Search results

Search for "electrolyte" in Full Text gives 278 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

TiO2/GO-coated functional separator to suppress polysulfide migration in lithium–sulfur batteries

  • Ning Liu,
  • Lu Wang,
  • Taizhe Tan,
  • Yan Zhao and
  • Yongguang Zhang

Beilstein J. Nanotechnol. 2019, 10, 1726–1736, doi:10.3762/bjnano.10.168

Graphical Abstract
  • and Li2S2 at the electrode/electrolyte interface, shortening the service life and rendering poor coulombic efficiency, and (iii) large volumetric changes during charge/discharge, destroying the conductive network of the electrode and causing capacity decay [11][12][13][14][15]. To overcome these
  • issues, researchers have adopted various techniques, such as optimization of the cathode material [16][17][18], incorporation of electrolyte additives [19], and protection of the anode [20]. Recently, much attention has been directed to the development of a functional separator, which serves as an
  • treated with a Li2S6 electrolyte (1.0 M/0.1 M LiTFSI/LiNO3 in DOL and DME (1:1 v/v)) via immersion for 12 h; the Li2S6-treated TiO2/GO material was then obtained after centrifugal separation and vacuum drying. Raman and FTIR studies of the Li2S6-treated TiO2/GO material clearly show the existence of an S
PDF
Album
Full Research Paper
Published 19 Aug 2019

Tuning the performance of vanadium redox flow batteries by modifying the structural defects of the carbon felt electrode

  • Ditty Dixon,
  • Deepu Joseph Babu,
  • Aiswarya Bhaskar,
  • Hans-Michael Bruns,
  • Joerg J. Schneider,
  • Frieder Scheiba and
  • Helmut Ehrenberg

Beilstein J. Nanotechnol. 2019, 10, 1698–1706, doi:10.3762/bjnano.10.165

Graphical Abstract
  • flow batteries like zinc/bromine, the electrical energy in VRFBs is completely stored by the electrolyte in an external tank. Thus, in VRFB systems, the power and energy can be decoupled, that is, to store more energy, only the tank size needs to be increased. Moreover, since the system uses only a
  • the HER taking place at the negative electrode due to the very low amount of oxygen functional groups. Moreover, the Nafion 117 membrane used for higher current density cycling leads to an electrolyte imbalance. A detailed investigation is still required to understand the overall mechanism of the
  • molar sulfuric acid (Sigma Aldrich). In order to obtain the V3+ electrolyte for the negative half-cell reaction, both tanks were filled with the same volume of the V4+ electrolyte and then potentiostatically charged at 1.7 V in a 10 cm−2 flow cell. The reduction to V3+ was determined as complete when
PDF
Album
Full Research Paper
Published 13 Aug 2019

Effects of surface charge and boundary slip on time-periodic pressure-driven flow and electrokinetic energy conversion in a nanotube

  • Mandula Buren,
  • Yongjun Jian,
  • Yingchun Zhao,
  • Long Chang and
  • Quansheng Liu

Beilstein J. Nanotechnol. 2019, 10, 1628–1635, doi:10.3762/bjnano.10.158

Graphical Abstract
  • charge-dependent slip; Introduction Micro- and nanofluidic devices [1] have a wide range of applications in science and engineering, e.g., liquid pumping and energy conversion. In many of these devices, a pressure gradient is often used to manipulate the transport of electrolyte solutions in
  • contact with an electrolyte solution, most of them acquire surface electric charge [2] due to ion adsorption and acid–base reactions [3]. The charged surface attracts counterions and repels co-ions in the nearby electrolyte solution, and hence an electric double layer (EDL) with net charge density forms
  • in the nearby electrolyte solution. The flow of electrolyte solution actuated by the pressure field generates both a streaming current and a streaming potential. The streaming current in a nanochannel can offer a simple and effective way to convert the mechanical energy to electric energy [4]. The
PDF
Album
Full Research Paper
Published 06 Aug 2019

Upcycling of polyurethane waste by mechanochemistry: synthesis of N-doped porous carbon materials for supercapacitor applications

  • Christina Schneidermann,
  • Pascal Otto,
  • Desirée Leistenschneider,
  • Sven Grätz,
  • Claudia Eßbach and
  • Lars Borchardt

Beilstein J. Nanotechnol. 2019, 10, 1618–1627, doi:10.3762/bjnano.10.157

Graphical Abstract
  • values of 1–8 wt %, high specific surface area values of up to 2150 m2·g−1 (at a N content of 1.6 wt %) and large pore volume values of up to 0.9 cm3·g−1. The materials were tested as electrodes for supercapacitors in aqueous 1 M Li2SO4 electrolyte (100 F·g−1), organic 1 M TEA-BF4 (ACN, 83 F·g−1) and
  • carbon materials can be functionalized with heteroatoms such as nitrogen, which was reported to affect the electrical conductivity [39][40][41][42], the energy storage capacity, and the wettability of the electrodes with electrolyte [43][44][45]. Commonly, nitrogen is inserted into the carbon framework
  • aqueous Li2SO4, organic TEA-BF4 in acetonitrile, and an ionic liquid EMIM-BF4 electrolyte. Results and Discussion Characterization and mechanochemical treatment of PU Polyurethane is a polymer formed by polyaddition of diisocyanates R1(–NCO)2 with polyols R2(–OH)n. It is characterized by the resulting
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • nanoarchitectonics (controlled single atom/ion transfer) to regulate the number of dopant atoms in one-dimensional solid electrolyte nanodots (α-Ag2+δS) [127]. The nanoarchitectonic construction of one-dimensional nanowires from II–VI semiconductors was demonstrated for the use as wavelength division multiplexer as
PDF
Album
Review
Published 30 Jul 2019

Synthesis of P- and N-doped carbon catalysts for the oxygen reduction reaction via controlled phosphoric acid treatment of folic acid

  • Rieko Kobayashi,
  • Takafumi Ishii,
  • Yasuo Imashiro and
  • Jun-ichi Ozaki

Beilstein J. Nanotechnol. 2019, 10, 1497–1510, doi:10.3762/bjnano.10.148

Graphical Abstract
  • acid; oxygen reduction reaction; phosphoric acid treatment; PN-doped carbon catalysts; polymer electrolyte fuel cells; Introduction The widespread application of fuel cells as clean energy sources is the most desirable way of realizing a low-CO2-emission society. In conventional polymer electrolyte
  • 200 μg·cm−2). A reversible hydrogen electrode (RHE) and a glassy carbon plate were employed as reference and counter electrodes, respectively. The electrolyte was a 0.5 M solution of H2SO4 in deionized water. Prior to the measurements, dissolved oxygen in the acid solution was purged by bubbling
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2019

Flexible freestanding MoS2-based composite paper for energy conversion and storage

  • Florian Zoller,
  • Jan Luxa,
  • Thomas Bein,
  • Dina Fattakhova-Rohlfing,
  • Daniel Bouša and
  • Zdeněk Sofer

Beilstein J. Nanotechnol. 2019, 10, 1488–1496, doi:10.3762/bjnano.10.147

Graphical Abstract
  • ]. Moreover, Mo can occupy multiple oxidation states, which enables a pseudo-capacitive charge transfer by insertion of electrolyte ions, such as Li+, Na+, K+ and H+ [28][29]. Upon cycling, MoS2 sheets can restack resulting in a decreased surface area, which is then followed by poor capacitive performance
  • electrode that comes into contact with the electrolyte solution S. The calculation was performed using equation: C = (2·I) / (S·U/t). The calculated values are summarized for each discharging current in Table 1. Charging–discharging curves of MoS2-based composite paper obtained using the chronoamperometry
  • the following Equation 3) and the decomposition of the electrolyte followed by the formation of a solid electrolyte interphase (SEI) layer [18][20]. The prominent anodic peak at ≈2.5 V results from the conversion of Li2S to sulfur and lithium ions (see the following Equation 4) [20]. During the
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Hierarchically structured 3D carbon nanotube electrodes for electrocatalytic applications

  • Pei Wang,
  • Katarzyna Kulp and
  • Michael Bron

Beilstein J. Nanotechnol. 2019, 10, 1475–1487, doi:10.3762/bjnano.10.146

Graphical Abstract
  • energy conversion and storage, since they, in addition to their nonpolluting nature and low operating temperature, run on an easily handled and cheap liquid fuel. However, the slow kinetics of methanol oxidation at the anode and the methanol crossover through the electrolyte membrane from anode to
  • voltammograms were recorded at a scan rate of 20 mV s−1 in the potential range of 0.05–1.1 V vs RHE after CO adsorption in N2-purged 0.1 M HClO4 solution for ECSA determination as well as investigation of CO tolerance as shown in Figure 9. HClO4 was used as the electrolyte for these investigations instead of
  • oxygen functional groups as anchoring sites. Afterwards, Fe nanoparticles were grown on the oxidized GC by double pulse deposition [57] in 0.005 M FeSO4·7H2O (≥99.5%, Roth, Germany) and 0.5 M MgSO4·7H2O (pure, Roth, Germany) aqueous solution. MgSO4 simply serves as a conducting electrolyte to avoid high
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Growth of lithium hydride thin films from solutions: Towards solution atomic layer deposition of lithiated films

  • Ivan Kundrata,
  • Karol Fröhlich,
  • Lubomír Vančo,
  • Matej Mičušík and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 1443–1451, doi:10.3762/bjnano.10.142

Graphical Abstract
  • charge-controller circuits, inherent safety is still desirable. Since the hazardous components in lithium-ion batteries are organic solvents used as electrolyte, their exclusion would greatly improve the inherent safety of lithium-ion batteries. Solid-state batteries that are already in use, such as the
  • LIPON battery in which the solid electrolyte consists of nitrogen-doped lithium phosphate, present several shortcomings. One of them is the use of sputtering [1] for the deposition of the thin layers. Inherently, sputtering does not yield coatings with high conformity on non-planar substrates. Low
  • conformity leads to low surface area and thick films are needed to avoid pinholes. This, in turn, leads to low capacity mainly due to the low surface area. The whole concept of a solid-state battery needs to be reconsidered, particularly if we wish to surpass the capacity of current liquid-electrolyte
PDF
Album
Full Research Paper
Published 18 Jul 2019

Warped graphitic layers generated by oxidation of fullerene extraction residue and its oxygen reduction catalytic activity

  • Machiko Takigami,
  • Rieko Kobayashi,
  • Takafumi Ishii,
  • Yasuo Imashiro and
  • Jun-ichi Ozaki

Beilstein J. Nanotechnol. 2019, 10, 1391–1400, doi:10.3762/bjnano.10.137

Graphical Abstract
  • Abstract Carbon-based oxygen reduction reaction (ORR) catalysts are regarded as a promising candidate to replace the currently used Pt catalyst in polymer electrolyte fuel cells (PEFCs); however, the active sites remain under discussion. We predicted that warped graphitic layers (WGLs) are responsible for
  • maximum specific ORR activity after 1 h of oxidation time. WGLs were found to lower the heat of adsorption for O2 and to increase the occurrence of heterogeneous electron transfer. Keywords: carbon alloy catalysts; fullerene extraction residue; oxygen reduction reaction (ORR); polymer electrolyte fuel
  • cells; warped graphitic layers; Introduction Polymer electrolyte fuel cells (PEFCs) are used as the power supply for automobiles and stationary devices. Cost reduction, specifically the cost reduction of cathode catalysts, is imperative to apply PEFCs for practical use [1]. Increasing the specific
PDF
Album
Full Research Paper
Published 12 Jul 2019

A biomimetic nanofluidic diode based on surface-modified polymeric carbon nitride nanotubes

  • Kai Xiao,
  • Baris Kumru,
  • Lu Chen,
  • Lei Jiang,
  • Bernhard V. K. J. Schmidt and
  • Markus Antonietti

Beilstein J. Nanotechnol. 2019, 10, 1316–1323, doi:10.3762/bjnano.10.130

Graphical Abstract
  • with electron-rich –NH terminal groups. The negative surface charge is a crucial factor in ion transport. To confirm that confinement effects as well as the surface charge control the ion-transport properties [36][37][38], we measured the conductance of KCl electrolyte both in bulk solution and across
  • ). The membrane was caught in a H-cell with electrolyte. A Ag/AgCl electrode was used to collect the ionic current. The I–V curves were adjusted to zero current at zero voltage to remove small offsets experienced between runs. All measurements were carried out at ambient temperature. The main
  • transmembrane potential used in this work was stepped from −0.5 to +0.5 V at 0.05 V/step with 1 s/step (0.05 V/s). CNNMs before and after modification were mounted between two chambers of a custom-made H cell, which was filled with electrolyte. Ag/AgCl electrodes were used to collect the current and voltage
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2019

Alloyed Pt3M (M = Co, Ni) nanoparticles supported on S- and N-doped carbon nanotubes for the oxygen reduction reaction

  • Stéphane Louisia,
  • Yohann R. J. Thomas,
  • Pierre Lecante,
  • Marie Heitzmann,
  • M. Rosa Axet,
  • Pierre-André Jacques and
  • Philippe Serp

Beilstein J. Nanotechnol. 2019, 10, 1251–1269, doi:10.3762/bjnano.10.125

Graphical Abstract
  • management and interaction with the electrolyte, iii) a good dispersibility in the ink to limit mass transfer, and iv) structural features allowing high conductivity and chemical stability. As some of these characteristics are not compatible (e.g., a high metal dispersion should be favored on defective
  • concentration of defects in these supports, where a high ratio favors metal dispersion. A high percentage of surface heteroatoms should favor metal dispersion and interaction with the electrolyte but may have negative impacts on the electronic conductivity, the stability, and can modify the metal/support
  • works have shown that the ORR activities of Pt catalysts are strongly dependent on the electrolyte [54]. According to these studies, activities were found to increase from H2SO4 to HClO4 due to the specific effect of the adsorbed anion on different Pt(hkl) sites. Furthermore, the thin film RRDE method
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2019

Porous N- and S-doped carbon–carbon composite electrodes by soft-templating for redox flow batteries

  • Maike Schnucklake,
  • László Eifert,
  • Jonathan Schneider,
  • Roswitha Zeis and
  • Christina Roth

Beilstein J. Nanotechnol. 2019, 10, 1131–1139, doi:10.3762/bjnano.10.113

Graphical Abstract
  • CV measurements, the co-doped electrode possesses the largest double-layer capacity of the electrode/electrolyte interface, which is beneficial for the charge transfer of the positive side reaction [30]. The combined results of CV and EIS allow for the conclusion that an increased amount of
  • with the electrolyte. This method does not rely on expensive precursors and thus enables an environmentally friendly way to achieve porous carbon electrode materials without the utilization of zinc chloride or other hazardous substances. Experimental Materials 2-Thiophenecarboxaldehyde (98%), pyrrole-2
  • respective carbon felts served as working electrodes and were pierced in their center with a 1 mm thick glassy carbon rod for contacting. For studying the VO2+/VO2+ redox reaction the electrolyte consisting of 100 mL of 0.2 mol/L vanadylsulfate (VOSO4, Sigma-Aldrich) dissolved in 2.0 mol/L sulfuric acid
PDF
Album
Full Research Paper
Published 28 May 2019

Glucose-derived carbon materials with tailored properties as electrocatalysts for the oxygen reduction reaction

  • Rafael Gomes Morais,
  • Natalia Rey-Raap,
  • José Luís Figueiredo and
  • Manuel Fernando Ribeiro Pereira

Beilstein J. Nanotechnol. 2019, 10, 1089–1102, doi:10.3762/bjnano.10.109

Graphical Abstract
  • basic electrolyte at 1600 rpm and the Nyquist plot obtained from electrochemical impedance spectroscopy measurements are shown in Figure 2a and 2b, respectively. To evaluate the performance of the prepared electrocatalysts, cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were performed. LSV
  • that a more developed microporous structure favors the electrolyte diffusion to the most electrochemically active pores, which also contributed to the ORR kinetics. Moreover, clear differences regarding ionic transportation are also observed at medium frequencies. Sample AG1h shows a more defined
  • Warburg impedance, indicating a higher resistance of the electrolyte ion diffusion into the porous structure, and hence, a lower value of limiting current density. These diffusion limitations are less evident for those samples with wider pore size, as pores act as diffusion channels favoring the kinetics
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2019

Enhanced inhibition of influenza virus infection by peptide–noble-metal nanoparticle conjugates

  • Zaid K. Alghrair,
  • David G. Fernig and
  • Bahram Ebrahimi

Beilstein J. Nanotechnol. 2019, 10, 1038–1047, doi:10.3762/bjnano.10.104

Graphical Abstract
  • electrolyte-induced aggregation of the nanoparticles, demonstrated by a decrease in the plasmon absorption at 520 nm. Gold nanoparticles with a ligand shell incorporating 5% (mol/mol) FluPep ligand had a very similar resistance to ligand exchange with DTT as the control mixed-matrix-protected gold
  • contrast, the FluPep-functionalised gold nanoparticles bound to CM-Sepharose and were eluted by increasing electrolyte concentrations (Figure 2). Thus, the FluPep-functionalised gold nanoparticles ion-exchanged on this chromatography support, which is, therefore, suitable for their purification. Gold
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2019

Tailoring the stability/aggregation of one-dimensional TiO2(B)/titanate nanowires using surfactants

  • Atiđa Selmani,
  • Johannes Lützenkirchen,
  • Kristina Kučanda,
  • Dario Dabić,
  • Engelbert Redel,
  • Ida Delač Marion,
  • Damir Kralj,
  • Darija Domazet Jurašin and
  • Maja Dutour Sikirić

Beilstein J. Nanotechnol. 2019, 10, 1024–1037, doi:10.3762/bjnano.10.103

Graphical Abstract
  • micelles) on the stability of TNWs was assessed in two media, water and aqueous electrolyte solution of sodium bromide, thus increasing the complexity of the investigated systems. The observed effects were quantified by surface complexation modeling (SCM) in order to describe the TNW behavior when
  • positive, indicating stable dispersions. The comparison of the stabilization effect and adsorption ability for both surfactants onto TNW surfaces in Milli-Q water and NaBr aqueous electrolyte solution is shown in Figure 5a–d. The increasing DTAB concentration in TNW suspensions in Milli-Q water resulted in
  • the presence of 12-2-12, the largest dh values were observed at c(12-2-12)/mol dm−3 = 5 × 10−5. In NaBr aqueous electrolyte solution, the aggregation of TNWs was promoted. In TNW/DTAB systems the largest increase of dh was observed at c(DTAB)/mol dm−3 = 5 × 10−4, while for TNW/12-2-12 systems at c(12
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2019

Concurrent nanoscale surface etching and SnO2 loading of carbon fibers for vanadium ion redox enhancement

  • Jun Maruyama,
  • Shohei Maruyama,
  • Tomoko Fukuhara,
  • Toru Nagaoka and
  • Kei Hanafusa

Beilstein J. Nanotechnol. 2019, 10, 985–992, doi:10.3762/bjnano.10.99

Graphical Abstract
  • redox reactions of electrolyte ions are required to produce efficient and low-cost redox flow batteries (RFBs). Carbon-fiber electrodes are widely used in various types of RFBs and surface oxidation is commonly performed to enhance the redox reactions, although it is not necessarily efficient. Quite
  • nanoparticles; redox flow batteries; surface etching; Introduction Redox flow batteries (RFBs) are energy conversion and storage devices that involve the reduction and oxidation of electroactive species in electrolyte solutions and have attracted much attention due to their scalability and safety. Various
  • electrolyte [19]; thus, is assumed to also be stable in the RFB environment. The activity for both the positive and negative electrode reactions of a VRFB were clearly enhanced at the finely etched and SnO2-loaded carbon-fiber electrode and a stable performance was demonstrated by full cell cycle tests
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2019

In situ AFM visualization of Li–O2 battery discharge products during redox cycling in an atmospherically controlled sample cell

  • Kumar Virwani,
  • Younes Ansari,
  • Khanh Nguyen,
  • Francisco José Alía Moreno-Ortiz,
  • Jangwoo Kim,
  • Maxwell J. Giammona,
  • Ho-Cheol Kim and
  • Young-Hye La

Beilstein J. Nanotechnol. 2019, 10, 930–940, doi:10.3762/bjnano.10.94

Graphical Abstract
  • of water in the electrolyte. In our previous attempt [25] a closed AFM cell was exposed to atmosphere during imaging and discharge with oxygen saturated solvent precluding any impedance spectroscopy and cell recharge studies. Lang et al. discussed in situ AFM studies of lithium/sulfur [26] batteries
  • cathode while minimizing the chance of exposure to external sources of contaminants. The electrolyte consisted of lithium nitrate (LiNO3) as a salt in tetraethylene glycol dimethyl ether (TEGDME) solvent containing three concentrations of water: <20 ppm, ≈2500 ppm and ≈4600 ppm. Water has been added in
  • the electrolyte in multiple previous studies [27][28][29] to increase cell capacity at elevated concentrations, suggesting the possible catalytic role in Li/O2 reactions. However, without the stringent environmental controls, as presented in our study, the electrolyte could lose water over time to the
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2019

Synthesis of novel C-doped g-C3N4 nanosheets coupled with CdIn2S4 for enhanced photocatalytic hydrogen evolution

  • Jingshuai Chen,
  • Chang-Jie Mao,
  • Helin Niu and
  • Ji-Ming Song

Beilstein J. Nanotechnol. 2019, 10, 912–921, doi:10.3762/bjnano.10.92

Graphical Abstract
  • and a Pt wire was used as the counter electrode, respectively. The electrolyte was a 1 M Na2SO4 aqueous solution. A glassy carbon electrode containing the as-prepared sample served as the working electrode. Photocatalytic H2 production reaction In this work, the activity of the photocatalyst was
PDF
Album
Full Research Paper
Published 18 Apr 2019

An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite

  • Mamta Sham Lal,
  • Thirugnanam Lavanya and
  • Sundara Ramaprabhu

Beilstein J. Nanotechnol. 2019, 10, 781–793, doi:10.3762/bjnano.10.78

Graphical Abstract
  • , and stand-by power systems [4][5]. Supercapacitors may be categorized by their energy storage mechanism into (i) electrochemical double-layer capacitors (EDLCs) and (ii) pseudo-supercapacitors. EDLCs, electrostatically store energy in a non-faradaic manner at the electrode–electrolyte interface, where
  • constrained performance. Thus, to achieve high performance EDLCs, we need to enhance the energy density without compromising power density. Pseudo-supercapacitors derive their capacitance from fast reversible faradaic reactions at the surface of electrode materials with the electrolyte, which stores a greater
  • surface area and unique fiber pore structure [13]. These are potentially ideal electrode materials that can be widely used to fabricate high performance supercapacitors. The electrochemical performance of supercapacitors is defined by the type of electrolyte used. The electrolyte ion size should be
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Trapping polysulfide on two-dimensional molybdenum disulfide for Li–S batteries through phase selection with optimized binding

  • Sha Dong,
  • Xiaoli Sun and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2019, 10, 774–780, doi:10.3762/bjnano.10.77

Graphical Abstract
  • is composed of a sulfur cathode and a metallic Li anode, with an organic liquid electrolyte as the ionic conductor, and a porous separator. The Li–S batteries undergo the reaction of 16Li + S8 → 8Li2S, with a simplified reaction sequence of S8 → Li2S8 → Li2S6/Li2S4 → Li2S2/Li2S. Low coulombic
  • polysulfides (LPSs) (Li2Sx, x = 4–8) in the organic electrolyte solvent will migrate and react with the lithium anode, which results in capacity fading and low coulombic efficiency [7][8]. The major issue is the complex diffusion of LPSs, which in combination with the subsequent redox reactions is known as the
PDF
Album
Full Research Paper
Published 26 Mar 2019

An iridescent film of porous anodic aluminum oxide with alternatingly electrodeposited Cu and SiO2 nanoparticles

  • Menglei Chang,
  • Huawen Hu,
  • Haiyan Quan,
  • Hongyang Wei,
  • Zhangyi Xiong,
  • Jiacong Lu,
  • Pin Luo,
  • Yaoheng Liang,
  • Jianzhen Ou and
  • Dongchu Chen

Beilstein J. Nanotechnol. 2019, 10, 735–745, doi:10.3762/bjnano.10.73

Graphical Abstract
  • angles led to a variation of the structural color from red to blue-purple, and the SiO2 particle size was also found to have an influence on the film color [14]. Furthermore, an AAO template was firstly prepared in an electrolyte with an alkaline silica gel and phosphate, onto which a layer of an Au film
  • distances between them. The sample was taken out of the electrolyte and then blow-dried before storage for later use. Galvanic deposition of SiO2 NPs The sample with the electrodeposited Cu was put into a SiO2 deposition liquid, and the power supply (EOECD-30A) started with a constant voltage of 3 V for 35
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2019

A porous 3D-RGO@MWCNT hybrid material as Li–S battery cathode

  • Yongguang Zhang,
  • Jun Ren,
  • Yan Zhao,
  • Taizhe Tan,
  • Fuxing Yin and
  • Yichao Wang

Beilstein J. Nanotechnol. 2019, 10, 514–521, doi:10.3762/bjnano.10.52

Graphical Abstract
  • region the x-intercept is attributed to the contact resistance (R0), and the semicircle is attributed to the charge-transfer resistance (Rct) at the electrode/electrolyte interface. Finally, the inclined slope in the low-frequency region is associated with the Warburg impedance (W) [28], which correlates
  • radiation. Electrochemical measurements CR2025 coin batteries were assembled using S-3D-RGO@MWCNT as the cathode, 1 M lithium bistrifluoromethanesulfonimide and 0.1 M LiNO3 in a mixed solution of DME-DOL (1:1 by volume) as electrolyte, a Li foil as anode, and a Celgard 2300 membrane as separator. The
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2019

Widening of the electroactivity potential range by composite formation – capacitive properties of TiO2/BiVO4/PEDOT:PSS electrodes in contact with an aqueous electrolyte

  • Konrad Trzciński,
  • Mariusz Szkoda,
  • Andrzej P. Nowak,
  • Marcin Łapiński and
  • Anna Lisowska-Oleksiak

Beilstein J. Nanotechnol. 2019, 10, 483–493, doi:10.3762/bjnano.10.49

Graphical Abstract
  • , Poland 10.3762/bjnano.10.49 Abstract Composites based on the titania nanotubes were tested in aqueous electrolyte as a potential electrode material for energy storage devices. The nanotubular morphology of TiO2 was obtained by Ti anodization. TiO2 nanotubes were covered by a thin layer of bismuth
  • vanadate using pulsed laser deposition. The formation of the TiO2/BiVO4 junction leads to enhancement of pseudocapacitance in the cathodic potential range. The third component, the conjugated polymer PEDOT:PSS, was electrodeposited from an electrolyte containing the monomer EDOT and NaPSS as a source of
  • –inorganic composites with TiO2 [18][19], organic–inorganic hybrids consisting of a conducting polymer and Prussian blue analogues [20], or composites with carbon nanomaterials [21]. Tuning of the electrochemical activity of supercapacitors can also be achieved via electrolyte modification. The addition of
PDF
Album
Full Research Paper
Published 15 Feb 2019

A Ni(OH)2 nanopetals network for high-performance supercapacitors synthesized by immersing Ni nanofoam in water

  • Donghui Zheng,
  • Man Li,
  • Yongyan Li,
  • Chunling Qin,
  • Yichao Wang and
  • Zhifeng Wang

Beilstein J. Nanotechnol. 2019, 10, 281–293, doi:10.3762/bjnano.10.27

Graphical Abstract
  • ]. Generally speaking, supercapacitors fall into two categories with different energy storage mechanisms. One is electrical double-layer supercapacitors (EDLCs) dominated by the electrostatic adsorption/desorption of electrolyte ions on the electrode surfaces. In EDLCs carbonaceous materials and their
  • between active materials and electrolyte, for which transition metal oxides/hydroxides with multiple valence are used as electrode materials [8][9]. EDLCs hold a high power density and long cycling stability, but their practical application is limited by the low energy density. In comparison, pseudo
  • diffusion distance and facilitates the electrolyte transport. The as-synthesized Ni(OH)2/Ni-NF/MG electrodes demonstrate an excellent flexibility due to the ductile MG matrix and a good electrochemical performance. Moreover, the influence of immersion time in deionized water on the evolution of the Ni(OH)2
PDF
Album
Full Research Paper
Published 25 Jan 2019
Other Beilstein-Institut Open Science Activities