Search results

Search for "piezoelectric" in Full Text gives 135 result(s) in Beilstein Journal of Nanotechnology.

Low cost tips for tip-enhanced Raman spectroscopy fabricated by two-step electrochemical etching of 125 µm diameter gold wires

  • Antonino Foti,
  • Francesco Barreca,
  • Enza Fazio,
  • Cristiano D’Andrea,
  • Paolo Matteini,
  • Onofrio Maria Maragò and
  • Pietro Giuseppe Gucciardi

Beilstein J. Nanotechnol. 2018, 9, 2718–2729, doi:10.3762/bjnano.9.254

Graphical Abstract
  • featuring 1200 gr/mm and sent to a Peltier cooled CCD camera (Syncerity, Horiba Jobin Yvon). The laser spot is positioned on the tip apex with the aid of a piezoelectric x–y–z table that scans the objective position. The x–y scan plane is orthogonal to the optical axis (z) of the objective. Results and
  • spot on the tip apex, maximizing the overall TERS signal. Measurements were carried out by scanning the laser spot with a piezoelectric stage attached to the objective (Figure 6a). Two maps are acquired: one to localize the tip apex position (Figure 6b) in which we scan the laser spot in the () plane
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2018

High-throughput micro-nanostructuring by microdroplet inkjet printing

  • Hendrikje R. Neumann and
  • Christine Selhuber-Unkel

Beilstein J. Nanotechnol. 2018, 9, 2372–2380, doi:10.3762/bjnano.9.222

Graphical Abstract
  • using a mixture of hydrogen and argon gas (10% hydrogen, 90% argon) in a plasma etcher (TePla 100 plasma system, PVA, Germany) at 0.4 mbar and 300 W for 1 h. Inkjet printing A piezoelectric, laboratory scale inkjet printer (Dimatix Materials Printer DMP-2850) was used to generate micropatterns of the
PDF
Album
Full Research Paper
Published 04 Sep 2018

Metal–dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode

  • Valerio F. Gili,
  • Lavinia Ghirardini,
  • Davide Rocco,
  • Giuseppe Marino,
  • Ivan Favero,
  • Iännis Roland,
  • Giovanni Pellegrini,
  • Lamberto Duò,
  • Marco Finazzi,
  • Luca Carletti,
  • Andrea Locatelli,
  • Aristide Lemaître,
  • Dragomir Neshev,
  • Costantino De Angelis,
  • Giuseppe Leo and
  • Michele Celebrano

Beilstein J. Nanotechnol. 2018, 9, 2306–2314, doi:10.3762/bjnano.9.215

Graphical Abstract
  • components. SH maps of the antennas are obtained by raster scanning the sample with a piezoelectric stage, and by recording the signal with a single-photon detector. Once a desired structure has been selected, instead, it is possible to image its SH radiation pattern in the Fourier space on a cooled-CCD
PDF
Album
Full Research Paper
Published 27 Aug 2018

Dumbbell gold nanoparticle dimer antennas with advanced optical properties

  • Janning F. Herrmann and
  • Christiane Höppener

Beilstein J. Nanotechnol. 2018, 9, 2188–2197, doi:10.3762/bjnano.9.205

Graphical Abstract
  • advantage of AFM manipulation methods, CB[n] is ideally suited to mediate sub-nanometer gap formation. For this, a sharply pointed glass tip is glued to a piezoelectric quartz tuning fork (Figure 1C), which enables to control the tip position with respect to AuNPs deposited on a glass surface with sub
  • sample through the laser focus using a piezoelectric scanner (Nano-H, Mad City Labs, USA). For each image pixel the emitted fluorescence signal is integrated for 5–10 ms. For the antenna-enhanced fluorescence emission, the antenna is precisely aligned in the laser focus and the antenna–sample distance is
  • formed of spherical AuNPs attached to a sharply pointed glass tip. Inset: Magnification to the gap region showing the aligned CB[n]s on the NP surfaces, which results in a sub-nanometer gap distance. (C) Macroscale picture of a glass tip attached to a piezoelectric quartz tuning fork acting as a force
PDF
Album
Full Research Paper
Published 17 Aug 2018

Filling nanopipettes with apertures smaller than 50 nm: dynamic microdistillation

  • Evelyne Salançon and
  • Bernard Tinland

Beilstein J. Nanotechnol. 2018, 9, 2181–2187, doi:10.3762/bjnano.9.204

Graphical Abstract
  • stabilized generator (V = 3 V, I = 3.5 A). The nanopipette can be moved with a piezoelectric (x, y, z) manipulator and is loaded with water up to its millimeter-to-micrometer region using a micro-syringe. The loop of the filament is placed under an optical microscope. Images 1 to 5 illustrate the process. (1
PDF
Album
Full Research Paper
Published 16 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Nonlinear effect of carrier drift on the performance of an n-type ZnO nanowire nanogenerator by coupling piezoelectric effect and semiconduction

  • Yuxing Liang,
  • Shuaiqi Fan,
  • Xuedong Chen and
  • Yuantai Hu

Beilstein J. Nanotechnol. 2018, 9, 1917–1925, doi:10.3762/bjnano.9.183

Graphical Abstract
  • University of Science and Technology, Wuhan 430074, China 10.3762/bjnano.9.183 Abstract In piezoelectric semiconductors, electric fields drive carriers into motion/redistribution, and in turn the carrier motion/redistribution has an opposite effect on the electric field itself. Thus, carrier drift in a
  • piezoelectric semiconducting structure is essentially nonlinear unless the induced fluctuation of carrier concentration is very small. In this paper, the nonlinear governing equation of carrier concentration was established by coupling both piezoelectric effect and semiconduction. A nonlinear carrier-drift
  • charge grows with increasing deformation, but the peaks of boundary electric charge do not appear at the cross-section endpoints. Thus, in order to effectively improve the performance of the ZNW nanogenerator, the effect of electrode configuration on the piezoelectric potential difference and output
PDF
Album
Full Research Paper
Published 04 Jul 2018

Synthesis of rare-earth metal and rare-earth metal-fluoride nanoparticles in ionic liquids and propylene carbonate

  • Marvin Siebels,
  • Lukas Mai,
  • Laura Schmolke,
  • Kai Schütte,
  • Juri Barthel,
  • Junpei Yue,
  • Jörg Thomas,
  • Bernd M. Smarsly,
  • Anjana Devi,
  • Roland A. Fischer and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2018, 9, 1881–1894, doi:10.3762/bjnano.9.180

Graphical Abstract
  • important representative of this category are AREF4 compounds (A = alkali metal), with unique optical, magnetic and piezoelectric properties [7]. They are applied in solid-state lasers, three-dimensional flat-panel displays, and low-intensity IR imaging [8]. Syntheses of these AREF4-type compounds are based
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2018

Electronic conduction during the formation stages of a single-molecule junction

  • Atindra Nath Pal,
  • Tal Klein,
  • Ayelet Vilan and
  • Oren Tal

Beilstein J. Nanotechnol. 2018, 9, 1471–1477, doi:10.3762/bjnano.9.138

Graphical Abstract
  • piezoelectric element. As a result, the two sides of the notch are pulled apart and the cross section of the notch is gradually reduced until a single-atom junction is formed between the wire segments [7]. Further bending leads to breaking of the wire and the formation of two freshly exposed electrode apexes in
PDF
Album
Full Research Paper
Published 17 May 2018

Electrostatically actuated encased cantilevers

  • Benoit X. E. Desbiolles,
  • Gabriela Furlan,
  • Adam M. Schwartzberg,
  • Paul D. Ashby and
  • Dominik Ziegler

Beilstein J. Nanotechnol. 2018, 9, 1381–1389, doi:10.3762/bjnano.9.130

Graphical Abstract
  • peaks include adding damping elements [5][6] or using alternative excitation methods such as resistive thermal [7][8], piezoelectric [9], electrostriction [10], or quartz-crystal tuning forks [11][12] that all solely excite the cantilever without inducing motion of the entire chip or the surrounding
PDF
Album
Full Research Paper
Published 08 May 2018

Field-controlled ultrafast magnetization dynamics in two-dimensional nanoscale ferromagnetic antidot arrays

  • Anulekha De,
  • Sucheta Mondal,
  • Sourav Sahoo,
  • Saswati Barman,
  • Yoshichika Otani,
  • Rajib Kumar Mitra and
  • Anjan Barman

Beilstein J. Nanotechnol. 2018, 9, 1123–1134, doi:10.3762/bjnano.9.104

Graphical Abstract
  • detector as a function of the time delay between the pump and probe beams. The pump and probe beams are spatially overlapped and focused together on the antidot lattice in a collinear fashion by using a single microscope objective (N.A. = 0.65). The sample is scanned by an x–y–z piezoelectric scanning
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2018

Room-temperature single-photon emitters in titanium dioxide optical defects

  • Kelvin Chung,
  • Yu H. Leung,
  • Chap H. To,
  • Aleksandra B. Djurišić and
  • Snjezana Tomljenovic-Hanic

Beilstein J. Nanotechnol. 2018, 9, 1085–1094, doi:10.3762/bjnano.9.100

Graphical Abstract
  • plane of the substrate). The sample is mounted on a piezoelectric controlled stage with 100 μm travel. The fluorescent light is recollected through O and passes through a 560 nm long-pass filter (LP) to filter out the excitation laser. A converging lens (FL) focusses the fluorescent light into an
PDF
Album
Full Research Paper
Published 04 Apr 2018

Combined pulsed laser deposition and non-contact atomic force microscopy system for studies of insulator metal oxide thin films

  • Daiki Katsube,
  • Hayato Yamashita,
  • Satoshi Abo and
  • Masayuki Abe

Beilstein J. Nanotechnol. 2018, 9, 686–692, doi:10.3762/bjnano.9.63

Graphical Abstract
  • and/or STM measurements and, thus, better observations. The PLD chamber the side of which is fitted with an CF203 port includes a PLD target, a shutter, a sample stocker, and a RHEED apparatus. A small size commercial PLD target system (UNISOKU) is installed in the PLD chamber. Piezoelectric motors
PDF
Album
Full Research Paper
Published 21 Feb 2018

Lyapunov estimation for high-speed demodulation in multifrequency atomic force microscopy

  • David M. Harcombe,
  • Michael G. Ruppert,
  • Michael R. P. Ragazzon and
  • Andrew J. Fleming

Beilstein J. Nanotechnol. 2018, 9, 490–498, doi:10.3762/bjnano.9.47

Graphical Abstract
  • frequency and higher eigenmodes can be seen in the cantilever frequency response. As before, the deflection signal contains additional higher harmonics and intermodulation products due to the non-linear atomic excitation. Note that the DMASP cantilever uses integrated piezoelectric actuation [31], which
PDF
Album
Full Research Paper
Published 08 Feb 2018

Engineering of oriented carbon nanotubes in composite materials

  • Razieh Beigmoradi,
  • Abdolreza Samimi and
  • Davod Mohebbi-Kalhori

Beilstein J. Nanotechnol. 2018, 9, 415–435, doi:10.3762/bjnano.9.41

Graphical Abstract
  • are produced by applying a suitable electric field to a piezoelectric material such as LiNbO3. One set of metallic interdigital transducers (IDTs) intercalated on the piezoelectric surface introduces the electric field, generating a SAW displacement amplitude on the order of 10 Å. A solution of CNTs
PDF
Album
Review
Published 05 Feb 2018

Periodic structures on liquid-phase smectic A, nematic and isotropic free surfaces

  • Anna N. Bagdinova,
  • Evgeny I. Demikhov,
  • Nataliya G. Borisenko,
  • Sergei M. Tolokonnikov,
  • Gennadii V. Mishakov and
  • Andrei V. Sharkov

Beilstein J. Nanotechnol. 2018, 9, 342–352, doi:10.3762/bjnano.9.34

Graphical Abstract
  • interference of the two wavefronts is an image of light and dark fringes that indicate the presence of the surface structure. The sample beam scans in vertical movements of the objective with a piezoelectric transducer (PZT). Intensities of each camera pixel are recorded with a video camera and converted to
  • tip is in direct contact with the surface but is not immersed in the LC surface. Generally, the distance between the tip and the surface can be changed in the interval of 0–20 nm using a piezoelectric shifter. For optical microscopy, we used a versatile polarized optical microscope (HUVITZ HRV-300
PDF
Album
Full Research Paper
Published 30 Jan 2018

Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

  • Liga Jasulaneca,
  • Jelena Kosmaca,
  • Raimonds Meija,
  • Jana Andzane and
  • Donats Erts

Beilstein J. Nanotechnol. 2018, 9, 271–300, doi:10.3762/bjnano.9.29

Graphical Abstract
  • commercial applications. Actuation of NEM switches includes a variety of methods, for example, electrostatic [7][12], thermal [64], piezoelectric [65], resonant [66] and free-floating [67] switching. Electrostatic actuation is one of the most widespread and actively studied actuation modes. It is a promising
  • thermal [64] or piezoelectric [65] actuation methods. Main architectures and basic operational principles of electrostatically actuated nanobeam-based NEM switches In general, electrostatically actuated nanobeam-based NEM switches can be divided into two main groups: two-terminal (2T) switches, employing
PDF
Album
Review
Published 25 Jan 2018

A robust AFM-based method for locally measuring the elasticity of samples

  • Alexandre Bubendorf,
  • Stefan Walheim,
  • Thomas Schimmel and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2018, 9, 1–10, doi:10.3762/bjnano.9.1

Graphical Abstract
  • -displacement curves of the piezoelectric scanner. The occurence of a plastic deformation followed by an elastic deformation is shown and explained. The necessary load FN for measuring in the elastic domain was assessed for each sample, used for mapping the frequency shifts Δf1 and Δf2 and for determining the
  • and frequency shifts Δf1, Δf2 were recorded for a displacement of the piezoelectric scanner in the normal Z-direction from 0 to 350 nm. To measure the curves, the cantilever tip first indented the sample to a depth corresponding to a displacement of the Z-scanner of 350 nm and both PLLs were then
  • [7] can be determined from the measurement of Δf1 and Δf2 as functions of the Z-displacement of the piezoelectric scanner. These curves were measured on four polymers, i.e., LLDPE, PP, PS, PTFE, and a Teflon-like fluorinated SAM. Analysis of these curves evidenced the existence of plastic and elastic
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2018

Exploring wear at the nanoscale with circular mode atomic force microscopy

  • Olivier Noel,
  • Aleksandar Vencl and
  • Pierre-Emmanuel Mazeran

Beilstein J. Nanotechnol. 2017, 8, 2662–2668, doi:10.3762/bjnano.8.266

Graphical Abstract
  • mode AFM, which generates high frequency, circular displacements of the contact. Under such conditions, the wear rate is significant and the drift of the piezoelectric actuator is limited. As a result, well-defined wear tracks are generated and an accurate computation of the wear volume is possible
  • conditions, producing a significant wear is long and fastidious due to the low sliding velocity. In addition, the typical AFM scanning velocity, in the µm/s range, does not allow well-defined wear tracks to be obtained as the piezoelectric actuator thermal drift continuously moves the sample under the probe
  • circular displacement of an AFM tip in contact with the plane of a given material (Figure 1B). The circular displacement is provided by way of injecting two sinusoidal voltage components in phase quadrature on the piezoelectric actuator of the AFM in both directions of the plan of the sample. With such a
PDF
Album
Full Research Paper
Published 11 Dec 2017

Nanoprofilometry study of focal conic domain structures in a liquid crystalline free surface

  • Anna N. Bagdinova,
  • Evgeny I. Demikhov,
  • Nataliya G. Borisenko and
  • Sergei M. Tolokonnikov

Beilstein J. Nanotechnol. 2017, 8, 2544–2551, doi:10.3762/bjnano.8.254

Graphical Abstract
  • . The result of the interference of the two wavefronts is an image of light and dark fringes that indicate surface structure. The test part is scanned by vertical movement of the objective with a piezoelectric transducer (PZT). The intensity in each camera pixel is fixed by video camera and converted to
PDF
Album
Full Research Paper
Published 29 Nov 2017

Hydrothermal synthesis of ZnO quantum dot/KNb3O8 nanosheet photocatalysts for reducing carbon dioxide to methanol

  • Xiao Shao,
  • Weiyue Xin and
  • Xiaohong Yin

Beilstein J. Nanotechnol. 2017, 8, 2264–2270, doi:10.3762/bjnano.8.226

Graphical Abstract
  • excellent nonlinear optical, piezoelectric, ferroelectric, ionic conductivity, selective-ion exchange and photocatalytic properties [6][7][8][9]. Zhang et al. prepared K4Nb6O17 with a sheet-like nanostructure by hydrothermal synthesis and found its photocatalytic activity for degrading acidic red G to be
PDF
Album
Full Research Paper
Published 30 Oct 2017

Magnetic properties of optimized cobalt nanospheres grown by focused electron beam induced deposition (FEBID) on cantilever tips

  • Soraya Sangiao,
  • César Magén,
  • Darius Mofakhami,
  • Grégoire de Loubens and
  • José María De Teresa

Beilstein J. Nanotechnol. 2017, 8, 2106–2115, doi:10.3762/bjnano.8.210

Graphical Abstract
  • standard laser deflection technique is used to monitor the displacement of the cantilever. Its resonance frequency is tracked using a piezoelectric bimorph and a feedback electronic circuit based on a phase lock loop. The relative frequency shift due to the force acting on the magnetic moment m of the
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2017

High-stress study of bioinspired multifunctional PEDOT:PSS/nanoclay nanocomposites using AFM, SEM and numerical simulation

  • Alfredo J. Diaz,
  • Hanaul Noh,
  • Tobias Meier and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 2069–2082, doi:10.3762/bjnano.8.207

Graphical Abstract
  • other of which demonstrated feasibility as an electrode [24]. The multifunctionality of the brick-and-mortar structure is an important advantage compared to other architectures, for electrically conductive nanocomposites. For example, a recently developed piezoelectric sensor exploited the PVDF/nanoclay
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2017

Functional materials for environmental sensors and energy systems

  • Michele Penza,
  • Anita Lloyd Spetz,
  • Albert Romano-Rodriguez and
  • Meyya Meyyappan

Beilstein J. Nanotechnol. 2017, 8, 2015–2016, doi:10.3762/bjnano.8.201

Graphical Abstract
  • sensing and energy applications, carbon-based materials for chemical sensing and energy applications, piezoelectric and thermoelectric materials for energy harvesting applications, new nanotechnology-based sensors for monitoring gaseous and liquid pollutants, surface-sensitive spectroscopy for studying
PDF
Editorial
Published 26 Sep 2017

Evaluation of preparation methods for suspended nano-objects on substrates for dimensional measurements by atomic force microscopy

  • Petra Fiala,
  • Daniel Göhler,
  • Benno Wessely,
  • Michael Stintz,
  • Giovanni Mattia Lazzerini and
  • Andrew Yacoot

Beilstein J. Nanotechnol. 2017, 8, 1774–1785, doi:10.3762/bjnano.8.179

Graphical Abstract
  • Inc., Orem, Utah, USA) were used for instrument calibration. AFM AFM measurements were performed with a traceable atomic force microscope that uses two integrated optical interferometry systems for detecting the deflection of the cantilever and for measuring the vertical motion of the piezoelectric
PDF
Album
Full Research Paper
Published 28 Aug 2017
Other Beilstein-Institut Open Science Activities