscale [21][22]. For example, electron irradiation can induce a phase transformation from crystalline to amorphous or vice versa [23][24]; the
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2019

Selective gas detection using Mn3O4/WO3 composites as a sensing layer

  • Yongjiao Sun,
  • Zhichao Yu,
  • Wenda Wang,
  • Pengwei Li,
  • Gang Li,
  • Wendong Zhang,
  • Lin Chen,
  • Serge Zhuivkov and
  • Jie Hu

Beilstein J. Nanotechnol. 2019, 10, 1423–1433, doi:10.3762/bjnano.10.140

Graphical Abstract
  • composites, the improved gas sensing properties can be ascribed to the following two reasons. Firstly, Mn3+ in the Mn3O4/WO3 composites results in more defects on the surface of the WO3 matrix, which promotes the adsorption of the oxygen species [34]. More adsorbed oxygen means a broader electron depletion
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2019

Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere

  • Petr Knotek,
  • Tomáš Plecháček,
  • Jan Smolík,
  • Petr Kutálek,
  • Filip Dvořák,
  • Milan Vlček,
  • Jiří Navrátil and
  • Čestmír Drašar

Beilstein J. Nanotechnol. 2019, 10, 1401–1411, doi:10.3762/bjnano.10.138

Graphical Abstract
  • been observed for Si [51][52], Ti, Ni or Al [53][54][55], carbon [56] and organic–inorganic compounds [57]. We suggest, in our case, that OH− or O−/O2− ions diffuse through our polycrystalline Au layer with many defects (grain boundaries, dislocations) forced by the strong electric field (8 V/53 nm of
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2019

Warped graphitic layers generated by oxidation of fullerene extraction residue and its oxygen reduction catalytic activity

  • Machiko Takigami,
  • Rieko Kobayashi,
  • Takafumi Ishii,
  • Yasuo Imashiro and
  • Jun-ichi Ozaki

Beilstein J. Nanotechnol. 2019, 10, 1391–1400, doi:10.3762/bjnano.10.137

Graphical Abstract
  • . Controlling carbonization by metal catalysts such as iron or cobalt produces nanoshell-containing carbon (NSCC) with ORR activity [30][31][32][33][34][35]. This activity is thought to originate from surface defects formed on the nanoshell carbons, including edges and warped graphitic layers (WGLs) [31][36
PDF
Album
Full Research Paper
Published 12 Jul 2019

Nanoscale spatial mapping of mechanical properties through dynamic atomic force microscopy

  • Zahra Abooalizadeh,
  • Leszek Josef Sudak and
  • Philip Egberts

Beilstein J. Nanotechnol. 2019, 10, 1332–1347, doi:10.3762/bjnano.10.132

Graphical Abstract
  • spatially resolve mechanical property variations resulting from atomic-scale surface defects on the HOPG crystal. In this manuscript, we will elaborate the advantages of these specific settings and the importance of the outcome. The surfaces are examined under UHV conditions to exclude environmental
  • contaminants on the surface when measuring the mechanical properties of atomic-sized defects [15][16][17]. Furthermore, the high quality factor of the AFM cantilever that is achieved under UHV conditions can be very beneficial in dynamic AFM modes, as the Q-factor is inversely proportional to the force
  • contrast in the variation of the amplitude of the oscillating cantilever can be captured in the CR mode over atomic-scale defects that exhibit mechanical properties variations [14][19]. Given the intense examination of HOPG as an ideal lubricant [20] and a surface that has been extremely well-characterized
PDF
Album
Full Research Paper
Published 03 Jul 2019

Alloyed Pt3M (M = Co, Ni) nanoparticles supported on S- and N-doped carbon nanotubes for the oxygen reduction reaction

  • Stéphane Louisia,
  • Yohann R. J. Thomas,
  • Pierre Lecante,
  • Marie Heitzmann,
  • M. Rosa Axet,
  • Pierre-André Jacques and
  • Philippe Serp

Beilstein J. Nanotechnol. 2019, 10, 1251–1269, doi:10.3762/bjnano.10.125

Graphical Abstract
  • treatment can be used to improve the carbon corrosion resistance of the CNT. In fact, annealing at high temperature (above 1000 °C) is used to remove structural defects from the CNT in order to obtained more stable [36] and more conductive [37] structures. In the case of the N-CNTs, the thermal annealing
  • characterization was performed using Raman spectroscopy and X-ray diffraction (XRD, see Table 1 and Supporting Information File 1, Figure S2 for Raman spectra). In Raman spectroscopy, a useful parameter for carbon nanotubes is the ratio between the D band (ID) at ≈1380 cm−1, attributed to the defects of the CNT
  • (and lower LD) for the N-CNT sample, which is in accordance with the TEM observations. The N-CNTHT sample shows a decrease in the number of defects compared to N-CNT, as expected after the high temperature treatment. S-CNTs constitute an intermediate situation. The d002 inter-planar spacing results
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2019

Luminescence of Tb3Al5O12 phosphors co-doped with Ce3+/Gd3+ for white light-emitting diodes

  • Yu-Guo Yang,
  • Lei Wei,
  • Jian-Hua Xu,
  • Hua-Jian Yu,
  • Yan-Yan Hu,
  • Hua-Di Zhang,
  • Xu-Ping Wang,
  • Bing Liu,
  • Cong Zhang and
  • Qing-Gang Li

Beilstein J. Nanotechnol. 2019, 10, 1237–1242, doi:10.3762/bjnano.10.123

Graphical Abstract
  • + causes lattice deformation and generates numerous structural and chemical defects. By comparing the light parameters of white light-emitting diodes (WLEDs) containing Y2.96Ce0.04Al5O12, Tb2.96Ce0.04Al5O12 and Tb2.81Ce0.04Gd0.15Al5O12 phosphors, we can find that the WLED containing the
  • spectra. Moreover, the substitution of Tb3+ with Gd3+ causes lattice deformation and generates numerous structural and chemical defects, which results in a decrease of the Ce3+ emission intensity [32]. The decay characteristics of the synthesized Tb2.96−xCe0.04GdxAl5O12 phosphors were also investigated
PDF
Album
Full Research Paper
Published 14 Jun 2019

Imaging the surface potential at the steps on the rutile TiO2(110) surface by Kelvin probe force microscopy

  • Masato Miyazaki,
  • Huan Fei Wen,
  • Quanzhen Zhang,
  • Yuuki Adachi,
  • Jan Brndiar,
  • Ivan Štich,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2019, 10, 1228–1236, doi:10.3762/bjnano.10.122

Graphical Abstract
  • [1][2][3][4][5][6][7]. The catalytic activity can be enhanced by the presence of defects, such as oxygen vacancies (Ov), Ti interstitials (Tiint) [8], and crystal steps. TiO2 is an n-type semiconductor because of these defects. In addition, reactive oxygen species, such as OH and H2O2 (compounds with
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2019

Green fabrication of lanthanide-doped hydroxide-based phosphors: Y(OH)3:Eu3+ nanoparticles for white light generation

  • Tugrul Guner,
  • Anilcan Kus,
  • Mehmet Ozcan,
  • Aziz Genc,
  • Hasan Sahin and
  • Mustafa M. Demir

Beilstein J. Nanotechnol. 2019, 10, 1200–1210, doi:10.3762/bjnano.10.119

Graphical Abstract
  • during the reaction process may distort the crystal structure and lead to an increase in the formation of substitutional defects, which may facilitate the incorporation of dopant ions into the system [36][37][38][39]. As an example, luminescent red Y(OH)3:Eu3+ phosphors were fabricated via employing this
  • other possible ions and can therefore lead to an increase in the formation of defects to make the doping process more favorable (as previously mentioned at the end of the Introduction section). The solutions were mixed and sonicated for 5 min. After the sonication process, the reaction was maintained
  • vary for each material depending on its chemistry), fast crystal growth takes place. This fast growth may force a high density of crystal defects, i.e., the atoms do not have enough time for placement in the crystal array and the metal atom misplacement may occur during the fast growth. These defects
PDF
Album
Full Research Paper
Published 07 Jun 2019

Pure and mixed ordered monolayers of tetracyano-2,6-naphthoquinodimethane and hexathiapentacene on the Ag(100) surface

  • Robert Harbers,
  • Timo Heepenstrick,
  • Dmitrii F. Perepichka and
  • Moritz Sokolowski

Beilstein J. Nanotechnol. 2019, 10, 1188–1199, doi:10.3762/bjnano.10.118

Graphical Abstract
  • example. The four symmetry-equivalent domains are marked by A to D. The molecular rows are well visible. The domains exhibit local defects, mostly vacancies, where single molecules are missing. For this structure, STM images of good quality with a low level of noise were obtained easily. We interpret this
  • HTPEN and TNAP molecules yielded a stable binary monolayer. This layer is well-ordered and thermodynamically very stable, because only very few structural defects were observed. The formation occurs spontaneously and is independent of the sequence of the deposition. The strong corrugation of the bonding
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2019

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  • Eduardo Ruiz-Hitzky,
  • Pilar Aranda,
  • Marwa Akkari,
  • Nithima Khaorapapong and
  • Makoto Ogawa

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

Graphical Abstract
  • visible wavelengths (blue and green emission at around 436–438 nm and 544–548 nm) of ZnO hybridized with CTA-smectites varies depending on the ZnO loading. This was attributed to defects, such as oxygen vacancies in ZnO, and trapped surface charges. The photoluminescence intensity of ZnO in saponite and
PDF
Album
Review
Published 31 May 2019

Quantitative analysis of annealing-induced instabilities of photo-leakage current and negative-bias-illumination-stress in a-InGaZnO thin-film transistors

  • Dapeng Wang and
  • Mamoru Furuta

Beilstein J. Nanotechnol. 2019, 10, 1125–1130, doi:10.3762/bjnano.10.112

Graphical Abstract
  • temperature on the initial electrical characteristics and photo-induced instabilities of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). The extracted electrical parameters from transfer curves suggest that a low-temperature treatment maintains a high density of defects in the IGZO
  • sputtering techniques, the sample suffers from the plasma bombardment in the chamber. In addition, the deposited films are inevitably irradiated by UV light in the process of patterning, inducing the increase in the concentration of oxygen-related defects, which further degrade the initial electrical
  • properties and long-term stability. Therefore, many researches are devoted to reducing the density of defects during the fabrication, including the optimization of oxygen partial pressure [4], the increase of fabrication temperature, and the reduction of deposition power. In addition, post-annealing is
PDF
Album
Full Research Paper
Published 27 May 2019

CuInSe2 quantum dots grown by molecular beam epitaxy on amorphous SiO2 surfaces

  • Henrique Limborço,
  • Pedro M.P. Salomé,
  • Rodrigo Ribeiro-Andrade,
  • Jennifer P. Teixeira,
  • Nicoleta Nicoara,
  • Kamal Abderrafi,
  • Joaquim P. Leitão,
  • Juan C. Gonzalez and
  • Sascha Sadewasser

Beilstein J. Nanotechnol. 2019, 10, 1103–1111, doi:10.3762/bjnano.10.110

Graphical Abstract
  • influence of the CdS layer on the measured luminescence, a PL spectrum of a CdS layer deposited on glass covered with a Mo layer, measured under the same experimental conditions, is also shown in Figure 4b. No significant luminescence related with the CdS layer was observed. Intrinsic defects and surface
  • defects are important sources of radiative and non-radiative recombination affecting the optoelectronic properties of CIS quantum dots (QDs), such as photo-generated carrier lifetime and photoluminescence [15]. We ascribe the increase in the photoluminescence related to the nanodots to the passivation of
PDF
Album
Full Research Paper
Published 22 May 2019

Glucose-derived carbon materials with tailored properties as electrocatalysts for the oxygen reduction reaction

  • Rafael Gomes Morais,
  • Natalia Rey-Raap,
  • José Luís Figueiredo and
  • Manuel Fernando Ribeiro Pereira

Beilstein J. Nanotechnol. 2019, 10, 1089–1102, doi:10.3762/bjnano.10.109

Graphical Abstract
  • used for activation (900 °C). The application of ball milling in both activated and carbonized samples results in a noticeable increase in the oxygen content. This phenomenon may be due to the defects created in the carbon structure during the milling process that react with air and incorporate oxygen
  • milling method is similar to that obtained by the conventional method. However, the incorporation of oxygen and nitrogen in the activated structures is lower than in carbonized samples. Activation at high temperature results in a structure with higher chemical stability and lower amount of defects in
  • elemental analysis (Table 1) was due to the formation of a large number of carboxylic acids, which further reinforces the possible reaction between the defects generated on the sample during the ball milling process and air moisture. The XPS spectra for the C 1s region of the doped samples exhibit the same
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2019

Concurrent nanoscale surface etching and SnO2 loading of carbon fibers for vanadium ion redox enhancement

  • Jun Maruyama,
  • Shohei Maruyama,
  • Tomoko Fukuhara,
  • Toru Nagaoka and
  • Kei Hanafusa

Beilstein J. Nanotechnol. 2019, 10, 985–992, doi:10.3762/bjnano.10.99

Graphical Abstract
  • the concentration of the defects and the extent of the structural disorder [21]. The ID/IG value is similar to that of TGP-550Air. The ID/IG value depends on the thermal oxidation temperature and a highly developed D peak and a slight increase in the Am peak intensity were observed in the spectrum for
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2019

Direct growth of few-layer graphene on AlN-based resonators for high-sensitivity gravimetric biosensors

  • Jimena Olivares,
  • Teona Mirea,
  • Lorena Gordillo-Dagallier,
  • Bruno Marco,
  • José Miguel Escolano,
  • Marta Clement and
  • Enrique Iborra

Beilstein J. Nanotechnol. 2019, 10, 975–984, doi:10.3762/bjnano.10.98

Graphical Abstract
  • graphene integration. Raman spectra reveal that the as-grown graphene is composed of less than five weakly coupled layers with a low density of defects. Two functionalization protocols of the graphene are proposed. The first one, based on a covalent binding approach, starts with a low-damage O2 plasma
  • treatment that introduces a controlled density of defects in graphene, including carboxylic groups. After that, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) chemistry is used to covalently bind streptavidin molecules to the surface of the sensors. The second
  • functionalization platforms. On one hand, graphene containing defects (COOH groups) can be covalently functionalized by using an EDC/NHS zero-cross linker, which allows for the binding of primary amines present in proteins and antibodies [11][12]. On the other hand, defect-free graphene is highly hydrophobic, and
PDF
Album
Full Research Paper
Published 29 Apr 2019

Comparing a porphyrin- and a coumarin-based dye adsorbed on NiO(001)

  • Sara Freund,
  • Antoine Hinaut,
  • Nathalie Marinakis,
  • Edwin C. Constable,
  • Ernst Meyer,
  • Catherine E. Housecroft and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2019, 10, 874–881, doi:10.3762/bjnano.10.88

Graphical Abstract
  • cleavage and annealing. The surface shows extended terraces separated by monoatomic steps that are 210 pm in height. Additionally, some line-shaped defects are observed all over the terraces. These defects, thought to be due to segregation of bulk impurities, were not further investigated in the present
  • atomic accuracy, and upon comparing them with the large-scale image, one can deduce that the step edges of NiO(001) as well as the observed defects run along the [110] direction (see violet dotted lines in Figure 2). With this physical image of the atomically resolved structure of the clean NiO(001
  • adsorbed on the substrate, where it can be seen that Cu-TCPP exhibits either the tendency to aggregate in small clusters at step edges and defects, or to form large molecular islands (up to 70 nm in width). The fact that the island formation takes place at RT indicates a relatively high diffusion rate of
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2019

Electronic properties of several two dimensional halides from ab initio calculations

  • Mohamed Barhoumi,
  • Ali Abboud,
  • Lamjed Debbichi,
  • Moncef Said,
  • Torbjörn Björkman,
  • Dario Rocca and
  • Sébastien Lebègue

Beilstein J. Nanotechnol. 2019, 10, 823–832, doi:10.3762/bjnano.10.82

Graphical Abstract
  • , the role of defects and their stability when exposed to air are presently unknown, and can be seen as a direction for future theoretical and experimental studies. Side and top views of the crystal structures of a monolayer of: (a) AcOBr, (b) BaFBr, (c) CrOF and (d) LaOF. Side and top views of the
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2019

Tungsten disulfide-based nanocomposites for photothermal therapy

  • Tzuriel Levin,
  • Hagit Sade,
  • Rina Ben-Shabbat Binyamini,
  • Maayan Pour,
  • Iftach Nachman and
  • Jean-Paul Lellouche

Beilstein J. Nanotechnol. 2019, 10, 811–822, doi:10.3762/bjnano.10.81

Graphical Abstract
  • magnetite nanoparticles into γ-maghemite (mag) nanoparticles. The cerium ion attaches to the nanoparticle, producing surface defects (an Fe–O–[CeLn] bond is formed). The cerium-doped maghemite nanoparticles are more stable than the non-doped ones, which tend to aggregate. In addition to the stabilization
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2019

Capillary force-induced superlattice variation atop a nanometer-wide graphene flake and its moiré origin studied by STM

  • Loji K. Thomas and
  • Michael Reichling

Beilstein J. Nanotechnol. 2019, 10, 804–810, doi:10.3762/bjnano.10.80

Graphical Abstract
  • various defects such as cleavage steps, graphite strands, wrinkles/ridges, fiber-like entities, folded-over flakes, broken graphite pieces and other carbon aggregates [5][6][7][8][9][10]. Graphene, a monolayer of graphite, is the thinnest and strongest material ever known [11][12][13] and holds immense
  • a solid-liquid STM measurement. Results and Discussion Apart from various defects [5][6][7][8][9], hexagonal superlattices are the most frequently observed planar artefacts found on HOPG(0001) during STM imaging [19][20][21][22]. It was proved by Xhie et al., based on a direct measurement of the
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite

  • Mamta Sham Lal,
  • Thirugnanam Lavanya and
  • Sundara Ramaprabhu

Beilstein J. Nanotechnol. 2019, 10, 781–793, doi:10.3762/bjnano.10.78

Graphical Abstract
  • characteristic peaks at 1587 and 1330 cm−1, corresponding to the G-band and D-band of typical carbonaceous materials, respectively. The D-band is related to disordered carbon, which shows vibrations with sp3 bonds in the crystal lattice defects which leads to disordered carbonaceous matrix. The G-band is
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

On the transformation of “zincone”-like into porous ZnO thin films from sub-saturated plasma enhanced atomic layer deposition

  • Alberto Perrotta,
  • Julian Pilz,
  • Stefan Pachmajer,
  • Antonella Milella and
  • Anna Maria Coclite

Beilstein J. Nanotechnol. 2019, 10, 746–759, doi:10.3762/bjnano.10.74

Graphical Abstract
  • fewer defects. In contrast, the layers deposited at long plasma exposure times, having a very low C-content, did not develop sufficient amounts of new ZnO to affect the Zn-OH/Ov component. X-ray diffraction As mentioned before, the preferential orientation of ZnO is paramount when a specific application
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2019
Other Beilstein-Institut Open Science Activities