Search results

Search for "optical properties" in Full Text gives 395 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • distinctive optical properties. However, AuNPs are easily aggregate and are difficult to eliminate in vivo. In a previous reported work, we synthesized LNPs grafted with tiny gold nanoclusters (Au-LNPs) to solve issues regarding aggregation and metabolism [8]. However, PTT of Au-LNPs is limited by the low
PDF
Album
Full Research Paper
Published 02 Dec 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • crystallographic characterization. The morphology of the obtained nanostructures was captured by high-resolution transmission electron microscopy (HRTEM, Talos F200X G2, Thermo Scientific). The optical properties were characterized with a Shimadzu UV 2600 UV–vis spectrophotometer with an integrating sphere
PDF
Album
Full Research Paper
Published 22 Nov 2022

Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core–shell nanoarchitectures

  • Alexandru-Milentie Hada,
  • Nina Burduja,
  • Marco Abbate,
  • Claudio Stagno,
  • Guy Caljon,
  • Louis Maes,
  • Nicola Micale,
  • Massimiliano Cordaro,
  • Angela Scala,
  • Antonino Mazzaglia and
  • Anna Piperno

Beilstein J. Nanotechnol. 2022, 13, 1361–1369, doi:10.3762/bjnano.13.112

Graphical Abstract
  • composed of gold and/or silver, are versatile agents endowed with unique physicochemical properties, which recently have drawn great interest for a variety of applications ranging from catalysis to nanomedicine [1][2][3]. The size of the NPs is a key parameter that defines their optical properties
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022

Near-infrared photoactive Ag-Zn-Ga-S-Se quantum dots for high-performance quantum dot-sensitized solar cells

  • Roopakala Kottayi,
  • Ilangovan Veerappan and
  • Ramadasse Sittaramane

Beilstein J. Nanotechnol. 2022, 13, 1337–1344, doi:10.3762/bjnano.13.110

Graphical Abstract
  • al. doped Zn into AgInS2 and obtained Zn-Ag-In-S QDs. The QDSCs assembled by using these QDs exhibited a PCE of 4.50% [15]. The authors reported that the incorporation of zinc improved the optical properties and the PCE of AgInS2 QDs. Halder et al. reported the effect of doping Zn into a AgInSe2 host
  • JSM-7600F. The electronic states of the elements and their atomic ratio in the prepared samples was analyzed by using XPS (Kratos AXIS Ultra DLD) and EDX (Bruker Nano XFlash detector attached to the HRTEM). Optical properties were examined by using a UV–vis–NIR spectrophotometer (Perkin Elmer L-650 UV
  • , Zn, Ga, S, and Se. Optical analysis revealed the excellent optical properties of the synthesized QDs. Because of their good NIR light absorption, the synthesized QDs were loaded onto TiO2 NFs, which then formed the photoanode of a QDSC. The fabricated QDSC shows an improved PCE of 4.91%. This is due
PDF
Album
Full Research Paper
Published 14 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • a few to several hundred atoms that fill the gaps between nanoparticles and molecular compounds and often exhibit molecule-like electrical and optical properties because their size is close to the Fermi wavelength of electrons [15][16][17]. Metal nanoclusters have size-dependent luminescence
  • properties, and thus the fluorescence emission can be tuned by controlling different sizes. Due to their unique electronic, physical, and optical properties, metal nanoclusters have attracted great interest in recent years for electronic devices, catalysis, bioimaging, and chemical sensing [18][19][20][21
PDF
Album
Review
Published 03 Nov 2022

Rapid fabrication of MgO@g-C3N4 heterojunctions for photocatalytic nitric oxide removal

  • Minh-Thuan Pham,
  • Duyen P. H. Tran,
  • Xuan-Thanh Bui and
  • Sheng-Jie You

Beilstein J. Nanotechnol. 2022, 13, 1141–1154, doi:10.3762/bjnano.13.96

Graphical Abstract
  • spectroscopy (DRS) was used to determine the optical properties and bandgap energies of the material. The bandgap of the material decreases with increasing amounts of MgO. The photoluminescence spectra indicate that the recombination of electron–hole pairs is hindered by doping MgO onto g-C3N4. Also, NO
  • absorbs visible light due to its small bandgap below 2.7 eV. Because of this, it has been consistently regarded as a catalyst with excellent optical properties [14][15]. Unfortunately, its narrow bandgap leads to rapid recombination of electron–hole (e−–h+) pairs, and the valence band potential of g-C3N4
  • -C3N4 are too weak. Optical properties DRS spectra have been measured to understand the optical absorption characteristics of the materials (Figure 9). The g-C3N4 sample significantly absorbs light at a peak around 440 nm, corresponding to the direct and the indirect bandgap of 2.83 and 2.68 eV
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • synthesis of CDs, the effects of surface states on optical properties, the characterization of CDs, metal ion sensing, and biological and agricultural applications of CDs, that is, microbial bioimaging, detection, and viability studies, pathogen control, and plant growth promotion (Figure 1). Review Green
  • of different synthesis methodologies on the optical properties of the prepared CDs. The CDs obtained from the alcoholic extract of yellow petals were more stable and had a high quantum yield. The reported CDs were efficiently employed for the detection of diazinon [75]. Flax straw was recently used
PDF
Album
Review
Published 05 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • tissue engineering Chitosan–carbon nanotube composites Carbon nanotubes have distinct physical, chemical, and optical properties that enable new bioengineering applications, notably in the development of natural bone tissue repair and replacement scaffolds. Carbon nanoparticles can provide a chemically
PDF
Review
Published 29 Sep 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • solvothermal method to obtain a novel 0D/3D heterojunction Bi2O3/MIL101(Fe) (BOM). The morphology and optical properties of the as-prepared Bi2O3/MIL101(Fe) composite were characterized. The photocatalytic activity of the synthesized samples was evaluated by degrading chlortetracycline (CTC) under visible
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Ideal Kerker scattering by homogeneous spheres: the role of gain or loss

  • Qingdong Yang,
  • Weijin Chen,
  • Yuntian Chen and
  • Wei Liu

Beilstein J. Nanotechnol. 2022, 13, 828–835, doi:10.3762/bjnano.13.73

Graphical Abstract
  • perfectly zero. For general discussions of optical properties, such as scattering and absorption cross sections, it is physically legitimate to take into consideration only those dominant contributing multipole terms and drop other minor ones (such as in the widely adopted dipole approximation). While for
PDF
Album
Full Research Paper
Published 24 Aug 2022

Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene

  • Teodora Vićentić,
  • Stevan Andrić,
  • Vladimir Rajić and
  • Marko Spasenović

Beilstein J. Nanotechnol. 2022, 13, 666–674, doi:10.3762/bjnano.13.58

Graphical Abstract
  • collected and redispersed in a specific volume of NMP (Sigma-Aldrich M79603), which ranged between 250 and 1000 µL. This method is schematically described in Figure 1. Film deposition In order to study the optical properties of the produced graphene films, graphene from solution was deposited onto glass
  • graphene was varied. As the film of graphene formed on the surface of the water, the LB method was used to deposit the film onto the target substrate [32]. Film characterization To study optical properties of the fabricated samples, UV–vis spectroscopy was performed (Thermo Fisher Scientific EVO 60
PDF
Album
Full Research Paper
Published 18 Jul 2022

Revealing local structural properties of an atomically thin MoSe2 surface using optical microscopy

  • Lin Pan,
  • Peng Miao,
  • Anke Horneber,
  • Alfred J. Meixner,
  • Pierre-Michel Adam and
  • Dai Zhang

Beilstein J. Nanotechnol. 2022, 13, 572–581, doi:10.3762/bjnano.13.49

Graphical Abstract
  • with the SHG and photoluminescence optical images, indicating the relationship between local structure and optical properties of the MoSe2 flake. These results contribute to understand the impacts of local structural properties on the Raman enhancement at the surface of the 2D transition-metal
  • addition, point defect-induced trions in monolayer WS2 on a nonconducting substrate can be visualized via photoluminescence in order to precisely explore the exciton binding energy [15]. The optical properties of edges and grain boundaries in 2D-TMDC materials have also been characterized by
  • the Raman polarizability of the molecule; thus, it is essential to investigate the dependency of chemical enhancement on the local structure of 2D-TMDC materials. In this article, the structure-related optical properties of a triangular MoSe2 flake covered with a 5 nm film of CuPc molecules are
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2022

Detection and imaging of Hg(II) in vivo using glutathione-functionalized gold nanoparticles

  • Gufeng Li,
  • Shaoqing Li,
  • Rui Wang,
  • Min Yang,
  • Lizhu Zhang,
  • Yanli Zhang,
  • Wenrong Yang and
  • Hongbin Wang

Beilstein J. Nanotechnol. 2022, 13, 549–559, doi:10.3762/bjnano.13.46

Graphical Abstract
  • biocompatibility, large specific surface area, and remarkable photoelectric properties [1][2][3]. Among them, gold nanoparticles (GNPs) have been frequently employed for drug delivery, sensing, imaging, and photodynamic therapy owing to their high extinction coefficient, distinct optical properties, excellent
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • fluorescence based on ZnO nanoscaled films is different from the metal enhancement. The use of ZnO nanosubstrates for enhanced biomedical detection has received great attention due to their optical properties and other great advantages. Early detection of disease markers and the measurement of specific protein
PDF
Album
Review
Published 27 May 2022

Selected properties of AlxZnyO thin films prepared by reactive pulsed magnetron sputtering using a two-element Zn/Al target

  • Witold Posadowski,
  • Artur Wiatrowski,
  • Jarosław Domaradzki and
  • Michał Mazur

Beilstein J. Nanotechnol. 2022, 13, 344–354, doi:10.3762/bjnano.13.29

Graphical Abstract
  • a function of the distance from the target axis on both sides (front and back) of the substrate. The lowest measured resistivity was about 4 × 10−3 Ω·cm. Additionally, optical properties, surface topography, and elemental composition were determined in selected areas of the substrate. Keywords
  • -needle distance of 1.00 mm. The measurement was carried out such that the line connecting the four needles was perpendicular to the longest dimension (350 mm) of the glass stripe. The optical properties were evaluated on the basis of the transmission spectra. The characteristics were acquired using an
  • Ocean Optics spectrophotometer (QE65000 type) and a coupled halogen–deuterium lamp in the wavelength range of 300 to 1000 nm. Transmitted light was collected using an integrating sphere with a perpendicular incidence of the light beam on the sample for nonpolarized light. Analysis of optical properties
PDF
Album
Full Research Paper
Published 31 Mar 2022

Investigation of a memory effect in a Au/(Ti–Cu)Ox-gradient thin film/TiAlV structure

  • Damian Wojcieszak,
  • Jarosław Domaradzki,
  • Michał Mazur,
  • Tomasz Kotwica and
  • Danuta Kaczmarek

Beilstein J. Nanotechnol. 2022, 13, 265–273, doi:10.3762/bjnano.13.21

Graphical Abstract
  • cycles testify a very good reproducibility and good stability (retention) of the prepared material (Figure 4). The ratio of the structure resistance between the HR and LR states was approximately 6 × 102. Optical properties Figure 5 presents the transmission and reflection spectra of the prepared thin
PDF
Album
Full Research Paper
Published 24 Feb 2022

Photothermal ablation of murine melanomas by Fe3O4 nanoparticle clusters

  • Xue Wang,
  • Lili Xuan and
  • Ying Pan

Beilstein J. Nanotechnol. 2022, 13, 255–264, doi:10.3762/bjnano.13.20

Graphical Abstract
  • afterwards due to adverse effects or development of various resistance mechanisms, making the advent of novel strategies imperative for early diagnosis and efficient treatment [2]. Photothermal therapy (PTT) is a recently developed regimen that requires administration of nanomaterials with unique optical
  • properties to absorb and locally convert near-infrared (NIR) light into heat [3]. Nanoscale agents tend to accumulate within tumor sites due to the enhanced permeability and retention (EPR) effect. Also, tumor cells are more sensitive to elevated temperatures than normal cells. Thus, PTT specifically ablates
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Plasmon-enhanced photoluminescence from TiO2 and TeO2 thin films doped by Eu3+ for optoelectronic applications

  • Marcin Łapiński,
  • Jakub Czubek,
  • Katarzyna Drozdowska,
  • Anna Synak,
  • Wojciech Sadowski and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2021, 12, 1271–1278, doi:10.3762/bjnano.12.94

Graphical Abstract
  • substrate and no signals from Te 3d and Eu 4d lines were detected. To compare optical properties and investigate the influence of plasmonic resonance on the intensity of luminescence, transmission and luminescence spectra were recorded for the single luminescent oxide layer and the luminescent films
  • and Al2O3 layers exhibit a much greater permittivity, which affects the optical properties of plasmonic nanostructures and redshifts the resonance wavelength [34][35][40][41]. The excitation and emission spectra samples are shown in Figure 10. One main spectral line can be distinguished on excitation
  • caused by Al2O3 may successfully tune the optical properties of gold plasmonic nanostructures to obtain a more efficient excitation of the luminescent layer with europium ions. The characteristic narrow emission band at 591 nm was assigned to the 5D0→7F1 magnetic dipole transition in Eu3+ [40][41]. Its
PDF
Album
Full Research Paper
Published 22 Nov 2021

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • crystalline sheet-like assembly. Interestingly, their group also identified the optical properties of single amino acids during assembly, demonstrating the intrinsic fluorescence of amyloid structures of metabolites such as adenine, tryptophan, tyrosine, and phenylalanine which can be used to detect living
PDF
Album
Review
Published 12 Oct 2021

First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications

  • Muhammad Atif Sattar,
  • Najwa Al Bouzieh,
  • Maamar Benkraouda and
  • Noureddine Amrane

Beilstein J. Nanotechnol. 2021, 12, 1101–1114, doi:10.3762/bjnano.12.82

Graphical Abstract
  • is exceptionally promising for the next generation of photovoltaic and thermoelectric devices at room and high temperatures. Keywords: density functional theory (DFT); electronic properties; lattice thermal conductivity; optical properties; thermodynamic properties; thermoelectric properties; tin
  • experimental studies are needed to calculate the ZT value with an accurate evaluation of the relaxation time. Optical properties The optical properties in solid materials are governed by the response of the electrons to time-dependent electromagnetic perturbations triggered by the shining of light. As a result
  • , the computation of the optical properties is decreased towards the assessment of the response function, which is called dielectric tensor or polarizability. For practical optoelectronics applications, it is essential to investigate the optical response of the π-SnSe alloy. For this purpose, we have
PDF
Album
Full Research Paper
Published 05 Oct 2021

Revealing the formation mechanism and band gap tuning of Sb2S3 nanoparticles

  • Maximilian Joschko,
  • Franck Yvan Fotue Wafo,
  • Christina Malsi,
  • Danilo Kisić,
  • Ivana Validžić and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 1021–1033, doi:10.3762/bjnano.12.76

Graphical Abstract
  • mechanisms, and in particular the associated kinetics of Sb2S3 nanoparticles, is therefore still lacking. Nevertheless, it is necessary to understand the nanomaterial formation mechanism to achieve control over the morphological and optical properties of the particles, which is crucial for the further
  • temperature was chosen to slow down the reaction rate, and hence to increase the duration of different reaction steps and decrease the primary particle size. Systematically, the Sb2S3 nanoparticles in the different formation steps were analyzed regarding morphology, crystallinity, and optical properties, and
  • the amorphous particles, until a grayish-black mixture of crystalline material without spherical, amorphous particles (≈18 h) was finally obtained. Optical characterization The optical properties of the materials were measured by reflectance spectroscopy and analyzed by applying the Tauc plot to
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2021

A Au/CuNiCoS4/p-Si photodiode: electrical and morphological characterization

  • Adem Koçyiğit,
  • Adem Sarılmaz,
  • Teoman Öztürk,
  • Faruk Ozel and
  • Murat Yıldırım

Beilstein J. Nanotechnol. 2021, 12, 984–994, doi:10.3762/bjnano.12.74

Graphical Abstract
  • to their remarkable crystal, electric, thermoelectric, magnetic, and optical properties [6][7]. There are many studies on the usage of thiospinels in batteries, super-capacitors, and electrochemical reactions [8][9][10][11][12]. However, there are only two studies on the synthesis and application of
  • results of the CuNiCoS4 nanocrystals confirmed that the nanocrystals are suitable for interfacial layers of photodiodes. Optical properties The optical properties of CuNiCoS4 nanocrystals were investigated by absorbance and diffuse reflectance spectroscopy (Figure 3). As can be seen in Figure 3a, the
PDF
Album
Full Research Paper
Published 02 Sep 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • significant enhancement of the excited-state spin lifetimes [62]. Concerning optical properties, successful decoupling made the examination of fluorescence from both single molecules and molecular assemblies feasible by tunneling electron excitation [19][63][64][65][66]. Also, sub-molecularly resolved Raman
  • changing chemical environment. Next, we outline articles that use 2D materials and ultrathin dielectric layers as decoupling layers. While on the one hand, molecular functionalization is a powerful approach to tune the electronic and optical properties of 2D materials, in particular for many practical
  • surfaces. Over the last decade, significant progress in this field led to a manifold of decoupling strategies for single molecules and surface-supported molecular architectures. Decoupling strategies are highly relevant to preserve the intrinsic structural, electronic, and optical properties of the
PDF
Editorial
Published 23 Aug 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • maintaining high yield and monodispersity. Initially, gold nanorods were synthesized using electrochemical methods using polycarbonate membrane templates or porous alumina for shape control in the presence of surfactants (mostly CTAB) [34][35]. Because of their optical properties, gold nanorods became
  • in biomedical research is gaining attention due to their plasmonic/optical properties. However, in vitro cytotoxicity assessment of these nanomaterials is a prerequisite for further in vivo validation and subsequent clinical trials. The physicochemical properties of a nanoparticle such as size, shape
PDF
Album
Review
Published 18 Aug 2021
Other Beilstein-Institut Open Science Activities