Search results

Search for "graphitization" in Full Text gives 34 result(s) in Beilstein Journal of Nanotechnology.

Heat-induced transformation of nickel-coated polycrystalline diamond film studied in situ by XPS and NEXAFS

  • Olga V. Sedelnikova,
  • Yuliya V. Fedoseeva,
  • Dmitriy V. Gorodetskiy,
  • Yuri N. Palyanov,
  • Elena V. Shlyakhova,
  • Eugene A. Maksimovskiy,
  • Anna A. Makarova,
  • Lyubov G. Bulusheva and
  • Aleksandr V. Okotrub

Beilstein J. Nanotechnol. 2025, 16, 887–898, doi:10.3762/bjnano.16.67

Graphical Abstract
  • Mineralogy, SB RAS, 630090 Novosibirsk, Russia Physical Chemistry, Institute of Chemistry and Biochemistry, Free University of Berlin, 14195 Berlin, Germany Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany 10.3762/bjnano.16.67 Abstract Controlling high-temperature graphitization
  • of diamond surfaces is important for many applications, which require the formation of thin conductive electrodes on dielectric substrates. Transition metal catalysts can facilitate the graphitization process, which depends on the diamond face orientation. In the present work, the role of a nickel
  • thin nickel film deposited by thermal evaporation. The graphitization of diamond with and without a nickel coating as a result of high-vacuum annealing at a temperature of about 1100 °C was studied in situ using synchrotron-based X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2025

Feasibility analysis of carbon nanofiber synthesis and morphology control using a LPG premixed flame

  • Iftikhar Rahman Bishal,
  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Faizuan Bin Abdullah,
  • I Putu Tedy Indrayana and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2025, 16, 581–590, doi:10.3762/bjnano.16.45

Graphical Abstract
  • at 1607 cm−1 and a few broad peaks, indicating less graphitization [14]. In another work, a high-density inductively coupled plasma chemical vapor deposition method yielded vertically aligned CNFs using acetylene and hydrogen on a p-type Si wafer with a 10 nm Ni catalyst layer at 20 mTorr and 550 °C
PDF
Album
Full Research Paper
Published 23 Apr 2025

Laser synthesis of nanoparticles in organic solvents – products, reactions, and perspectives

  • Theo Fromme,
  • Sven Reichenberger,
  • Katharine M. Tibbetts and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2024, 15, 638–663, doi:10.3762/bjnano.15.54

Graphical Abstract
  • structures and graphitization during the LAL process are favored, resulting in a quick formation of graphite and, thus, no available fragments for the polyyne formation [101][144][145][146]. Considering these factors, the polyyne yield should be highly influenced by the applied fluence and undergo a maximum
  • at a given fluence, which decreases afterward because of faster graphitization steps or in situ destruction of the generated polyyne structure. Marabotti et al. performed ablation processes at different fluences, quantified the concentration of different C8 polyynes and found the previously mentioned
  • /cavitation bubble phase in which the carbon-based solvent is decomposed, followed by an accumulation of the decomposition products on the metal surface and a final carbonization step to form carbon shells on the nanoparticle surface [101][148]. The latter were reported to undergo graphitization to onion-like
PDF
Album
Review
Published 05 Jun 2024

Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone

  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Ni Luh Wulan Septiani and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2023, 14, 741–750, doi:10.3762/bjnano.14.61

Graphical Abstract
  • from carbonaceous by-products. However, the ID/IG ratio seems to settle at around 1.00 at a much higher HAB value. Hence, crystallinity and graphitization of the products are inversely proportional to the diameter, as discussed previously, leaving a trade-off that requires optimization. Overall, the 17
PDF
Album
Full Research Paper
Published 21 Jun 2023

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • graphitization were used as carbon supports. The best electrochemical measurement results were obtained for Pt deposited on Vulcan XC-72R. The peak power density measured for this material in a membrane electrode assembly (MEA) of a PEMFC (fed with H2/Air) was 0.41 W/cm2, which is a good result compared to 0.57
  • water and acetone, and dried at 80 °C to constant weight. The black carbon product was referred to as a C-11. The research assumed the synthesis and use of a carbon material with a high degree of graphitization as carbon support, which is more resistant to the high-temperature oxidation process in a
  • , where Pt was deposited using only 10000 laser pulses on the synthesized C-11 material with a high degree of graphitization. This result can be explained by the fact that sample C has the most homogeneous layer of PtNPs with the smallest dimensions and dense distribution on the surface of carbon
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

Nanoarchitectonics of the cathode to improve the reversibility of Li–O2 batteries

  • Hien Thi Thu Pham,
  • Jonghyeok Yun,
  • So Yeun Kim,
  • Sang A Han,
  • Jung Ho Kim,
  • Jong-Won Lee and
  • Min-Sik Park

Beilstein J. Nanotechnol. 2022, 13, 689–698, doi:10.3762/bjnano.13.61

Graphical Abstract
  • -67-derived carbon materials have a higher mesopore volume and higher degree of graphitization, showing excellent electrical conductivity. Moreover, the inevitable Co residue in the structure would be helpful for facilitating the electrochemical reactions by lowering the overpotential during cycling
  • obviously sharper in the composites with a decreasing Zn/Co ratio during synthesis. This is because Co facilitates the graphitization of ZnxCoy particles during the carbonization process. From the results, we confirm the critical role of Co for tailoring the microstructure of ZnxCoy–C particles in the
  • inferred that the crystallinity and N content in the ZnxCoy–C particles can be increased by decreasing the Zn/Co ratio, since the metallic Co facilitates graphitization and N doping at a given temperature. Figure 5a shows the electrical conductivities of ZnxCoy–C/CNT composites, indicating that the Zn1Co4
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2022

Scanning transmission helium ion microscopy on carbon nanomembranes

  • Daniel Emmrich,
  • Annalena Wolff,
  • Nikolaus Meyerbröker,
  • Jörg K. N. Lindner,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 222–231, doi:10.3762/bjnano.12.18

Graphical Abstract
  • bands become more pronounced, similar to a film of high-temperature annealed nanographite [33]. It was previously demonstrated in TEM that, at an energy of 80 keV, a graphitization of free-standing amorphous carbon can be induced [34]. It is also known that CNMs can turn from the amorphous state into
  • background drops and D and G peaks appear, showing a graphitization of the area exposed to EFTEM. Thickness values determined by STIM and other established methods. Acknowledgements Annalena Wolff would like to thank Carl Zeiss and Bielefeld University for their support of the HIM Worldtour 2017. We thank
PDF
Album
Full Research Paper
Published 26 Feb 2021

Towards 3D self-assembled rolled multiwall carbon nanotube structures by spontaneous peel off

  • Jonathan Quinson

Beilstein J. Nanotechnol. 2020, 11, 1865–1872, doi:10.3762/bjnano.11.168

Graphical Abstract
  • /N2/C3 structure is shown in Figure 2. The D peak refers to a defect in the MWCNT structure. An intense D peak (relative to the G peak intensity) correlates to higher defects, for instance, induced by nitrogen doping. The G and 2D peaks are related to the graphitization of MWCNTs. An intense G peak
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2020

One-step synthesis of carbon-supported electrocatalysts

  • Sebastian Tigges,
  • Nicolas Wöhrl,
  • Ivan Radev,
  • Ulrich Hagemann,
  • Markus Heidelmann,
  • Thai Binh Nguyen,
  • Stanislav Gorelkov,
  • Stephan Schulz and
  • Axel Lorke

Beilstein J. Nanotechnol. 2020, 11, 1419–1431, doi:10.3762/bjnano.11.126

Graphical Abstract
  • results in a high density of anchoring sites for the co-deposited metal nanoparticles, which are partially embedded subsequently in the pristine carbon support with a high graphitization degree, and therefore, with high corrosion stability. Consequently, embedding Pt-NP in the C-matrix not only results in
  • improve long-term stability and cost-effectiveness [36]. Also, ongoing optimization of the synthesis method to realize a higher carbon graphitization, more favorable PSDs and better NP embedding is a promising way to increase long-term stability even further. Conclusion A one-step, single-source approach
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2020

Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions

  • Secil Öztürk,
  • Yu-Xuan Xiao,
  • Dennis Dietrich,
  • Beatriz Giesen,
  • Juri Barthel,
  • Jie Ying,
  • Xiao-Yu Yang and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2020, 11, 770–781, doi:10.3762/bjnano.11.62

Graphical Abstract
  • good electrochemical ORR performance of Ni/CTF-1-600-22 was investigated by electrochemical impedance spectroscopy (EIS). As shown in Figure 7, all CTF-1-600 materials exhibited a higher conductivity than CTF-1-400. This could be ascribed to the higher graphitization degree achieved through the higher
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2020

An advanced structural characterization of templated meso-macroporous carbon monoliths by small- and wide-angle scattering techniques

  • Felix M. Badaczewski,
  • Marc O. Loeh,
  • Torben Pfaff,
  • Dirk Wallacher,
  • Daniel Clemens and
  • Bernd M. Smarsly

Beilstein J. Nanotechnol. 2020, 11, 310–322, doi:10.3762/bjnano.11.23

Graphical Abstract
  • main approaches to influence the carbon structure are the choice of the carbon precursor and the applied heat treatment temperature for carbonization or graphitization. These two factors have the highest impact on the resulting sp2-hybridized microstructure. Since the porosity mainly consists of
  • liquid coal-tar pitch (“Pitch”) or a liquid resole (“Resin”). The carbonization was conducted under nitrogen atmosphere and at a maximum heat treatment temperature of 800 °C. The SiO2 template was etched by exposure to hydrofluoric acid, and the graphitization took place in an Acheson furnace at 3000 °C
  • initial empty sample. The impact of the graphitization process on the pore sizes is directly observable by comparing the SANS curves in a qualitatively manner. The pitch-based monolith carbonized at 800 °C shows higher SANS intensities in the s-range corresponding to microporosity (0.7–0.9 nm−1) than the
PDF
Album
Supp Info
Correction
Full Research Paper
Published 10 Feb 2020

Synthesis of amorphous and graphitized porous nitrogen-doped carbon spheres as oxygen reduction reaction catalysts

  • Maximilian Wassner,
  • Markus Eckardt,
  • Andreas Reyer,
  • Thomas Diemant,
  • Michael S. Elsaesser,
  • R. Jürgen Behm and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2020, 11, 1–15, doi:10.3762/bjnano.11.1

Graphical Abstract
  • synthesized by hydrothermal treatment of a glucose solution yielding carbon spheres with sizes of 330 ± 50 nm, followed by nitrogen doping via heat treatment in ammonia atmosphere. The influence of a) varying the nitrogen doping temperature (550–1000 °C) and b) of a catalytic graphitization prior to nitrogen
  • temperatures. The overall nitrogen content of the graphitized N-doped carbon spheres is lower than that of the amorphous carbon spheres, however, also the microporosity decreases strongly with graphitization. Comparison with the electrocatalytic behavior in the ORR shows that in addition to the N-doping, the
  • polypyrrole instead of ammonia resulted in pyridinic or pyrrolic N moieties, respectively [18]. Beside the N bonding configuration, the ORR activity is affected by the N content, the surface area (porosity) and possibly the degree of graphitization [27]. The nitrogen content defines, among others, the density
PDF
Album
Full Research Paper
Published 02 Jan 2020

A novel all-fiber-based LiFePO4/Li4Ti5O12 battery with self-standing nanofiber membrane electrodes

  • Li-li Chen,
  • Hua Yang,
  • Mao-xiang Jing,
  • Chong Han,
  • Fei Chen,
  • Xin-yu Hu,
  • Wei-yong Yuan,
  • Shan-shan Yao and
  • Xiang-qian Shen

Beilstein J. Nanotechnol. 2019, 10, 2229–2237, doi:10.3762/bjnano.10.215

Graphical Abstract
  • to the D and the G band of carbon, respectively. The ratio of the two peaks reflects the degree of graphitization. This kind of composite not only benefits the flexibility of the fibers, but also grants good conductivity to the fibers, which is crucial for the preparation of free-standing electrodes
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2019

Tuning the performance of vanadium redox flow batteries by modifying the structural defects of the carbon felt electrode

  • Ditty Dixon,
  • Deepu Joseph Babu,
  • Aiswarya Bhaskar,
  • Hans-Michael Bruns,
  • Joerg J. Schneider,
  • Frieder Scheiba and
  • Helmut Ehrenberg

Beilstein J. Nanotechnol. 2019, 10, 1698–1706, doi:10.3762/bjnano.10.165

Graphical Abstract
  • applied to PAN-based felts to increase the amount of defects. The normalized spectra obtained for the Raman measurements are shown in Figure 1. In order to investigate the degree of graphitization and defects formed during the plasma treatment process, the intensity of the G- and D-band centered at 1590
  • defects. It may be stressed that the graphite content obtained from XPS also has a contribution from the defects. The increase in the graphitic amount could be correlated to the corresponding decrease in the amount of aliphatic carbon. The source of this aliphatic carbon is either from the graphitization
  • process of the PAN fibers or simply the atmospheric ageing of the felt. It is already known from the literature that graphitization or atmospheric ageing can leave some aliphatic or polyaromatic tar-like residues on the surface of the felt [6][23]. Thus, it can be concluded that apart from inducing N
PDF
Album
Full Research Paper
Published 13 Aug 2019

Alloyed Pt3M (M = Co, Ni) nanoparticles supported on S- and N-doped carbon nanotubes for the oxygen reduction reaction

  • Stéphane Louisia,
  • Yohann R. J. Thomas,
  • Pierre Lecante,
  • Marie Heitzmann,
  • M. Rosa Axet,
  • Pierre-André Jacques and
  • Philippe Serp

Beilstein J. Nanotechnol. 2019, 10, 1251–1269, doi:10.3762/bjnano.10.125

Graphical Abstract
  • obtained with XRD are presented in Table 1. All the values are larger than that of graphite (3.334 Å), and the smallest value is obtained for N-CNTHT, indicating a higher level of graphitization for this sample. The elemental composition as well as the surface chemistry is also affected by heteroatom
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2019

An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite

  • Mamta Sham Lal,
  • Thirugnanam Lavanya and
  • Sundara Ramaprabhu

Beilstein J. Nanotechnol. 2019, 10, 781–793, doi:10.3762/bjnano.10.78

Graphical Abstract
  • peak indicates the lower degree of graphitization. The diffraction pattern of Cu/PCNF could be indexed (002), (111), (200) and (220) respectively (JCPDS card # 00-003-1005). The sharp diffraction pattern of TiO2 assigned to the (101), (112), (200), (105), (211), (213), (116), (220) and (107) crystal
  • on the surface were transform to CuO nanoparticles during hydrothermal synthesis, but in bulk of fiber, retained the phase of Cu. Raman spectroscopy was used to estimate a crystalline phase and the degree of graphitization of the subsequent synthesized samples (Figure 4a). CNF exhibited two
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Improving control of carbide-derived carbon microstructure by immobilization of a transition-metal catalyst within the shell of carbide/carbon core–shell structures

  • Teguh Ariyanto,
  • Jan Glaesel,
  • Andreas Kern,
  • Gui-Rong Zhang and
  • Bastian J. M. Etzold

Beilstein J. Nanotechnol. 2019, 10, 419–427, doi:10.3762/bjnano.10.41

Graphical Abstract
  • catalysts, require the combination of the contradicting properties of graphitic microstructure and porosity. The usage of graphitization catalysts during the synthesis of carbide-derived carbon materials results in materials that combine the required properties, but controlling the microstructure during
  • synthesis remains a challenge. In this work, the controllability of the synthesis route is enhanced by immobilizing the transition-metal graphitization catalyst on a porous carbon shell covering the carbide precursor prior to conversion of the carbide core to carbon. The catalyst loading was varied and the
  • graphitization; graphitic carbon; pore structure; transition metal; Introduction Carbon is a versatile material that has been widely utilized in many applications such as adsorption [1][2][3], catalysis [4][5], catalyst support [6][7][8], molecular sieves [9][10] and energy storage [11][12][13], owing to its
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2019

Single-step process to improve the mechanical properties of carbon nanotube yarn

  • Maria Cecilia Evora,
  • Xinyi Lu,
  • Nitilaksha Hiremath,
  • Nam-Goo Kang,
  • Kunlun Hong,
  • Roberto Uribe,
  • Gajanan Bhat and
  • Jimmy Mays

Beilstein J. Nanotechnol. 2018, 9, 545–554, doi:10.3762/bjnano.9.52

Graphical Abstract
  • a larger line width. The reason for this similarity is that there is no interlayer interaction between the graphene planes in TGr. The full width at half maximum (FWHM) of the G′ peak gives information about the level of graphitization of the material because the G′ band is correlated to the
PDF
Album
Full Research Paper
Published 13 Feb 2018

Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile–poly(methyl methacrylate) core–shell composite nanoparticles

  • Dafu Wei,
  • Youwei Zhang and
  • Jinping Fu

Beilstein J. Nanotechnol. 2017, 8, 1897–1908, doi:10.3762/bjnano.8.190

Graphical Abstract
  • /IG of CP6 suggests the extent of graphitization of the obtained carbon nanospheres is still very low. This is due to the fairly low carbonization temperature. The pore structure of the carbonized sample CP6 was characterized by nitrogen physisorption. As shown in Figure 8a, CP6 displayed a IV-type
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2017

Fluorination of vertically aligned carbon nanotubes: from CF4 plasma chemistry to surface functionalization

  • Claudia Struzzi,
  • Mattia Scardamaglia,
  • Jean-François Colomer,
  • Alberto Verdini,
  • Luca Floreano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2017, 8, 1723–1733, doi:10.3762/bjnano.8.173

Graphical Abstract
  • verify the reduction in the graphitization level due to the functionalization and to the defect creation occurring at the tip of the vCNT, Raman studies are performed on the fluorinated samples. Representative Raman spectra of pristine and fluorinated vCNT, that are functionalized applying 30 and 110 W
  • ], confirming the depletion of the pristine graphitization level previously observed in Raman spectra (Figure 4). Additional peaks appear at 287, 288.6 and 290.8 eV and they are more evident for high fluorine content (blue curve), as indicated by the black bars over the photon energy axis. These features are
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2017

Process-specific mechanisms of vertically oriented graphene growth in plasmas

  • Subrata Ghosh,
  • Shyamal R. Polaki,
  • Niranjan Kumar,
  • Sankarakumar Amirthapandian,
  • Mohamed Kamruddin and
  • Kostya (Ken) Ostrikov

Beilstein J. Nanotechnol. 2017, 8, 1658–1670, doi:10.3762/bjnano.8.166

Graphical Abstract
  • described by the formation of low-dimensional, extremely small nanosheets where strain might be high due to the generation of intrinsic defects as discussed below in this paper. However, better graphitization is noticed at high temperatures when the number of edge-related defects is reduced. The residual
  • different rates. Hence, C/H ratios have a significant impact on morphology and graphitization, which enhance the quality of the structure. The initial increase in growth rate and crystallite size with MW power is due to the increase in availability of C2 radicals and an optimal C/H ratio. At higher powers
PDF
Album
Full Research Paper
Published 10 Aug 2017

Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): a spectroscopic and electrochemical study

  • İlknur Gergin,
  • Ezgi Ismar and
  • A. Sezai Sarac

Beilstein J. Nanotechnol. 2017, 8, 1616–1628, doi:10.3762/bjnano.8.161

Graphical Abstract
  • , heating rate, tension of the fiber, total stabilization time and dwell time, air flow rate and pre-stabilization treatment [13]. Carbonization is the next step in the process. The carbonization processes can be divided into low-temperature and high-temperature carbonization, and graphitization above 2000
PDF
Album
Full Research Paper
Published 07 Aug 2017

3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity

  • Brett B. Lewis,
  • Robert Winkler,
  • Xiahan Sang,
  • Pushpa R. Pudasaini,
  • Michael G. Stanford,
  • Harald Plank,
  • Raymond R. Unocic,
  • Jason D. Fowlkes and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2017, 8, 801–812, doi:10.3762/bjnano.8.83

Graphical Abstract
  • an important consideration, making the accurate construction of complex structures very difficult. Additionally, this work represents a follow up to the analysis of the morphological structure of carbon as a function of laser irradiance, showing how graphitization can have an effect on the extent of
  • with the removal of carbon as well as carbon densification/graphitization. Figure 3f shows a plot of the segment lengths as a function of dwell time per point for both the standard EBID and the laser-assisted EBID structures. The change in length is a byproduct of the change in angle that occurs from
  • the resultant calculated resistivity versus electron beam dwell time for various EBID conditions. Purification of the nanobridges can be qualitatively indicated by their resistivity. Lower resistivity corresponds to a higher platinum concentration as well as graphitization of the amorphous carbon
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2017

Fundamental properties of high-quality carbon nanofoam: from low to high density

  • Natalie Frese,
  • Shelby Taylor Mitchell,
  • Christof Neumann,
  • Amanda Bowers,
  • Armin Gölzhäuser and
  • Klaus Sattler

Beilstein J. Nanotechnol. 2016, 7, 2065–2073, doi:10.3762/bjnano.7.197

Graphical Abstract
  • average diameter. Higher density foams contain larger-sized micropearls (≈6–9 μm diameter) which often coalesced to form nonspherical μm-sized units. Both, low- and high-density foams are comprised of predominantly sp2-type carbon. The higher density foams, however, show an advanced graphitization degree
  • . Even though the difference in the ratio is small, it suggests that the high-density foam is of an increased graphitization stage, having a higher content of sp2-type carbons with extended ordered graphitic regions. Increased process temperatures, resulting in higher-density foams, obviously assists the
  • densities can be produced by variation of the process temperature. Mircopearls are the basic units in the low-temperature foams, while connected pearls form the high-density foams. The transition from low- to high-density foams is accompanied by a change in the graphitization degree as well as a change in
PDF
Album
Full Research Paper
Published 27 Dec 2016

Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance

  • Anika C. Juhl,
  • Artur Schneider,
  • Boris Ufer,
  • Torsten Brezesinski,
  • Jürgen Janek and
  • Michael Fröba

Beilstein J. Nanotechnol. 2016, 7, 1229–1240, doi:10.3762/bjnano.7.114

Graphical Abstract
  • (Figure 3b) shows two broad reflections that result from the interlayer and intralayer scattering of graphene sheets. From the fact that they are broad and little pronounced it can be concluded that the degree of graphitization is low and the carbon is mainly amorphous [36][37]. This is confirmed by the
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2016
Other Beilstein-Institut Open Science Activities