Search results

Search for "indentation" in Full Text gives 102 result(s) in Beilstein Journal of Nanotechnology.

Development of a new hybrid approach combining AFM and SEM for the nanoparticle dimensional metrology

  • Loïc Crouzier,
  • Alexandra Delvallée,
  • Sébastien Ducourtieux,
  • Laurent Devoille,
  • Guillaume Noircler,
  • Christian Ulysse,
  • Olivier Taché,
  • Elodie Barruet,
  • Christophe Tromas and
  • Nicolas Feltin

Beilstein J. Nanotechnol. 2019, 10, 1523–1536, doi:10.3762/bjnano.10.150

Graphical Abstract
  • defined by: where K the equivalent elastic modulus of the NP and the substrate defined by: where Ei and νi are the Young’s modulus and the Poisson’s ratio of the sphere and the half space. The depth of indentation δ, i.e., the elastic displacement is defined by: In the case of silica NPs deposited on a Si
PDF
Album
Full Research Paper
Published 26 Jul 2019

Nanoscale spatial mapping of mechanical properties through dynamic atomic force microscopy

  • Zahra Abooalizadeh,
  • Leszek Josef Sudak and
  • Philip Egberts

Beilstein J. Nanotechnol. 2019, 10, 1332–1347, doi:10.3762/bjnano.10.132

Graphical Abstract
  • change in elastic modulus. Static indentation measurements using stiff cantilevers (≈40 N/m normal bending spring constant) were conducted and are summarized in the Appendix. These results showed that the mean elastic modulus of the HOPG terrace was 38 GPa, but could not be acquired with sufficient
  • spatial resolution to measure the variation of the elastic modulus over an atomic step edge, as was possible with CR and FMM. However, the static indentation measurements show that the FMM calibration is consistent with well-established nanoindentation measurements conducted on the same microscope. We can
  • the literature [41][42][43][44]. Thus, we believe that our subsequent report of a 0.5 percent decrease in the elastic modulus at atomic step edges is also very accurate. To further understand and interpret our FMM results, we conducted static indentation measurements on the graphite surface with
PDF
Album
Full Research Paper
Published 03 Jul 2019

Molecular attachment to a microscope tip: inelastic tunneling, Kondo screening, and thermopower

  • Rouzhaji Tuerhong,
  • Mauro Boero and
  • Jean-Pierre Bucher

Beilstein J. Nanotechnol. 2019, 10, 1243–1250, doi:10.3762/bjnano.10.124

Graphical Abstract
  • chamber. All STM/STS measurements have been performed at T = 4.5 K. Tungsten tips were flash-annealed in UHV and conditioned in situ by indentation into the Au substrate. STM images were acquired in constant-current mode, while the bias voltage is applied to the sample with respect to the tip kept at a
PDF
Album
Full Research Paper
Published 19 Jun 2019

Mechanical and thermodynamic properties of Aβ42, Aβ40, and α-synuclein fibrils: a coarse-grained method to complement experimental studies

  • Adolfo B. Poma,
  • Horacio V. Guzman,
  • Mai Suan Li and
  • Panagiotis E. Theodorakis

Beilstein J. Nanotechnol. 2019, 10, 500–513, doi:10.3762/bjnano.10.51

Graphical Abstract
  • molecular understanding. Our approach allows a comparison of diverse elastic properties based on different deformations , i.e., tensile (YL), shear (S), and indentation (YT) deformation. From our analysis, we find a significant elastic anisotropy between axial and transverse directions (i.e., YT > YL) for
  • YT being the transversal Young modulus and h being the indentation depth). If it actually follows this relationship, then the elastic modulus can be easily obtained from the slope of the curve. This approach can be used to test the experimental estimation of an elastic property. Most importantly, the
  • use it as a reference for comparing the indentation values we obtained to the experimental ones, although we remark that our molecular modeling can adapt further anisotropic mechanical models, envisioned within force microscopy techniques. Biological fibrils are well-known biomaterials of practical
PDF
Album
Full Research Paper
Published 19 Feb 2019

Intuitive human interface to a scanning tunnelling microscope: observation of parity oscillations for a single atomic chain

  • Sumit Tewari,
  • Jacob Bakermans,
  • Christian Wagner,
  • Federica Galli and
  • Jan M. van Ruitenbeek

Beilstein J. Nanotechnol. 2019, 10, 337–348, doi:10.3762/bjnano.10.33

Graphical Abstract
  • annealing cycles to obtain an atomically flat Au(111) facet showing herringbone surface reconstruction. We further prepare the surface at low temperature by creating a localized stress pattern [11][12][13][14] on the surface using gentle indentation of the STM tip at a spot on the surface remote from the
  • investigation (Figure 2b) by establishing point contact with the surface using the STM tip at 100 mV bias. The STM tips used in the experiments are hand-cut PtIr tips that get covered by Au atoms on indentation of the surface. Real-time molecular dynamic simulation A conventional atomic manipulation operation
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2019

Nitrous oxide as an effective AFM tip functionalization: a comparative study

  • Taras Chutora,
  • Bruno de la Torre,
  • Pingo Mutombo,
  • Jack Hellerstedt,
  • Jaromír Kopeček,
  • Pavel Jelínek and
  • Martin Švec

Beilstein J. Nanotechnol. 2019, 10, 315–321, doi:10.3762/bjnano.10.30

Graphical Abstract
  • formation, the metallic tip (pre-treated by a gentle indentation into the substrate) was functionalized by an impurity CO molecule, which significantly improved the resolution in both STM and AFM. We performed high-resolution AFM/STM measurements on various clusters (comparable to the inset of Figure 1a
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2019

Pull-off and friction forces of micropatterned elastomers on soft substrates: the effects of pattern length scale and stiffness

  • Peter van Assenbergh,
  • Marike Fokker,
  • Julian Langowski,
  • Jan van Esch,
  • Marleen Kamperman and
  • Dimitra Dodou

Beilstein J. Nanotechnol. 2019, 10, 79–94, doi:10.3762/bjnano.10.8

Graphical Abstract
  • stiffness of the micropatterned adhesive, as this strength depends on the area of contact that is formed, which in turn is determined by the indentation depth of the adhesive into the substrate [23]. The performance of biomimetic micropatterned adhesives is usually tested on hard substrates, primarily glass
  • rigid glass substrate [24]. On very soft substrates (Young’s modulus E ≈ 10 kPa), the indentation depth of microscale features is determined by a balance between the elastic properties of the substrate and the substrate–micropattern adhesion effects [25]. The length scale at which these adhesion effects
  • are present is referred to as the elastocapillary length l, which is defined as l = γ/μ, where γ is the surface tension of the substrate and μ is the elastic shear modulus of the substrate [26]. If the length scale of the microscale features is in the order of the elastocapillary length, indentation
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019

Apparent tunneling barrier height and local work function of atomic arrays

  • Neda Noei,
  • Alexander Weismann and
  • Richard Berndt

Beilstein J. Nanotechnol. 2018, 9, 3048–3052, doi:10.3762/bjnano.9.283

Graphical Abstract
  • Cu. In surface areas close to the point of indentation (typical distance 200 nm) long, straight atomic chains are formed on the substrate (Figure 1). While the width of the chains varies, one- and two-atom wide chains are frequently observed. They may be identified from their apparent widths in
PDF
Album
Letter
Published 17 Dec 2018

Friction reduction through biologically inspired scale-like laser surface textures

  • Johannes Schneider,
  • Vergil Djamiykov and
  • Christian Greiner

Beilstein J. Nanotechnol. 2018, 9, 2561–2572, doi:10.3762/bjnano.9.238

Graphical Abstract
  • approaches to realize such textured surfaces, such as chemical etching [12] or material indentation [13], the use of lasers is established as the most versatile and economical method [14]. The most common texturing element is the round dimple [10][14], with which friction reduction of around 80% has been
  • arguments based on indentation depth do change for a sliding contact (e.g., Hamilton’s [42] instead of Hertz’s [43] solution) should be applied for the stress field. We made use of the contact mechanics solver developed and provided by Pastewka [44]. This program allows uploading white light profilometry
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2018

Evidence of friction reduction in laterally graded materials

  • Roberto Guarino,
  • Gianluca Costagliola,
  • Federico Bosia and
  • Nicola Maria Pugno

Beilstein J. Nanotechnol. 2018, 9, 2443–2456, doi:10.3762/bjnano.9.229

Graphical Abstract
  • of the indentation of materials with an exponential or power law variation of the Young’s modulus through the depth [20][21]. Giannakopoulos and Pallot then extended the analysis to 2D [22]. Graded substrates have also been considered in elastohydrodynamic lubrication problems [23]. More recently
PDF
Album
Supp Info
Full Research Paper
Published 13 Sep 2018

Adhesive contact of rough brushes

  • Qiang Li and
  • Valentin L. Popov

Beilstein J. Nanotechnol. 2018, 9, 2405–2412, doi:10.3762/bjnano.9.225

Graphical Abstract
  • following pull-off. The quantities which we are interested in, and which will be presented in the following diagrams, are solely the maximum force during the indentation stage, Fp, and the force of adhesion, FA, defined as the absolute value of the minimum (negative) value of the normal force during the
PDF
Album
Full Research Paper
Published 07 Sep 2018

Imaging of viscoelastic soft matter with small indentation using higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy

  • Miead Nikfarjam,
  • Enrique A. López-Guerra,
  • Santiago D. Solares and
  • Babak Eslami

Beilstein J. Nanotechnol. 2018, 9, 1116–1122, doi:10.3762/bjnano.9.103

Graphical Abstract
  • Abstract In this short paper we explore the use of higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy (AFM) for the small-indentation imaging of soft viscoelastic materials. In viscoelastic materials, whose response depends on the deformation rate, the tip–sample forces
  • generated as a result of sample deformation increase as the tip velocity increases. Since the eigenfrequencies in a cantilever increase with eigenmode order, and since higher oscillation frequencies lead to higher tip velocities for a given amplitude (in viscoelastic materials), the sample indentation can
  • in some cases be reduced by using higher eigenmodes of the cantilever. This effect competes with the lower sensitivity of higher eigenmodes, due to their larger force constant, which for elastic materials leads to greater indentation for similar amplitudes, compared with lower eigenmodes. We offer a
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2018

A robust AFM-based method for locally measuring the elasticity of samples

  • Alexandre Bubendorf,
  • Stefan Walheim,
  • Thomas Schimmel and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2018, 9, 1–10, doi:10.3762/bjnano.9.1

Graphical Abstract
  • observe first a nonlinear relation between the measured frequency shifts, Δf1 and Δf2, and the displacement of the scanner, followed by a linear relation. This suggests a plastic deformation phase of the sample surface during the first step of the indentation, followed by an elastic deformation phase
  • applied normal force generated by the Z-displacement Δz, is FN = keffΔz, where keff is the effective spring of value k1ksample,norm/(k1 + ksample,norm). As the normal stiffness of sample increases during indentation, the value of keff approaches k1, so that beyond a certain value of ksample,norm, the
  •  1. Sample surface deformations and evolution of stress during indentation The existence of a plastic and an elastic deformation phase is explained by the evolution of stress σ (ratio between the applied normal force FN and the cross section A of the cantilever tip) during indentation (Figure 5). At
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2018

Robust procedure for creating and characterizing the atomic structure of scanning tunneling microscope tips

  • Sumit Tewari,
  • Koen M. Bastiaans,
  • Milan P. Allan and
  • Jan M. van Ruitenbeek

Beilstein J. Nanotechnol. 2017, 8, 2389–2395, doi:10.3762/bjnano.8.238

Graphical Abstract
  • authors report to have obtained crystalline tips by repeated deep indentation of a Au tip into a Au surface followed by retraction until the contact breaks. These indentation cycles cause plastic deformation of the tip apex [26], which first gives random conductance traces but gradually evolves to
  • values at maximum indentation of 5G0, 6G0, 6G0 and 2.6G0, respectively) below which the conductance traces shows reproducible cycles. Procedure of tip preparation We will now present a procedure, illustrated in Figure 2, that is based upon this mechanical annealing. This procedure permits arriving at
  • choice of bias voltage influences the process, although we have not tested this to much higher bias voltages. The depth of indentation is more critical: just touching the surface with the front atom is not enough, and much deeper indentation does not result in reproducible conductance cycles [30]. We
PDF
Album
Full Research Paper
Published 13 Nov 2017

Molecular dynamics simulations of nanoindentation and scratch in Cu grain boundaries

  • Shih-Wei Liang,
  • Ren-Zheng Qiu and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2017, 8, 2283–2295, doi:10.3762/bjnano.8.228

Graphical Abstract
  • nanoindentation results (i.e., indentation on the upper area) of the vertical grain boundary showed that the force was translated along the grain boundary, thereby producing intergranular fractures. Keywords: indentation; molecular dynamics; nanograin boundary; nanoscratch; Introduction The recent developments
  • diagrams used herein for analyzing the grain boundary properties (i.e., transverse grain boundary indentation, vertical grain boundary indentation, and vertical grain boundary scratches) are shown in Figure 1a–c, respectively. The indenter (blue) was made of a perfectly structured diamond while perfect
  • . In this study, the substrate first undergoes a balance process for about 200 ps. The indentation and scratch processes will not begin until the substrate is stable. In the transverse grain boundary and multilayers, a periodic boundary condition was imposed in the x and y directions, while the z
PDF
Album
Full Research Paper
Published 01 Nov 2017

Fabrication of gold-coated PDMS surfaces with arrayed triangular micro/nanopyramids for use as SERS substrates

  • Jingran Zhang,
  • Yongda Yan,
  • Peng Miao and
  • Jianxiong Cai

Beilstein J. Nanotechnol. 2017, 8, 2271–2282, doi:10.3762/bjnano.8.227

Graphical Abstract
  • School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China 10.3762/bjnano.8.227 Abstract Using the tip-based continuous indentation process, arrays of three-dimensional pyramidal cavities have been successfully machined on a copper template and
  • ) was used as a probe molecule in the present study to confirm the SERS measurements. Arrays of micro/nanostructures of different dimensions were formed by the overlap of pyramidal cavities with different adjacent distances using the tip-based continuous indentation process. The effects of the reverse
  • is not suitable for mass production. Similar to traditional nanoindenter methods, in our previous study, a force modulation indentation method was also presented [33][34]. The force modulation indention equipment that we built improved the machining efficiency. By controlling the period and amplitude
PDF
Album
Full Research Paper
Published 01 Nov 2017

Material property analytical relations for the case of an AFM probe tapping a viscoelastic surface containing multiple characteristic times

  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 2230–2244, doi:10.3762/bjnano.8.223

Graphical Abstract
  • meaningful material properties in tapping-mode AFM, where oversimplified assumptions are frequently used, which are not appropriate for viscoelastic materials. Flat-punch indentation has been chosen for two main reasons: i) to ensure full applicability of the correspondence viscoelastic principle, and ii) to
  • keep the analytics workable. Although this only represents a portion of the general problem of indentation of viscoelastic materials by arbitrary profiled AFM indenters, it is a step forward in terms of understanding the complexities of the technique in the context of viscoelastic materials, as well as
  • The constant b corresponds to a cell constant (with units of displacement) which allows conversion between stress–strain and force–displacement relationships [8]. By applying the correspondence principle to the elastic solution of flat-end punch indentation (derived by Sneddon [29]), it is possible to
PDF
Album
Supp Info
Full Research Paper
Published 26 Oct 2017

High-stress study of bioinspired multifunctional PEDOT:PSS/nanoclay nanocomposites using AFM, SEM and numerical simulation

  • Alfredo J. Diaz,
  • Hanaul Noh,
  • Tobias Meier and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 2069–2082, doi:10.3762/bjnano.8.207

Graphical Abstract
  • intermittent-contact AFM technique in which two eigenmodes of the cantilever are excited simultaneously, resulting in an enhanced material contrast and the ability to modulate indentation depth or applied force during imaging [62]. The strategy followed consisted of mapping the conservative and dissipative
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2017

Preparation and characterization of polycarbonate/multiwalled carbon nanotube nanocomposites

  • Claudio Larosa,
  • Niranjan Patra,
  • Marco Salerno,
  • Lara Mikac,
  • Remo Merijs Meri and
  • Mile Ivanda

Beilstein J. Nanotechnol. 2017, 8, 2026–2031, doi:10.3762/bjnano.8.203

Graphical Abstract
  • used p-xylene and dichloromethane solvent to mix MWCNTs and prevent their agglomeration induced by strong van der Waals forces. Previous work carried out on PC/MWCNT composites with focus on the mechanical properties showed an increase in the storage modulus obtained from indentation measurements at
PDF
Album
Full Research Paper
Published 27 Sep 2017

α-Silicene as oxidation-resistant ultra-thin coating material

  • Ali Kandemir,
  • Fadil Iyikanat,
  • Cihan Bacaksiz and
  • Hasan Sahin

Beilstein J. Nanotechnol. 2017, 8, 1808–1814, doi:10.3762/bjnano.8.182

Graphical Abstract
  • focused on oxidation scenario of silver in the presence of α-silicene. A large energy barrier for oxidation was obtained by performing indentation calculations. In conclusion, it was found silicene exhibits good performance in the protection of a Ag(111) surface against oxidation. Results and Discussion
  • the application of silicene as an oxidation barrier, indentation calculations with oxygen were performed. Since O atoms and O2 molecules strongly interact with silicene, the diffusion of O/O2 in the lateral direction is not possible and the hollow sites of the hexagonal lattice are the only possible
  • sites for the penetration into the structure. Therefore, the hollow sites are considered for the indentation simulation. There are four different hollow sites in the silicene structure on Ag(111), as shown in Figure 3b. The sites are denoted as H1, H2, H2’ and H3. H2 and H2’ sites coincide to the fcc
PDF
Album
Full Research Paper
Published 31 Aug 2017

Nanotribological behavior of deep cryogenically treated martensitic stainless steel

  • Germán Prieto,
  • Konstantinos D. Bakoglidis,
  • Walter R. Tuckart and
  • Esteban Broitman

Beilstein J. Nanotechnol. 2017, 8, 1760–1768, doi:10.3762/bjnano.8.177

Graphical Abstract
  • slope of the unloading curve (∂P/∂h), evaluated at the point of maximum force. Both P and S and can be determined without knowledge of the exact geometry of the diamond tip or the shape and size of the indentation. The values of P and S are related through the following equation [32]: where Er is the
PDF
Album
Full Research Paper
Published 25 Aug 2017

Assembly of metallic nanoparticle arrays on glass via nanoimprinting and thin-film dewetting

  • Sun-Kyu Lee,
  • Sori Hwang,
  • Yoon-Kee Kim and
  • Yong-Jun Oh

Beilstein J. Nanotechnol. 2017, 8, 1049–1055, doi:10.3762/bjnano.8.106

Graphical Abstract
  • function of the indentation depth (h). The Young’s modulus rapidly decreased as the indentation depth increased to ≈20 nm. In the nanoindentation measurements, the Young's modulus (Er) is given by Er = (√π/2β)(dP/dh)/√A where β is a constant, (dP/dh) is the slope of the load–displacement curve at the
  • sharply increase the contact area (A) at the beginning of indentation and decrease the modulus [33]. Nonetheless, both the modulus and the hardness of all annealed resists, with the exception of the modulus behavior at extremely small indentation depths, increased as the indentation depth increased. This
  • hardness increased with increasing annealing temperature, reaching the maximum at 550 °C. The composite hardness and modulus of the resist–glass system annealed at 550 °C were 5.6 and 58 GPa, respectively, at the indentation depth of tf/2. Considering the properties of the Pyrex glass substrate, which has
PDF
Album
Letter
Published 12 May 2017

Scaling law to determine peak forces in tapping-mode AFM experiments on finite elastic soft matter systems

  • Horacio V. Guzman

Beilstein J. Nanotechnol. 2017, 8, 968–974, doi:10.3762/bjnano.8.98

Graphical Abstract
  • variables and where the indexes “t” and “s” stand for tip and sample, respectively, in the above equations, δ is the indentation, ν is the Poisson coefficient (νt = 0.3 and νs = 0.4) and E is the Young’s modulus with Et = 170 GPa. The effective Young’s modulus Eeff and radius Reff are described elsewhere
PDF
Album
Full Research Paper
Published 02 May 2017

Bio-inspired micro-to-nanoporous polymers with tunable stiffness

  • Julia Syurik,
  • Ruth Schwaiger,
  • Prerna Sudera,
  • Stephan Weyand,
  • Siegbert Johnsen,
  • Gabriele Wiegand and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2017, 8, 906–914, doi:10.3762/bjnano.8.92

Graphical Abstract
  • regime by dynamic flat-punch indentation. Interestingly, the storage modulus was observed to increase with increasing pore-area fraction. Conclusion: This outcome appears counterintuitive at first sight, but can be rationalized by an increase of the pore wall thickness as determined by our quantitative
  • ). Prior to SEM analysis the samples were sputtered with silver for 100 s at 25 mA with a sputter-coater (K575X, Emitech) in order to avoid charging effects and ensure a good resolution. SEM images of the surface of interest were taken before and after the indentation experiments. For the quantitative
  • -specific characterisation routine yields the complex modulus E* = E' + iE'' as a function of the frequency for a specific indentation, with E' and E'' being the storage modulus and the loss modulus of the material, respectively. The ratio E''/E', also known as the loss factor tan δ = α, represents the
PDF
Album
Supp Info
Full Research Paper
Published 21 Apr 2017

Dispersion of single-wall carbon nanotubes with supramolecular Congo red – properties of the complexes and mechanism of the interaction

  • Anna Jagusiak,
  • Barbara Piekarska,
  • Tomasz Pańczyk,
  • Małgorzata Jemioła-Rzemińska,
  • Elżbieta Bielańska,
  • Barbara Stopa,
  • Grzegorz Zemanek,
  • Janina Rybarska,
  • Irena Roterman and
  • Leszek Konieczny

Beilstein J. Nanotechnol. 2017, 8, 636–648, doi:10.3762/bjnano.8.68

Graphical Abstract
  • ), deformation (the indentation of the surface under the tip), dispersion (dissipation, loss of energy of microcantilever of scanning probe when passing through different areas on the sample surface). Absorption spectra of free Congo red (A) and SWNT-bound Congo red (D) (0.05 M Tris/HCl buffer, pH 7.4); Congo
PDF
Album
Full Research Paper
Published 16 Mar 2017
Other Beilstein-Institut Open Science Activities