Search results

Search for "first principles" in Full Text gives 82 result(s) in Beilstein Journal of Nanotechnology.

A carrier velocity model for electrical detection of gas molecules

  • Ali Hosseingholi Pourasl,
  • Sharifah Hafizah Syed Ariffin,
  • Mohammad Taghi Ahmadi,
  • Razali Ismail and
  • Niayesh Gharaei

Beilstein J. Nanotechnol. 2019, 10, 644–653, doi:10.3762/bjnano.10.64

Graphical Abstract
  • the AGNR sensor that are simulated based both on the proposed model and first principles calculations are compared, and an acceptable agreement is achieved. Keywords: armchair graphene nanoribbons; carrier velocity; gas sensor; I–V characteristics; molecular adsorption; Introduction The unique
  • between the proposed model and first principles method showed an acceptable agreement between the results. Therefore, the proposed models in this research can be used to develop modern sensors based on the new materials. Illustration of the gas molecule adsorption on the armchair graphene nanoribbon (AGNR
PDF
Album
Full Research Paper
Published 04 Mar 2019

Two-dimensional semiconductors pave the way towards dopant-based quantum computing

  • José Carlos Abadillo-Uriel,
  • Belita Koiller and
  • María José Calderón

Beilstein J. Nanotechnol. 2018, 9, 2668–2673, doi:10.3762/bjnano.9.249

Graphical Abstract
  • would give rise to an expected dispersion of the binding energy of dopants depending on external factors. Accordingly, it has been shown, using first principles calculations in transition-metal dichalcogenides, that dopants can be tuned from deep to shallow by using different substrates [34]. This
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2018

Free-radical gases on two-dimensional transition-metal disulfides (XS2, X = Mo/W): robust half-metallicity for efficient nitrogen oxide sensors

  • Chunmei Zhang,
  • Yalong Jiao,
  • Fengxian Ma,
  • Sri Kasi Matta,
  • Steven Bottle and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1641–1646, doi:10.3762/bjnano.9.156

Graphical Abstract
  • NOx onto MoS2, indicating highly thermal stability.” Conclusion We have presented monolayer XS2 (X = Mo, W) as NO sensor based on first principles studies. The adsorption sites and energy for NO and NO2 molecules on MoS2 or WS2 layers have been studied. The calculations were carried out with different
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2018

Predicting the strain-mediated topological phase transition in 3D cubic ThTaN3

  • Chunmei Zhang and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1399–1404, doi:10.3762/bjnano.9.132

Graphical Abstract
  • the SOC or by altering the lattice parameters [12][13]. A number of compounds [14][15][16][17][18][19][20][21][22][23][24][25], such as LaPtBi, LuPtSb, YPdBi [15][16][17][18], and HgTe [19][20], have been studied using a first-principles approach, showing that they can be turned into TIs under
  • expected to substantially alter the electronic band structure and thus achieve an exotic topological property [26]. By using first-principles calculations, we demonstrate here, for the first time, that the cubic perovskite ThTaN3, a relatively large band gap semiconductor, can turn into a TI under moderate
  • of the N atom [12][29][30]. Computational Methods First-principles calculations were performed based on density functional theory (DFT) as implemented in the plane wave basis VASP code [31][32][33]. A generalized gradient approximation (GGA) in the Perdew, Burke, and Ernzerhof (PBE) form exchange
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2018

An implementation of spin–orbit coupling for band structure calculations with Gaussian basis sets: Two-dimensional topological crystals of Sb and Bi

  • Sahar Pakdel,
  • Mahdi Pourfath and
  • J. J. Palacios

Beilstein J. Nanotechnol. 2018, 9, 1015–1023, doi:10.3762/bjnano.9.94

Graphical Abstract
  • other elemental and compound materials, since it is essentially first-principles and SOC is an intra-atomic correction. We have also shown that a simple modification (by a multiplicative factor) of the effective nuclear potential makes this implementation applicable for pseudopotential basis sets which
PDF
Album
Full Research Paper
Published 28 Mar 2018

Electro-optical interfacial effects on a graphene/π-conjugated organic semiconductor hybrid system

  • Karolline A. S. Araujo,
  • Luiz A. Cury,
  • Matheus J. S. Matos,
  • Thales F. D. Fernandes,
  • Luiz G. Cançado and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2018, 9, 963–974, doi:10.3762/bjnano.9.90

Graphical Abstract
  • interfacial effects. Scanning probe microscopy (SPM) and Raman scattering experiments, along with first-principles calculations, reveal the presence of a highly ordered RA self-assembled monolayer atop graphene and graphite. The electro-optical characterization of the hybrid system discloses interfacial
  • system were done at different temperatures using a liquid He immersion cryostat and temperature controller. The sample excitation was performed using a 355 nm line from a pulsed Nd:YAG laser and the PL detection was made by an Andor spectrometer. Ab initio calculations First-principles calculations were
  • enables a possible structural model for the RA SAM, with RA molecules horizontally aligned on the graphene surface, as illustrated in the schematic model of Figure 1c. In order to confirm the nature of RA rippled domains seen in Figure 1, possible structures of RA–graphene were analyzed by first
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2018

Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers

  • Xiaoli Sun and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2017, 8, 2711–2718, doi:10.3762/bjnano.8.270

Graphical Abstract
  • Xiaoli Sun Zhiguo Wang School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China 10.3762/bjnano.8.270 Abstract Using first principles calculations, we studied the stability and electronic properties of transition metal dichalcogenide
PDF
Album
Full Research Paper
Published 15 Dec 2017

Inelastic electron tunneling spectroscopy of difurylethene-based photochromic single-molecule junctions

  • Youngsang Kim,
  • Safa G. Bahoosh,
  • Dmytro Sysoiev,
  • Thomas Huhn,
  • Fabian Pauly and
  • Elke Scheer

Beilstein J. Nanotechnol. 2017, 8, 2606–2614, doi:10.3762/bjnano.8.261

Graphical Abstract
  • theoretical analysis of charge transport through diarylethene-derived single-molecule devices, which are created using the mechanically controlled break-junction technique. Inelastic electron tunneling (IET) spectroscopy measurements performed at 4.2 K are compared with first-principles calculations in the
  • inelastic charge transport through single-molecule junctions of a bis(furanylmethanthiol)ethene with a fluorinated cyclopentene bridging unit (C5F-ThM; for nomenclature see [22]). Experimentally measured electrical conductance and IET spectra are compared with first-principles calculations in open and
PDF
Album
Full Research Paper
Published 06 Dec 2017

Adsorbate-driven cooling of carbene-based molecular junctions

  • Giuseppe Foti and
  • Héctor Vázquez

Beilstein J. Nanotechnol. 2017, 8, 2060–2068, doi:10.3762/bjnano.8.206

Graphical Abstract
  • . We use first-principles methods of inelastic tunneling transport based on density functional theory and non-equilibrium Green’s functions to calculate the rates of emission and absorbtion of vibrations by tunneling electrons, the population of vibrational modes and the energy stored in them. We find
  • a first-principles, self-consistent description of the junction out of equilibrium based on density functional theory (DFT) and non-equilibrium Green’s functions (NEGF). We show how the change in the electronic structure of the junction induced by the presence of the adsorbate promotes the cooling
  • cooling dynamics of a NHC-based molecular junction. We calculated the bias-dependent rates of emission and absorption of molecular vibrations using first principles methods based on DFT-NEGF. We considered an electron-withdrawing NH2 species adsorbed in the vicinity of the molecule on one of the
PDF
Album
Supp Info
Full Research Paper
Published 02 Oct 2017

A comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively or negatively charged nanodiamonds

  • Colin K. Curtis,
  • Antonin Marek,
  • Alex I. Smirnov and
  • Jacqueline Krim

Beilstein J. Nanotechnol. 2017, 8, 2045–2059, doi:10.3762/bjnano.8.205

Graphical Abstract
  • nanoparticle-based lubricants. Importantly, we have identified systems exhibiting beneficial, neutral, and detrimental tribology properties, facilitating additional experimental as well as theoretical studies from the first principles approach. Conclusion A comparative study of the nanoscale and macroscale
PDF
Album
Full Research Paper
Published 29 Sep 2017

Intercalation of Si between MoS2 layers

  • Rik van Bremen,
  • Qirong Yao,
  • Soumya Banerjee,
  • Deniz Cakir,
  • Nuri Oncel and
  • Harold J. W. Zandvliet

Beilstein J. Nanotechnol. 2017, 8, 1952–1960, doi:10.3762/bjnano.8.196

Graphical Abstract
  • sputtered with a beam of Ar ions with 1 kV energy. The emission current used was 25 mA, which resulted in an ion current of 0.33 μA. The shape of the beam is circular with a diameter of approximately 2 mm. First-principles calculations are based on the projector-augmented wave (PAW) method [35][36] within
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2017

Coexistence of strongly buckled germanene phases on Al(111)

  • Weimin Wang and
  • Roger I. G. Uhrberg

Beilstein J. Nanotechnol. 2017, 8, 1946–1951, doi:10.3762/bjnano.8.195

Graphical Abstract
  • energy electron diffraction and core-level photoelectron spectroscopy. Experimental results show that a germanium layer can be formed at a relatively high substrate temperature showing either (3×3) or (√7×√7)R±19.1° reconstructions. First-principles calculations based on density functional theory suggest
  • using an Omicron variable temperature STM in the UHV system at Linköping University. All STM images were measured in constant current mode with a tunneling current of 200 pA. First-principles density functional theory (DFT) calculations were used to investigate the atomic structure of the Ge layer on
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2017

Structural model of silicene-like nanoribbons on a Pb-reconstructed Si(111) surface

  • Agnieszka Stępniak-Dybala and
  • Mariusz Krawiec

Beilstein J. Nanotechnol. 2017, 8, 1836–1843, doi:10.3762/bjnano.8.185

Graphical Abstract
  • ) surface is proposed. The model, which is based on first principles density functional theory calculations, features a deformed honeycomb structure directly bonded to the Si(111) surface underneath. Pb atoms stabilize the nanoribbons, as they passivate the uncovered substrate, thus lower the surface energy
PDF
Album
Full Research Paper
Published 05 Sep 2017

α-Silicene as oxidation-resistant ultra-thin coating material

  • Ali Kandemir,
  • Fadil Iyikanat,
  • Cihan Bacaksiz and
  • Hasan Sahin

Beilstein J. Nanotechnol. 2017, 8, 1808–1814, doi:10.3762/bjnano.8.182

Graphical Abstract
  • silicene on top of Ag(111). First principles calculations were performed using the Vienna ab initio simulation package (VASP) [22][23], which is based on density functional theory. The projector-augmented wave (PAW) [24][25] formalism was used in the calculations. For the exchange–correlation energy, the
  • silicene on metal substrates. One may claim that silicene retains its extreme reactivity to oxygen atoms even after forming localized silicon-oxide structures. As a result, silicene has great potential to capture unwanted atoms and to protect the metal surface. Conclusions In this study, we performed first
  • principles calculations to investigate the oxidation properties of α-silicene as a coating material on Ag(111). It was found that an O2 molecule interact with the Ag surface with a low binding energy, while a single oxygen atom interact strongly with the surface. The silicene coating on Ag surface was
PDF
Album
Full Research Paper
Published 31 Aug 2017

Adsorption and diffusion characteristics of lithium on hydrogenated α- and β-silicene

  • Fadil Iyikanat,
  • Ali Kandemir,
  • Cihan Bacaksiz and
  • Hasan Sahin

Beilstein J. Nanotechnol. 2017, 8, 1742–1748, doi:10.3762/bjnano.8.175

Graphical Abstract
  • , Izmir, Turkey ICTP-ECAR Eurasian Center for Advanced Research, Izmir Institute of Technology, 35430, Izmir, Turkey 10.3762/bjnano.8.175 Abstract Using first-principles density functional theory calculations, we investigate adsorption properties and the diffusion mechanism of a Li atom on hydrogenated
PDF
Album
Full Research Paper
Published 23 Aug 2017

3D continuum phonon model for group-IV 2D materials

  • Morten Willatzen,
  • Lok C. Lew Yan Voon,
  • Appala Naidu Gandi and
  • Udo Schwingenschlögl

Beilstein J. Nanotechnol. 2017, 8, 1345–1356, doi:10.3762/bjnano.8.136

Graphical Abstract
  • , King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia 10.3762/bjnano.8.136 Abstract A general three-dimensional continuum model of phonons in two-dimensional materials is developed. Our first-principles derivation includes full consideration of the lattice
  • different models have been introduced by a number of authors for graphene [10][11][12][13]. One commonality is to treat the sheet as strictly two-dimensional. Additionally, instead of deriving the phonon dispersion relations from first principles, they all assumed the known results that there are in-plane
  • parameterized the dispersion relations to match the experimental data. In all of the above, the out-of-plane vibrations were assumed decoupled from the in-plane ones. In this paper, a continuum theory of acoustic and optical phonons in 2D nanomaterials is derived from first principles, contrary to earlier
PDF
Album
Full Research Paper
Published 30 Jun 2017

The role of 2D/3D spin-polarization interactions in hybrid copper hydroxide acetate: new insights from first-principles molecular dynamics

  • Ziyad Chaker,
  • Guido Ori,
  • Mauro Boero and
  • Carlo Massobrio

Beilstein J. Nanotechnol. 2017, 8, 857–860, doi:10.3762/bjnano.8.86

Graphical Abstract
  • Cu2(OH)3CH3COO·H2O is studied as a function of the applied pressure within first-principles molecular dynamics. We are able to elucidate the interplay between the structural properties of this material and its magnetic character, both at the local (atomic) level and at the bulk level. We performed a
  • between the spin polarizations pertaining to each layer. Therefore, at high pressure, copper hydroxide acetate is a ferromagnet with no changes of spin polarization in the direction perpendicular to the inorganic layers. Keywords: first-principles molecular dynamics; hybrid material; magnetic properties
  • (within each layer) a weak ferromagnetic (F) intralayer (2D) character. The use of pressure is a valuable and practical tool to tune the magnetic behavior of this lamellar hybrid material [4]. In our previous studies, first-principles molecular dynamics (FPMD) approaches combined with density functional
PDF
Album
Letter
Published 12 Apr 2017

Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals

  • Ivan Shtepliuk,
  • Jens Eriksson,
  • Volodymyr Khranovskyy,
  • Tihomir Iakimov,
  • Anita Lloyd Spetz and
  • Rositsa Yakimova

Beilstein J. Nanotechnol. 2016, 7, 1800–1814, doi:10.3762/bjnano.7.173

Graphical Abstract
  • height of 0.488 eV ± 0.013 eV and an ideality factor of 1.0180 ± 0.0049. These values are in good agreement with theory and suggest that the fabricated graphene/SiC Schottky diodes are characterized by stable rectifying behavior and a high degree of barrier height homogeneity. With first-principles
PDF
Album
Full Research Paper
Published 22 Nov 2016

Fracture behaviors of pre-cracked monolayer molybdenum disulfide: A molecular dynamics study

  • Qi-lin Xiong,
  • Zhen-huan Li and
  • Xiao-geng Tian

Beilstein J. Nanotechnol. 2016, 7, 1411–1420, doi:10.3762/bjnano.7.132

Graphical Abstract
  • the defect-free MoS2 sheets have been investigated by many researchers using different methods. Cooper et al. calculated the nonlinear elastic response of two-dimensional MoS2 with first-principles density functional theory (DFT) method [8]. Castellanos-Gomez et al. [9] performed bending test
  • of monolayer MoS2 is 270 ± 100 GPa and breaking occurs at an effective strain between 6 and 11% with the average breaking strength of 23 GPa. Additionally, compared with the first-principles DFT and experimental approaches, MDS method has advantages in the computational cost and catching details [11
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2016

First-principles study of the structure of water layers on flat and stepped Pb electrodes

  • Xiaohang Lin,
  • Ferdinand Evers and
  • Axel Groß

Beilstein J. Nanotechnol. 2016, 7, 533–543, doi:10.3762/bjnano.7.47

Graphical Abstract
  • electrode/electrolyte interfaces based on first-principles electronic structure calculations. As Pb has been used as one of the metallic electrode materials, we have already studied the Pb self-diffusion on flat and stepped Pb surfaces [13] as this controls the growth mechanism of the contacts. The results
PDF
Album
Full Research Paper
Published 11 Apr 2016

Determination of Young’s modulus of Sb2S3 nanowires by in situ resonance and bending methods

  • Liga Jasulaneca,
  • Raimonds Meija,
  • Alexander I. Livshits,
  • Juris Prikulis,
  • Subhajit Biswas,
  • Justin D. Holmes and
  • Donats Erts

Beilstein J. Nanotechnol. 2016, 7, 278–283, doi:10.3762/bjnano.7.25

Graphical Abstract
  • the value of 33.8 GPa, which corresponds to the Young’s modulus of crystalline Sb2S3 in the direction of the c-axis, calculated using the speed of sound along the c-axis (2.71·105 cm·s−1 [35]). As the cross-sectional area gets smaller, the values of Young’s modulus tend to increase. A first principles
PDF
Album
Full Research Paper
Published 19 Feb 2016

Current-induced runaway vibrations in dehydrogenated graphene nanoribbons

  • Rasmus Bjerregaard Christensen,
  • Jing-Tao Lü,
  • Per Hedegård and
  • Mads Brandbyge

Beilstein J. Nanotechnol. 2016, 7, 68–74, doi:10.3762/bjnano.7.8

Graphical Abstract
  • their effect in an unambiguous way. Thus, it is of interest to be able to propose such a setup based on first principles calculations with realistic unadjustable parameters. In this paper, we study the current-induced dynamics in a partially dehydrogenated armchair graphene ribbon. We show that, atomic
PDF
Album
Letter
Published 20 Jan 2016

A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy

  • Santiago D. Solares

Beilstein J. Nanotechnol. 2015, 6, 2233–2241, doi:10.3762/bjnano.6.229

Graphical Abstract
  • shortcomings. The first shortcoming derives directly from its simplicity and computational efficiency: since the individual SLS elements do not interact with one another, the model does not consider material relaxations in the horizontal directions. As a result, it cannot be used as a ‘first-principles
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2015

Controlled switching of single-molecule junctions by mechanical motion of a phenyl ring

  • Yuya Kitaguchi,
  • Satoru Habuka,
  • Hiroshi Okuyama,
  • Shinichiro Hatta,
  • Tetsuya Aruga,
  • Thomas Frederiksen,
  • Magnus Paulsson and
  • Hiromu Ueba

Beilstein J. Nanotechnol. 2015, 6, 2088–2095, doi:10.3762/bjnano.6.213

Graphical Abstract
  • was studied by first-principles simulations, revealing the relative stabilities of the flat and lifted molecular configurations. Finite-bias calculations showed consistency with the observed tendency for the junction to prefer the on (off) state at negative (positive) sample voltages. The low-bias
PDF
Album
Full Research Paper
Published 30 Oct 2015

High Ion/Ioff current ratio graphene field effect transistor: the role of line defect

  • Mohammad Hadi Tajarrod and
  • Hassan Rasooli Saghai

Beilstein J. Nanotechnol. 2015, 6, 2062–2068, doi:10.3762/bjnano.6.210

Graphical Abstract
  • electrical structure of the transistor channel, which conformed to the first-principles calculations used to describe the electronic band structure of ELD-AGNRs [19][20]. The Hamiltonian computation in this system was separated into AGNR (HA), line defect (HD) and coupling between AGNR and the defect (HC
PDF
Album
Full Research Paper
Published 23 Oct 2015
Other Beilstein-Institut Open Science Activities