Search results

Search for "interaction" in Full Text gives 1359 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

The microstrain-accompanied structural phase transition from h-MoO3 to α-MoO3 investigated by in situ X-ray diffraction

  • Zeqian Zhang,
  • Honglong Shi,
  • Boxiang Zhuang,
  • Minting Luo and
  • Zhenfei Hu

Beilstein J. Nanotechnol. 2023, 14, 692–700, doi:10.3762/bjnano.14.55

Graphical Abstract
  • tunnel ruptures the Mo–O2 bonds, forming individual MoO6 octahedron zigzag chains that share corners to generate octahedron layers. The octahedron layers are bonded by van der Waals interaction, crystalizing into the α-MoO3 structure. Results and Discussion Features of the phase transition from h-MoO3 to
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • interaction with other non-target species; this is often used to determine the accuracy of the results. The LOD of an analyte is the lowest concentration at which it can be consistently detected by an analytical procedure. A measurable signal that can be statistically distinguished from the background or a
  • (miniaturised) with the potential for low-cost manufacturing. Optical sensing: fluorescent sensors Optical sensors are light-based analytical devices based on the alteration in the measurement of light wavelengths following the interaction of the analyte with the molecular recognition element (Figure 5
  • equation (Equation 1), results from the interaction and subsequent collision between analyte and fluorophore. The luminescence intensities prior to and following the addition of the quencher (analyte), respectively, are represented by F0 and F. The molar concentration of the analyte is [C], and Kd is the
PDF
Album
Review
Published 01 Jun 2023

Titania nanoparticles for photocatalytic degradation of ethanol under simulated solar light

  • Evghenii Goncearenco,
  • Iuliana P. Morjan,
  • Claudiu Teodor Fleaca,
  • Florian Dumitrache,
  • Elena Dutu,
  • Monica Scarisoreanu,
  • Valentin Serban Teodorescu,
  • Alexandra Sandulescu,
  • Crina Anastasescu and
  • Ioan Balint

Beilstein J. Nanotechnol. 2023, 14, 616–630, doi:10.3762/bjnano.14.51

Graphical Abstract
  • from the interaction with photogenerated hydroxyl radicals. Despite the fact that radical trapping was performed in aqueous solution, it can be indicative for the ability of the catalyst surface to generate hydroxyl radicals in the present investigated system. The main reactions leading to (•OH
PDF
Album
Full Research Paper
Published 22 May 2023

Suspension feeding in Copepoda (Crustacea) – a numerical model of setae acting in concert

  • Alexander E. Filippov,
  • Wencke Krings and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 603–615, doi:10.3762/bjnano.14.50

Graphical Abstract
  • mechanical property gradients, the mechanical behavior and the adhesion of setae, and the feeding efficiency of the system. In this context, we set-up a simple dynamic numerical model that takes all of these parameters into account and describes the interaction with food particles and their delivery into the
  • and highlights that a system containing both setae types (Figure 9b,d) is optimal for gathering particles from the surrounding water. The long setae rather generate water currents that bring food particles to the short setae, which contact and capture them [14][15][16][17][18]. The interaction between
  • potential (exponentially depending on the distance) interaction (interaction caused by a mutual friction, which tends to reduce a difference between velocities). The appropriate force from the setae acting on every particle is represented as a combination of the following velocity- and distance-dependent
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2023

Thermal transport in kinked nanowires through simulation

  • Alexander N. Robillard,
  • Graham W. Gibson and
  • Ralf Meyer

Beilstein J. Nanotechnol. 2023, 14, 586–602, doi:10.3762/bjnano.14.49

Graphical Abstract
  • and classical results generally agree. Phonon interaction with surfaces here is less than when the kink is large, leading to less reflective effects and long distances for phonons to travel uninterrupted. When kinks are introduced, and a careful investigation is done cleverly using colour scaling, it
PDF
Album
Full Research Paper
Published 15 May 2023

Observation of multiple bulk bound states in the continuum modes in a photonic crystal cavity

  • Rui Chen,
  • Yi Zheng,
  • Xingyu Huang,
  • Qiaoling Lin,
  • Chaochao Ye,
  • Meng Xiong,
  • Martijn Wubs,
  • Yungui Ma,
  • Minhao Pu and
  • Sanshui Xiao

Beilstein J. Nanotechnol. 2023, 14, 544–551, doi:10.3762/bjnano.14.45

Graphical Abstract
  • confinement in a relatively simple way. Such strong resonances endow PhC-based BIC devices with a strong enhancement of light–matter interaction, indicating great potential for applications in ultrasensitive molecular fingerprint detection [12][13][35], hyperspectral biosensing imaging [36], novel flat light
PDF
Album
Full Research Paper
Published 27 Apr 2023

Carbon nanotube-cellulose ink for rapid solvent identification

  • Tiago Amarante,
  • Thiago H. R. Cunha,
  • Claudio Laudares,
  • Ana P. M. Barboza,
  • Ana Carolina dos Santos,
  • Cíntia L. Pereira,
  • Vinicius Ornelas,
  • Bernardo R. A. Neves,
  • André S. Ferlauto and
  • Rodrigo G. Lacerda

Beilstein J. Nanotechnol. 2023, 14, 535–543, doi:10.3762/bjnano.14.44

Graphical Abstract
  • devices that can be easily fabricated by scalable printing techniques. We monitored the electrical response due to the interaction between a given liquid with the carbon nanotube–cellulose film over time. Using principal component analysis of the electrical response, we were able to extract robust data to
  • reaches a point close to its initial value (green part). In order to understand the nature of the interaction between the transducer and the liquids, we correlated the main variables used for PCA analysis (maximum gain and full width at half-maximum (FWHM) as described in Supporting Information File 1
  • regarding the width of the peaks. The interaction of the liquid with the hot crucible is analogous to the interaction of the liquid with the transducer from the thermal point of view. In both cases, the contact of the liquid with the hot surface causes a temperature drop due to the heat transfer from the
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • precursor could be cast and gelled as thin films or hollow tubular monoliths with thin walls, improving the interaction between the encapsulated cells and a liquid medium in which the material could be placed. In addition to the optimisation of the sol–gel synthesis, the conditions for yolk–shell
  • systems were studied by means of optical and electron microscopy (SEM and FE-SEM). Both techniques allowed us to study in detail the cellular arrangement of the microorganisms and their interaction with the inorganic matrix system. FE-SEM microscopy images of the different gel encapsulation systems are
  • the stress imposed by the direct contact with the silica matrix. Cells in interaction with, but not strongly confined by, the matrix quickly start to divide and to proliferate in pseudofilamentous structures [42] that tend to colonize the free space present in the highly porous regions of the silica
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

Conjugated photothermal materials and structure design for solar steam generation

  • Chia-Yang Lin and
  • Tsuyoshi Michinobu

Beilstein J. Nanotechnol. 2023, 14, 454–466, doi:10.3762/bjnano.14.36

Graphical Abstract
  • nonradiative relaxation of excited electrons to the ground state. Depending on the interaction mechanism, photothermal phenomena are classified into three categories, namely plasmonic local heating of metals, nonradiative relaxation of semiconductors, and thermal vibration relaxation of conjugated molecules
PDF
Album
Review
Published 04 Apr 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • expression through nanoarchitectonics. Shi and co-workers created nanoparticle surfactants at liquid–liquid interfaces by exploiting the interaction between nanoparticles and polymer ligands [101]. They showed that a size-dependent aggregation of nanoparticle surfactants can be generated at the interface
PDF
Album
Review
Published 03 Apr 2023

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • NiFe-LDH/RGO/NF, respectively. The efficient OER was associated with the presence of the electron interaction between the metal and graphene. The literature presents the possibility of improving OER performance of the electrode by combining Fe-, Ni- and/or Co-based oxides/hydroxides and GO instead of
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • phenomenon of surface plasmon resonance results from the interaction between electromagnetic radiation and typically high-valence materials, leading to oscillations of the free electrons in it. The decay of these collective oscillations into heat is the plasmonic photothermal (PPT) effect. The absorption
  • materials [24][25]. Interaction of electromagnetic radiation with a material can lead to absorption, transmission, or scattering. Regarding scattering, elastic and inelastic scattering are the major classifications. Elastic scattering means conservation of the photon energy, in inelastic scattering, there
  • electronic, translation, vibration, and rotational transitions. The interaction time period of electromagnetic radiation with electrons is around 10−14 to 10−15 s. SPR falls within the regime of electronic transitions and, generally, electronic transitions can be interband as well as intraband transitions
PDF
Album
Review
Published 27 Mar 2023

New trends in nanobiotechnology

  • Pau-Loke Show,
  • Kit Wayne Chew,
  • Wee-Jun Ong,
  • Sunita Varjani and
  • Joon Ching Juan

Beilstein J. Nanotechnol. 2023, 14, 377–379, doi:10.3762/bjnano.14.32

Graphical Abstract
  • the interaction between peptides with physiological proteins. Through the study, the selection and rapid design of peptides based on peptide binding sites, hydrogen bond number, and binding affinity were obtained. It was also concluded the potential role of these peptides in the prevention of
PDF
Editorial
Published 27 Mar 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • measurements were performed to confirm the formation of Ch/Q- and Ch/CA-Ag NPs and to obtain information about the interaction in the synthesized materials using characteristic bands of functional groups. Figure 3 depicts the FTIR spectra of the synthesized Ag NPs and the pure materials (quercetin, caffeic
  • the direct interaction of Ag NPs with the cell lines was examined. In future studies, it will be valuable to examine the effect of additives that increase the stability of NPs and prevent their aggregation. Moreover, the antibacterial activity of synthesized nanoparticles, Ch/Q- and Ch/CA-Ag NPs, were
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • considered one of the best materials with anticancer properties. Most of the administered NPs that end up in the bloodstream interact with the endothelial layer. The interaction of the NPs with the endothelium widens the existing gaps or induces new ones in the monolayer of vascular endothelial cells, thus
  • increasing the access to the target sites in the organism. This type of interaction can lead to NP-modulated endothelial leakiness (NanoEL). The most important factors determining NanoEL are the physicochemical properties of the NPs. NP-modulated endothelial leakiness can lead to the discovery of new
  • [18][19][20][21][22][23]. NPs exhibit unique physicochemical properties that enable them to overcome biological barriers, such as negative surface charge and sizes from 5 to 50 nm. Moreover, most of the administered NPs eventually end up in the bloodstream, which facilitates their interaction with the
PDF
Album
Review
Published 08 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • facile solvothermal technique. An intrinsic electric field is created at the interface as a result of the active migration of electrons from BiVO4 to NiSe2. This improves the separation efficiency of the photogenerated carriers, and the interaction at the interface lowers the bandgap of BiVO4, which in
PDF
Album
Review
Published 03 Mar 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • intravascular gaps or fenestrations or actively by a transcytotic mechanism, loaded with one or more types of stage-2 nanoparticles. The payload of drug/diagnostic agent-loaded nanoparticles optimized for improved interaction with various cancer cells, including lung cancer cells, is released over time at the
  • interaction with the overexpressed EGFR receptors [126]. Such multifunctional nanocarriers with multistage targeting hold promise for improved efficacy of treatment and increased the intracellular availability of anticancer agents for solid tumors with EGFR overexpression, among them lung cancer. Leuko-like
  • entire cardiac output, but successful lung localization of nanocarriers depends upon NP interaction with the endothelial cells. Lung endothelial cells are an important target for drugs and gene delivery as they are involved in processes such as inflammation, vascular permeability, and tumor growth. Also
PDF
Album
Review
Published 22 Feb 2023

Spin dynamics in superconductor/ferromagnetic insulator hybrid structures with precessing magnetization

  • Yaroslav V. Turkin and
  • Nataliya Pugach

Beilstein J. Nanotechnol. 2023, 14, 233–239, doi:10.3762/bjnano.14.22

Graphical Abstract
  • interaction between the superconducting correlations and spin waves influences the dynamics of both superconducting and magnetic films. Interfacial exchange interaction between Cooper pairs and magnons results in a nonstationary induced magnetization and spin currents in the superconducting film and changes
PDF
Album
Full Research Paper
Published 21 Feb 2023

Concentration-dependent photothermal conversion efficiency of gold nanoparticles under near-infrared laser and broadband irradiation

  • Vikas,
  • Raj Kumar and
  • Sanjeev Soni

Beilstein J. Nanotechnol. 2023, 14, 205–217, doi:10.3762/bjnano.14.20

Graphical Abstract
  • , therapeutics, and diagnostics [1][2][3][4][5]. The interaction of free electrons of gold nanoparticles with electromagnetic fields leads to oscillations of the electrons at plasmonic resonance frequencies. Nonradioactive decay of these oscillations causes the conversion of electromagnetic energy into heat [6
  • under irradiation is described as: Equation 7 and Equation 8 can be used to determine the amount of heat absorption, the photothermal conversion efficiency, or the temperature rise of the GNP suspension during photothermal interaction. Results and Discussion Spectral absorbance of GNPs The concentration
  • looked at in future studies. Further, it can be observed that NIR broadband irradiation is more suitable for heat generation when the plasmonic wavelength of the nanoparticles differs considerably from the wavelength of the laser source. Temperature rise of GNP suspensions on photothermal interaction The
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2023

High–low Kelvin probe force spectroscopy for measuring the interface state density

  • Ryo Izumi,
  • Masato Miyazaki,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2023, 14, 175–189, doi:10.3762/bjnano.14.18

Graphical Abstract
  • with respect to the cutoff frequency fc of carrier transport between the bulk and interface states and measuring the difference in CPD by KPFM. In high–low KPFM, frequency modulation (FM) KPFM (FM-KPFM) combined with FM-AFM is used to detect the tip–sample interaction force. FM-KPFM has several
  • bias voltage Vdc and the frequency shift Δf cannot be understood analytically. Therefore, assuming that the vibration amplitude of the cantilever is very small compared to the length of the electrostatic force interaction region, we can obtain the analytical relationship between Vdc and the frequency
  • amplitudes, but they can qualitatively explain the behavior of Δf–Vdc curves. Experimental Figure 4 shows the block diagram of AFM and high–low KPFS using AC bias voltages with high and low frequencies. The FM method was used to detect the tip–sample interaction force. The cantilever displacement signal
PDF
Album
Full Research Paper
Published 31 Jan 2023

Intermodal coupling spectroscopy of mechanical modes in microcantilevers

  • Ioan Ignat,
  • Bernhard Schuster,
  • Jonas Hafner,
  • MinHee Kwon,
  • Daniel Platz and
  • Ulrich Schmid

Beilstein J. Nanotechnol. 2023, 14, 123–132, doi:10.3762/bjnano.14.13

Graphical Abstract
  • . Thus, the mechanical position can be read through the optical cavity. Upon this basic interaction, many emerging kinds of behaviour were found: sideband cooling down to quantum levels [15][16], parametric amplification [17] before signal detection, state squeezing [18][19][20], and Bogoliubov modes [21
  • multifrequency AFM has improved both imaging contrast and the amount of extracted information from AFM experiments by exploiting the nonlinearity of the tip–surface interaction [32][33][34][35][36]. The methods applied excel in both their creativity and engineering prowess. A first example is on-resonance
  • two modes and their interaction, amplified by the red sideband pump, which is set at the frequency difference of the two modes in question. A main advantage of working with continuous mechanical systems, such as microcantilevers, is the plethora of eigenmodes available [43]. For every combination of
PDF
Album
Full Research Paper
Published 19 Jan 2023

Characterisation of a micrometer-scale active plasmonic element by means of complementary computational and experimental methods

  • Ciarán Barron,
  • Giulia Di Fazio,
  • Samuel Kenny,
  • Silas O’Toole,
  • Robin O’Reilly and
  • Dominic Zerulla

Beilstein J. Nanotechnol. 2023, 14, 110–122, doi:10.3762/bjnano.14.12

Graphical Abstract
  • nanomechanical operations such as lithography and machining. The high spring constant of this cantilever has the advantage of minimising the unwanted deflection of the cantilever resulting from electrostatic interaction of the potential on the surface and the probe. The tip is constructed from wear-resistant
  • scanning. While leaving the probe floating is counterproductive from the perspective of minimising electrostatic interaction, the possibility of current flow through the tip to ground is eliminated. As with the LIA phase selection for the SPR measurements discussed above, the phase was selected so as to
PDF
Album
Full Research Paper
Published 16 Jan 2023

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • Adrien Chauvin Walter Puglisi Damien Thiry Cristina Satriano Rony Snyders Carla Bittencourt Plasma-Surface Interaction Chemistry, University of Mons, 23 Place du Parc, 7000 Mons, Belgium Chemistry of Surfaces, Interfaces and Nanomaterials, Faculty of Sciences, Université libre de Bruxelles, 50
  • efficient nanoporous platforms are based on gold due to their high stability towards oxidation. Therefore, heading towards simple and inexpensive approaches to reach the industrial market turns out to be a necessity. The origin of the SERS effect relies on the interaction between an intense electromagnetic
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

The influence of structure and local structural defects on the magnetic properties of cobalt nanofilms

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Olesya Severyukhina and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2023, 14, 23–33, doi:10.3762/bjnano.14.3

Graphical Abstract
  • emphasis at this stage was placed on the pairwise anisotropy model of Neel. The exchange interaction provides a natural connection between the spin and lattice degrees of freedom due to the dependence of the function J on the interatomic distance. This function determines the intensity of the interaction
  • and promising magnetic nanomaterials. Magnetic crystallographic anisotropy arises on spin–orbit interaction of atoms. As a consequence, this type of interaction should be separately taken into account when constructing theoretical models and conducting numerical experiments. The type and parameters of
  • internal energy and by the symmetry or asymmetry of the crystal structure of ferromagnets. The dipole–dipole interaction does not make a significant contribution to the anisotropy energy and its value is insignificant. Only in a number of rare-earth metals the contribution of the dipole–dipole interaction
PDF
Album
Full Research Paper
Published 04 Jan 2023

Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition

  • Mykhailo Nahorniak,
  • Pamela Pasetto,
  • Jean-Marc Greneche,
  • Volodymyr Samaryk,
  • Sandy Auguste,
  • Anthony Rousseau,
  • Nataliya Nosova and
  • Serhii Varvarenko

Beilstein J. Nanotechnol. 2023, 14, 11–22, doi:10.3762/bjnano.14.2

Graphical Abstract
  • isomeric shift resulting from the monopolar electric interaction is very sensitive to the valence states of Fe. Taking into account the characteristic measurement time of 57Fe Mössbauer spectroscopy, estimated at 10−8 s at the Larmor frequency, the ultrafine structure of magnetite at 300 K (and above the
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2023
Other Beilstein-Institut Open Science Activities