Search results

Search for "particle size distribution" in Full Text gives 144 result(s) in Beilstein Journal of Nanotechnology.

Nanocasting synthesis of BiFeO3 nanoparticles with enhanced visible-light photocatalytic activity

  • Thomas Cadenbach,
  • Maria J. Benitez,
  • A. Lucia Morales,
  • Cesar Costa Vera,
  • Luis Lascano,
  • Francisco Quiroz,
  • Alexis Debut and
  • Karla Vizuete

Beilstein J. Nanotechnol. 2020, 11, 1822–1833, doi:10.3762/bjnano.11.164

Graphical Abstract
  • very narrow particle size distribution. The results also suggest that the nanoparticles are characterized by a low concentration of surface defects and a low level of local strain, which is ideal for surface-based applications such as photocatalysis. This is confirmed by the reaction kinetics of the
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2020

Self-standing heterostructured NiCx-NiFe-NC/biochar as a highly efficient cathode for lithium–oxygen batteries

  • Shengyu Jing,
  • Xu Gong,
  • Shan Ji,
  • Linhui Jia,
  • Bruno G. Pollet,
  • Sheng Yan and
  • Huagen Liang

Beilstein J. Nanotechnol. 2020, 11, 1809–1821, doi:10.3762/bjnano.11.163

Graphical Abstract
  •  2a shows that the Prussian blue analogues formed on the surface of PP have a well-defined cubic shape with an uniform particle size distribution. The particle size was approx. 80 nm. These cubic particles were made out of many small particles and many cavities were observed on the surface. SEM images
PDF
Album
Full Research Paper
Published 02 Dec 2020

Cardiomyocyte uptake mechanism of a hydroxyapatite nanoparticle mediated gene delivery system

  • Hiroaki Komuro,
  • Masahiro Yamazoe,
  • Kosuke Nozaki,
  • Akiko Nagai and
  • Tetsuo Sasano

Beilstein J. Nanotechnol. 2020, 11, 1685–1692, doi:10.3762/bjnano.11.150

Graphical Abstract
  • of 75 kV. The particle size distribution of the HAp nanoparticles was measured via NTA (NanoSight NS10, Malvern). Cell culture HL-1 is a cell line derived from mouse atrial myocytes, which was originally isolated and characterized by Dr. Claycomb (University of Louisiana) [39]. HL-1 cells (murine
PDF
Album
Full Research Paper
Published 05 Nov 2020

High-responsivity hybrid α-Ag2S/Si photodetector prepared by pulsed laser ablation in liquid

  • Raid A. Ismail,
  • Hanan A. Rawdhan and
  • Duha S. Ahmed

Beilstein J. Nanotechnol. 2020, 11, 1596–1607, doi:10.3762/bjnano.11.142

Graphical Abstract
  • surfactant, monodispersed Ag2S nanoparticles can be obtained with an average size of 45 nm with few agglomerated NPs. Figure 9 shows the particle size distribution of Ag2S synthesized without and with CTAB. The particle size of Ag2S NPs ranged from 10 to 70 nm with an average of 55 nm, while the particle
  • distribution of Ag2S NPs prepared with CTAB ranged from 5 to 60 nm with an average of 45 nm. The particle size distribution of Ag2S prepared with CTAB is nearly Gaussian. The particle size distribution improved after adding CTAB, which plays a major role in preventing particle agglomeration [38]. The energy
  • Ag2S NPs synthesized in pure Tu solution (a) and Tu with CTAB surfactant solution (b). Particle size distribution of Ag2S NPs synthesized (a) without and (b) with CTAB. EDX of Ag2S NPs synthesized in (a) pure Tu and in (b) Tu with CTAB. The inset shows the measured elements. Dark I–V characteristics of
PDF
Album
Full Research Paper
Published 21 Oct 2020

Wafer-level integration of self-aligned high aspect ratio silicon 3D structures using the MACE method with Au, Pd, Pt, Cu, and Ir

  • Mathias Franz,
  • Romy Junghans,
  • Paul Schmitt,
  • Adriana Szeghalmi and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2020, 11, 1439–1449, doi:10.3762/bjnano.11.128

Graphical Abstract
  • broad particle size distribution. The surface is covered by more than 44%, which means 876 particles/μm2. The Pt particles mainly have a diameter below 10 nm with 495 particles/μm2. The total surface coverage did not exceed 1.0%. This result implies that the Pt film was significantly thinner than the
  • , we were able to cover the whole wafer surface homogeneously with nanoparticles. The particle size distribution can easily be modified by varying film thickness and annealing conditions or, correspondingly, the number of ALD cycles for the Ir particles. Silicon etching The wafers with noble metal
  • distributed walls with trenches of various sizes. This structure comprises nanopores of a few nanometres in diameter. The observed diameter distribution of the vertical trenches corresponds to the particle size distribution of Figure 1f. This indicates that all particles contribute to the etching process
PDF
Album
Full Research Paper
Published 23 Sep 2020

One-step synthesis of carbon-supported electrocatalysts

  • Sebastian Tigges,
  • Nicolas Wöhrl,
  • Ivan Radev,
  • Ulrich Hagemann,
  • Markus Heidelmann,
  • Thai Binh Nguyen,
  • Stanislav Gorelkov,
  • Stephan Schulz and
  • Axel Lorke

Beilstein J. Nanotechnol. 2020, 11, 1419–1431, doi:10.3762/bjnano.11.126

Graphical Abstract
  • platinum loading, degree of oxidation, and the very narrow particle size distribution are precisely adjusted in the Pt/C hybrid material due to the simultaneous deposition of platinum and carbon during the process. The as-synthesized Pt/C hybrid materials are promising electrocatalysts for use in fuel cell
  • , and Pt-NPs with a mean particle diameter less than 3 nm and a narrow particle size distribution (PSD) with a geometric standard deviation of 1.24–1.3 can be achieved. Furthermore, the NP immobilization within the carbon support significantly improves the long-term stability of the catalyst, as shown
  • for the deposition of Pt/CNW hybrid materials using plasma-enhanced chemical vapor deposition is presented. The wall density and height of the carbon matrix, as well as the platinum loading, degree of oxidation, and particle size distribution, can be precisely controlled by careful adjustment of the
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2020

Nanoparticles based on the zwitterionic pillar[5]arene and Ag+: synthesis, self-assembly and cytotoxicity in the human lung cancer cell line A549

  • Dmitriy N. Shurpik,
  • Denis A. Sevastyanov,
  • Pavel V. Zelenikhin,
  • Pavel L. Padnya,
  • Vladimir G. Evtugyn,
  • Yuriy N. Osin and
  • Ivan I. Stoikov

Beilstein J. Nanotechnol. 2020, 11, 421–431, doi:10.3762/bjnano.11.33

Graphical Abstract
  • out after mixing the solutions at 293 K. Dynamic light scattering (DLS) The particle size distribution formed as a result of self-association of the pillar[5]arenes 2–4 was determined at 20 °С by dynamic light scattering using a nanoparticle size analyzer (Zetasizer Nano ZS, Malvern) in quartz
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2020

Facile biogenic fabrication of hydroxyapatite nanorods using cuttlefish bone and their bactericidal and biocompatibility study

  • Satheeshkumar Balu,
  • Manisha Vidyavathy Sundaradoss,
  • Swetha Andra and
  • Jaison Jeevanandam

Beilstein J. Nanotechnol. 2020, 11, 285–295, doi:10.3762/bjnano.11.21

Graphical Abstract
  • grid and allowed to stick. The size and morphology of the synthesized nanohydroxyapatite was observed. The average particle size distribution of CB-Hap NRs was plotted using ImageJ software. The elemental composition analysis via energy dispersive X-ray analysis (EDX) was also performed to confirm the
PDF
Album
Full Research Paper
Published 04 Feb 2020

The different ways to chitosan/hyaluronic acid nanoparticles: templated vs direct complexation. Influence of particle preparation on morphology, cell uptake and silencing efficiency

  • Arianna Gennari,
  • Julio M. Rios de la Rosa,
  • Erwin Hohn,
  • Maria Pelliccia,
  • Enrique Lallana,
  • Roberto Donno,
  • Annalisa Tirella and
  • Nicola Tirelli

Beilstein J. Nanotechnol. 2019, 10, 2594–2608, doi:10.3762/bjnano.10.250

Graphical Abstract
  • particles marginally larger than Chit35, and the width of the particle size distribution – as assessed with DLS as a stand-alone instrument – was also similar (Figure 1, compare dashed and solid lines). Further, both methods allowed for quantitative siRNA entrapment, and the encapsulation did not
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2019

Formation of metal/semiconductor Cu–Si composite nanostructures

  • Natalya V. Yumozhapova,
  • Andrey V. Nomoev,
  • Vyacheslav V. Syzrantsev and
  • Erzhena C. Khartaeva

Beilstein J. Nanotechnol. 2019, 10, 2497–2504, doi:10.3762/bjnano.10.240

Graphical Abstract
  • particle size distribution of 500 nanoparticles of each certain type. The average size of the core–shell particle does not exceed 100 nm, as observed from transmission electron microscopy images (Figure 6, Figure 7a). The results of the elemental mapping of nanoparticles (Figure 7b) shows that copper and
PDF
Album
Full Research Paper
Published 13 Dec 2019

Mannosylated brush copolymers based on poly(ethylene glycol) and poly(ε-caprolactone) as multivalent lectin-binding nanomaterials

  • Stefania Ordanini,
  • Wanda Celentano,
  • Anna Bernardi and
  • Francesco Cellesi

Beilstein J. Nanotechnol. 2019, 10, 2192–2206, doi:10.3762/bjnano.10.212

Graphical Abstract
  • size distribution by scattering intensity (%) was determined by the CONTIN algorithm, as provided by the Zetasizer software (Malvern, UK). Particle size distribution by volume (%) was calculated from the scattering intensity distributions by the Zetasizer software, by setting the refractive index of
  • : -CH2CH2CH2-), 1.25–0.77 (m, 3H·(y + x), -CH3,backbone). Particle size measurements by DLS DLS analyses of polymers (1 mg/mL, filtered solutions with PTFE 0.45 µm filters) were performed using a Malvern Instrument Zetasizer Nano ZS instrument equipped with a 4 mW He–Ne laser operating at λ = 634 nm. Particle
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2019

Synthesis of highly active ETS-10-based titanosilicate for heterogeneously catalyzed transesterification of triglycerides

  • Muhammad A. Zaheer,
  • David Poppitz,
  • Khavar Feyzullayeva,
  • Marianne Wenzel,
  • Jörg Matysik,
  • Radomir Ljupkovic,
  • Aleksandra Zarubica,
  • Alexander A. Karavaev,
  • Andreas Pöppl,
  • Roger Gläser and
  • Muslim Dvoyashkin

Beilstein J. Nanotechnol. 2019, 10, 2039–2061, doi:10.3762/bjnano.10.200

Graphical Abstract
  • min, but more pronounced for longer treatment times (Figure 8). Despite these defects, the particle size distribution probed by laser diffraction revealed minor changes suggesting that treatment neither leads to dissolution of smaller particles, nor to detectable fractioning of the larger ones (Figure
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2019

Gold-coated plant virus as computed tomography imaging contrast agent

  • Alaa A. A. Aljabali,
  • Mazhar S. Al Zoubi,
  • Khalid M. Al-Batanyeh,
  • Ali Al-Radaideh,
  • Mohammad A. Obeid,
  • Abeer Al Sharabi,
  • Walhan Alshaer,
  • Bayan AbuFares,
  • Tasnim Al-Zanati,
  • Murtaza M. Tambuwala,
  • Naveed Akbar and
  • David J. Evans

Beilstein J. Nanotechnol. 2019, 10, 1983–1993, doi:10.3762/bjnano.10.195

Graphical Abstract
  • . The particle size distribution obtained from NTA analysis (Figure 2A) showed a peaks of 51 ± 2 nm, 71 ± 3 nm and 100 ± 5 nm, respectively, with over 90% of the particles being within the measured size thus confirming the narrow size distribution. CPMV (uncoated particles) have an average diameter of
  • DLS measurements were carried out per sample after 2 min waiting time to allow the solutions to be at rest. The hydrodynamic radius (intensity particle size distribution was used for all measurements) was calculated by the instrument from the translational diffusion coefficient using the Stokes
PDF
Album
Full Research Paper
Published 07 Oct 2019

Magnetic properties of biofunctionalized iron oxide nanoparticles as magnetic resonance imaging contrast agents

  • Natalia E. Gervits,
  • Andrey A. Gippius,
  • Alexey V. Tkachev,
  • Evgeniy I. Demikhov,
  • Sergey S. Starchikov,
  • Igor S. Lyubutin,
  • Alexander L. Vasiliev,
  • Vladimir P. Chekhonin,
  • Maxim A. Abakumov,
  • Alevtina S. Semkina and
  • Alexander G. Mazhuga

Beilstein J. Nanotechnol. 2019, 10, 1964–1972, doi:10.3762/bjnano.10.193

Graphical Abstract
  • within the coherent X-ray scattering region, and the size can be slightly different from the values obtained by transmission electron microscopy (TEM). The TEM images of the nanoparticles are presented in Figure 2. The particle size distribution estimated from the high-resolution TEM (HRTEM) images is
  • was used in our ZF-NMR experiment. XRD patterns of coated and uncoated magnetic nanoparticles. HRTEM images of uncoated (a) and HSA-functionalized samples (b). The particle size distribution estimated from the HRTEM images in Figure 2. Raman spectrum of uncoated nanoparticles. Fitting of the peaks in
PDF
Album
Full Research Paper
Published 02 Oct 2019

Synthesis of nickel/gallium nanoalloys using a dual-source approach in 1-alkyl-3-methylimidazole ionic liquids

  • Ilka Simon,
  • Julius Hornung,
  • Juri Barthel,
  • Jörg Thomas,
  • Maik Finze,
  • Roland A. Fischer and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2019, 10, 1754–1767, doi:10.3762/bjnano.10.171

Graphical Abstract
  • images of Ni/Ga nanoparticles from a 0.5 wt % dispersion of Ni(COD)2 and GaCp* in [BMIm][NTf2] after 24 h of dispersion and 10 min of microwave-induced decomposition. Bottom: EDX spectrum and particle size distribution 3 ± 0.5 nm (87 particles counted). HRTEM images: a) Ni/Ga nanoparticles from a 1 wt
  • % dispersion of Ni(COD)2 and GaCp* in [BMIm][BF4] after 24 h of dispersion and 10 min of microwave-induced decomposition. For details of the particle size distribution (2.5 ± 0.5 nm), see Supporting Information File 1, Figure S2. b) Ni/Ga nanoparticles from 0.5 wt % dispersion of Ni(COD)2 and GaCp* in [BMIm
  • ][BF4] after 24 h of dispersion and 20 min of microwave-induced decomposition. For details of the particle size distribution (2.5 ± 0.5 nm), see Supporting Information File 1, Figure S3. c) Ni/Ga nanoparticles from 0.5 wt % dispersion of Ni(COD)2 and GaCp* in propylene carbonate after 24 h of dispersion
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2019

Doxorubicin-loaded human serum albumin nanoparticles overcome transporter-mediated drug resistance in drug-adapted cancer cells

  • Hannah Onafuye,
  • Sebastian Pieper,
  • Dennis Mulac,
  • Jindrich Cinatl Jr.,
  • Mark N. Wass,
  • Klaus Langer and
  • Martin Michaelis

Beilstein J. Nanotechnol. 2019, 10, 1707–1715, doi:10.3762/bjnano.10.166

Graphical Abstract
  • amount detected in the collected supernatants. Determination of particle size distribution The average particle size and the polydispersity were measured by photon correlation spectroscopy (PCS) using a Malvern zetasizer nano instrument (Malvern Instruments, Herrenberg, Germany). The resulting particle
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2019

Hierarchically structured 3D carbon nanotube electrodes for electrocatalytic applications

  • Pei Wang,
  • Katarzyna Kulp and
  • Michael Bron

Beilstein J. Nanotechnol. 2019, 10, 1475–1487, doi:10.3762/bjnano.10.146

Graphical Abstract
  • secondary CNTs onto primary CNTs. (a) SEM image and (b) particle size distribution of Fe nanoparticles electrochemically deposited onto GC. SEM images of CNTs deposited onto GC by CVD at 750 °C using cyclohexane and a gas flow rate of 1.7 L h−1 for 120 min with an H2/Ar ratio of 1.8 (1.1 L h−1/0.6 L h−1
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Energy distribution in an ensemble of nanoparticles and its consequences

  • Dieter Vollath

Beilstein J. Nanotechnol. 2019, 10, 1452–1457, doi:10.3762/bjnano.10.143

Graphical Abstract
  • temperature profile of a phase transformation, it is possible to calculate the particle size distribution of the ensemble with a precision within the scattering range of the experimental data. This is the most important application of this analysis and coincidently a proof of the basic premise. The basic
  • : energy distribution; isothermal ensemble; nanoparticle ensemble; normal distribution; particle size distribution; temperature distribution; Introduction General theoretical considerations about ensembles of nanoparticles assume that the ensemble is isothermal. To connect these theoretical considerations
  • particle size dependent, the determination of the particle size distribution is inherently possible from the experimentally found temperature dependence of a phase transformation. Results and Discussion Mathematical model Maxwell and Boltzmann assumed a normal distribution of the velocity for gas atoms
PDF
Album
Full Research Paper
Published 19 Jul 2019

The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles

  • Hajar Jalili,
  • Bagher Aslibeiki,
  • Ali Ghotbi Varzaneh and
  • Volodymyr A. Chernenko

Beilstein J. Nanotechnol. 2019, 10, 1348–1359, doi:10.3762/bjnano.10.133

Graphical Abstract
  • order to determine the particle size distribution and morphology of the samples, field-emission scanning electron microscopy (FE-SEM) was carried out. Figure 3 shows FE-SEM images of all the samples. The images reveal that particles are in the nanometer range and roughly spherical in shape. The
  • ) x = 0.4; (d) x = 0.6; (e) x = 0.8 and (f) x = 1.0. Insets show the particle size distribution fitted with a log-normal function (solid line). EDX spectra of CoxFe3−xO4 nanoparticles: (a) x = 0.2; (b) x = 0.6; and (c) x = 1.0. (d) Comparison of the Co/Fe atomic ratio obtained from EDX analysis and
PDF
Album
Full Research Paper
Published 03 Jul 2019

On the relaxation time of interacting superparamagnetic nanoparticles and implications for magnetic fluid hyperthermia

  • Andrei Kuncser,
  • Nicusor Iacob and
  • Victor E. Kuncser

Beilstein J. Nanotechnol. 2019, 10, 1280–1289, doi:10.3762/bjnano.10.127

Graphical Abstract
  • to available approaches for describing the more complex cases related to particle size distribution and different concentrations. The influence of the dipolar interactions on the frequency-dependent magnetic susceptibility has been more recently extensively studied by Ivanov et al. [24][25]. For
PDF
Album
Full Research Paper
Published 24 Jun 2019

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  • Eduardo Ruiz-Hitzky,
  • Pilar Aranda,
  • Marwa Akkari,
  • Nithima Khaorapapong and
  • Makoto Ogawa

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

Graphical Abstract
  • presence of smectites as a result of the re-stacking of the exfoliated nanosheets has been reported [84]. Due to the variety of hierarchical structures and particle locations (at the external surface or in the interlayer space), the resulting particle size distribution of ZnO NPs can be very wide
PDF
Album
Review
Published 31 May 2019

Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles

  • Małgorzata Świętek,
  • Yi-Chin Lu,
  • Rafał Konefał,
  • Liliana P. Ferreira,
  • M. Margarida Cruz,
  • Yunn-Hwa Ma and
  • Daniel Horák

Beilstein J. Nanotechnol. 2019, 10, 1073–1088, doi:10.3762/bjnano.10.108

Graphical Abstract
  • proportional to the sixth power of size and, in contrast to Dn, is more sensitive to the presence of large objects. The polydispersity of γ-Fe2O3 (PD = 0.33), which characterizes the width of the particle size distribution, was relatively high, indicating the presence of particle agglomerates (doublets
PDF
Album
Full Research Paper
Published 20 May 2019

Structural and optical properties of penicillamine-protected gold nanocluster fractions separated by sequential size-selective fractionation

  • Xiupei Yang,
  • Zhengli Yang,
  • Fenglin Tang,
  • Jing Xu,
  • Maoxue Zhang and
  • Martin M. F. Choi

Beilstein J. Nanotechnol. 2019, 10, 955–966, doi:10.3762/bjnano.10.96

Graphical Abstract
  • exhibits a very broad particle size distribution, ranging from 0.5 to 5.4 nm, with an average core diameter of 2.1 ± 1.1 nm. Since the AuNC product is very polydisperse, the SSSP technique was employed to isolate the AuNC fractions with narrower size distribution from the AuNC product. The size-selective
PDF
Album
Full Research Paper
Published 25 Apr 2019

The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model

  • Qura Tul Ain,
  • Samina Hyder Haq,
  • Abeer Alshammari,
  • Moudhi Abdullah Al-Mutlaq and
  • Muhammad Naeem Anjum

Beilstein J. Nanotechnol. 2019, 10, 901–911, doi:10.3762/bjnano.10.91

Graphical Abstract
  • (JEOL JEM-1400 Plus) was used to examine the morphology of GO, nGO, and PEG-nGO. The average particle size distribution of nGO and PEG-nGO were analyzed by dynamic light scattering (Malvern Panalytical ZS90). In vivo treatment Female albino mice were kept at the facility of King Saud University Research
  • peaks in the fingerprint region demonstrate the successful PEGylation of nGO. UV–vis spectra of nGO and PEG-nGO. The red-shift of the UV peak confirmed the nGO loading with PEG. TEM images of (a,b) graphene oxide, (c,d) nano-graphene oxide, and (e,f) PEGylated nano-graphene oxide. Particle size
  • distribution curves for nGO and PEG-nGO. Levels of lipid peroxides after intraperitoneal administration of PEG-nGO; error bars: one standard deviation. Catalase antioxidant enzyme activity after intraperitoneal administration of PEG-nGO, error bars: one standard deviation. Superoxide dismutase activity after
PDF
Album
Full Research Paper
Published 18 Apr 2019

Co-doped MnFe2O4 nanoparticles: magnetic anisotropy and interparticle interactions

  • Bagher Aslibeiki,
  • Parviz Kameli,
  • Hadi Salamati,
  • Giorgio Concas,
  • Maria Salvador Fernandez,
  • Alessandro Talone,
  • Giuseppe Muscas and
  • Davide Peddis

Beilstein J. Nanotechnol. 2019, 10, 856–865, doi:10.3762/bjnano.10.86

Graphical Abstract
  • implemented for large-scale nanoparticle applications, such as for permanent magnets and biomedical applications. Given their good particle size distribution (≈10 nm diameter) and almost the same saturation magnetization per particle, these samples represent a good model system to study the systematic effect
  • respective particle size distribution fitted with a Gaussian distribution (solid line). (a) Comparison of ZFC curve during cooling (blue circles) and subsequent warming up (red circles). The difference, ΔM, is reported in (b) as a function of temperature. Mössbauer spectra recorded at 300 K for all samples
PDF
Album
Supp Info
Full Research Paper
Published 12 Apr 2019
Other Beilstein-Institut Open Science Activities