Search results

Search for "resistivity" in Full Text gives 222 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

In situ transport characterization of magnetic states in Nb/Co superconductor/ferromagnet heterostructures

  • Olena M. Kapran,
  • Roman Morari,
  • Taras Golod,
  • Evgenii A. Borodianskyi,
  • Vladimir Boian,
  • Andrei Prepelita,
  • Nikolay Klenov,
  • Anatoli S. Sidorenko and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2021, 12, 913–923, doi:10.3762/bjnano.12.68

Graphical Abstract
  • thinner S′ (6 nm) is smaller than that of the S1 ML with S′ (8 nm). Figure 1e shows Rxx(T) curves for a horizontal bridge at the S1 sample at four sequentially increasing magnetic field strengths (hard axis orientation) and Iac = 1 mA. It is seen that the onset of resistivity at T ≈ 7.3 K is affected by
  • -linear flux-flow Hall effect Resistivity in type-II superconductors with sizes larger than the London penetration depth, λ, is caused by motion of Abrikosov vortices, that is, it has a flux-flow (FF) nature [50][51][52][53]. Since our micrometer-size bridges are significantly larger than λ ≈ 100 nm of Nb
  • resistivity in our bridges, the observed unusual maximum in MR is likely caused by triggering of the FF phenomenon by domain stray fields, which change upon remagnetization of F-layers. The remarkable temperature variation of MR in Figure 2a–c is then primarily caused by the temperature variation of the
PDF
Album
Full Research Paper
Published 17 Aug 2021

9.1% efficient zinc oxide/silicon solar cells on a 50 μm thick Si absorber

  • Rafal Pietruszka,
  • Bartlomiej S. Witkowski,
  • Monika Ozga,
  • Katarzyna Gwozdz,
  • Ewa Placzek-Popko and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 766–774, doi:10.3762/bjnano.12.60

Graphical Abstract
  • was used as absorber of the solar spectrum. Carrier concentration, mobility, and resistivity were 4.3 × 1015 cm−3, 270 cm2·V−1·s−1, and 5.3 Ω·cm, respectively. The silicon wafer was cut into small square pieces, ca. 1.5 × 1.5 cm2 in size. Samples were cleaned in acetone, iso-propanol, and twice in
  • deposited as a low-resistivity ohmic contact via sputtering. To improve the contact parameters, the samples were annealed at 500 °C for 5 min in argon atmosphere via rapid thermal processing. Si/Al substrates were prepared in two different ways, A and B. On the surface of sample A, zinc oxide nanorods
PDF
Album
Full Research Paper
Published 21 Jul 2021

Prediction of Co and Ru nanocluster morphology on 2D MoS2 from interaction energies

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2021, 12, 704–724, doi:10.3762/bjnano.12.56

Graphical Abstract
  • -quality, conformal thin films with low resistivity, to avoid many of the typical failure mechanisms such as electromigration [42][43]. This means that 3D migration of atoms (agglomeration) should be inhibited, while 2D growth (wetting) should be promoted. In contrast, in catalysis applications the ratio
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • flake from semiconducting to insulating at a dose of ca. 1 × 1015 ions/cm2 [25]. The dose-versus-resistivity plot from this work is shown in Figure 2a. Upon increasing the dose to ca. 1 × 1017 ions/cm2, the material became amorphous, and the conductivity behavior changed to metallic. This was attributed
PDF
Album
Review
Published 02 Jul 2021

High-yield synthesis of silver nanowires for transparent conducting PET films

  • Gul Naz,
  • Hafsa Asghar,
  • Muhammad Ramzan,
  • Muhammad Arshad,
  • Rashid Ahmed,
  • Muhammad Bilal Tahir,
  • Bakhtiar Ul Haq,
  • Nadeem Baig and
  • Junaid Jalil

Beilstein J. Nanotechnol. 2021, 12, 624–632, doi:10.3762/bjnano.12.51

Graphical Abstract
  • represents the unit area of the film of 5 × 5 cm2. We measured the transmittance (T) at 576 nm and the sheet resistance (Rs) for all film samples prepared in this work. The sheet resistance (Rs) is commonly defined as the resistivity (ρ) of a sheet of material divided by its thickness (t): where V is the
PDF
Album
Full Research Paper
Published 01 Jul 2021

Nanomechanics of few-layer materials: do individual layers slide upon folding?

  • Ronaldo J. C. Batista,
  • Rafael F. Dias,
  • Ana P. M. Barboza,
  • Alan B. de Oliveira,
  • Taise M. Manhabosco,
  • Thiago R. Gomes-Silva,
  • Matheus J. S. Matos,
  • Andreij C. Gadelha,
  • Cassiano Rabelo,
  • Luiz G. L. Cançado,
  • Ado Jorio,
  • Hélio Chacham and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2020, 11, 1801–1808, doi:10.3762/bjnano.11.162

Graphical Abstract
  • , we mention the recent development of an electromechanical device based on a water-induced electromechanical response in suspended graphene atop a microfluidic channel. The resistivity of the graphene membrane rapidly decreases by approx. 25% upon water injection into the channel due to the reduction
PDF
Album
Supp Info
Full Research Paper
Published 30 Nov 2020

Mapping of integrated PIN diodes with a 3D architecture by scanning microwave impedance microscopy and dynamic spectroscopy

  • Rosine Coq Germanicus,
  • Peter De Wolf,
  • Florent Lallemand,
  • Catherine Bunel,
  • Serge Bardy,
  • Hugues Murray and
  • Ulrike Lüders

Beilstein J. Nanotechnol. 2020, 11, 1764–1775, doi:10.3762/bjnano.11.159

Graphical Abstract
  • lightly doped n-type epitaxial silicon layer is, then, grown on top of the buried layer using chemical vapour deposition. The targeted epitaxial layer thickness is 7.5 µm with a resistivity of 12 Ω·cm. The anode of the diode is formed by a 30 µm diameter p+ layer, also made by the implantation and
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2020

Direct observation of the Si(110)-(16×2) surface reconstruction by atomic force microscopy

  • Tatsuya Yamamoto,
  • Ryo Izumi,
  • Kazushi Miki,
  • Takahiro Yamasaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2020, 11, 1750–1756, doi:10.3762/bjnano.11.157

Graphical Abstract
  • keep the frequency shift constant. When the imaging became unstable, a bias voltage was applied between the tip and sample to eliminate the electrostatic force between the tip and sample. As a sample, p-doped Si(110) with a resistivity of 1–5 Ω·cm was used, which was cleaned by cycles of flushing at
PDF
Album
Letter
Published 19 Nov 2020

Seebeck coefficient of silicon nanowire forests doped by thermal diffusion

  • Shaimaa Elyamny,
  • Elisabetta Dimaggio and
  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2020, 11, 1707–1713, doi:10.3762/bjnano.11.153

Graphical Abstract
  • on one-pot metal-assisted chemical etching (MACE) [22] (Figure 1). Silicon chips of roughly 1 × 1 cm2 have been cut from n-doped (phosphorous) commercial silicon ⟨100⟩ wafers with a nominal resistivity of 10 Ω·cm (nominal doping concentration 1015 cm−3). The chips, mounted on a custom-made apparatus
  • the substrate remains slightly doped, with a nominal resistivity of 10 Ω·cm. The result is a leg of a silicon-based thermoelectric generator, as shown in Figure 1. Measurement of the thermal conductivity and of the Seebeck coefficient Single-leg thermoelectric generators have been characterized with a
  • different values of the doping process parameters (doping temperature and time). The results are S = −0.88 mV/K for the undoped sample (nominal resistivity 10 Ω·cm, estimated doping concentration 1015 cm−3), S = −0.41 mV/K for the sample doped at 700 °C for 10 min, and S = −0.20 mV/K for the sample doped at
PDF
Album
Full Research Paper
Published 11 Nov 2020

Amorphized length and variability in phase-change memory line cells

  • Nafisa Noor,
  • Sadid Muneer,
  • Raihan Sayeed Khan,
  • Anna Gorbenko and
  • Helena Silva

Beilstein J. Nanotechnol. 2020, 11, 1644–1654, doi:10.3762/bjnano.11.147

Graphical Abstract
  • unpredictable programming feature in phase-change memory devices can be utilized in hardware security applications. Keywords: amorphous materials; drift; electrical breakdown; electrical resistivity; phase-change memory; pulse measurement; stochastic processes; threshold switching; Introduction Phase-change
  • memory (PCM) is an emerging non-volatile memory technology with high endurance, high speed, and good scalability. PCM relies on the change in phase of a nanoscale volume of a chalcogenide material sandwiched between two electrodes. The phase of the material can be switched between the high-resistivity
  • state (amorphous or reset) and the low-resistivity (crystalline or set) state by appropriate electrical pulses. The amorphization (or reset) process in PCM is achieved with a short and abrupt electrical pulse, which melt-quenches the active region [1]. PCM nanodevices exhibit significant cell-to-cell
PDF
Album
Full Research Paper
Published 29 Oct 2020

High-responsivity hybrid α-Ag2S/Si photodetector prepared by pulsed laser ablation in liquid

  • Raid A. Ismail,
  • Hanan A. Rawdhan and
  • Duha S. Ahmed

Beilstein J. Nanotechnol. 2020, 11, 1596–1607, doi:10.3762/bjnano.11.142

Graphical Abstract
  • Optics, Germany). An Ag2S/Si photodetector was prepared by depositing a Ag2S layer on the front side of a silicon substrate through a mask by drop-casting. A single-crystal p-type silicon (111) substrate with an electrical resistivity of 3–5 Ω·cm and a thickness of 300 μm was used. As shown in Figure 2
  • decrease in the electrical resistivity of Ag2S. Figure 12 illustrates the I–V characteristics under illumination of the heterojunctions at reverse bias. The photocurrent of the heterojunction increased from 460 to 1500 μA at 7.5 V after CTAB was added to the Tu solution. This result can be ascribed to the
PDF
Album
Full Research Paper
Published 21 Oct 2020

Controlling the proximity effect in a Co/Nb multilayer: the properties of electronic transport

  • Sergey Bakurskiy,
  • Mikhail Kupriyanov,
  • Nikolay V. Klenov,
  • Igor Soloviev,
  • Andrey Schegolev,
  • Roman Morari,
  • Yury Khaydukov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1336–1345, doi:10.3762/bjnano.11.118

Graphical Abstract
  • indexes that denote the materials, ξp is the coherence length, γBpq = RBA/ρpξp is the interface parameter, in which RBA is the resistance per square of the interface, and ρp is the resistivity of the material at the p-side of the boundary. Note that the boundary conditions at the S/F interface are written
  • odd-numbered ferromagnetic layer has a thickness of LF1 = 0.15ξS, while every even-numbered ferromagnetic layer has a thickness of LF2 = 0.1ξS. We assume that the diffusive coherence length of the superconducting and ferromagnetic materials are the same; however, the relative resistivity values can
  • depends on the relative resistivity values and coherence lengths of a chosen material. When the ferromagnetic metal and the superconductor have the same resistivity and diffusion coefficients (i.e., for γ = 1), the pair potential in the whole structure grows evenly with the temperature decrease (Figure 2a
PDF
Album
Full Research Paper
Published 07 Sep 2020

Structural and electronic properties of SnO2 doped with non-metal elements

  • Jianyuan Yu,
  • Yingeng Wang,
  • Yan Huang,
  • Xiuwen Wang,
  • Jing Guo,
  • Jingkai Yang and
  • Hongli Zhao

Beilstein J. Nanotechnol. 2020, 11, 1321–1328, doi:10.3762/bjnano.11.116

Graphical Abstract
  • research works has been done examining different doping elements. Doped tin oxide thin film have been widely used in the fields of thin film solar cell electrodes, electronic display devices, and gas sensors. Also doped SnO2 been used for energy-saving low-emissivity glass coatings due to low resistivity
  • successfully prepared from N-doped SnO2 films. Through Al/N co-doping, a p-type SnO2 semiconductor thin film with excellent electrical properties was prepared. The resistivity, hole concentration and hole mobility were 7.1 × 10−3 Ω·cm, 6.24 × 1019 cm−3 and 14.1 cm2·V−1·s−1, respectively [8]. Doping SnO2 with F
  • . When the concentration of the precursor solution was adjusted to 0.15 M and the substrate temperature was 773 K, a film with a resistivity of 1.2 × 10−4 Ω·cm was obtained [10]. Theoretical calculations, based on first principles, show that the doping of N into the SnO2 crystal structure can introduce
PDF
Album
Full Research Paper
Published 03 Sep 2020

Proximity effect in [Nb(1.5 nm)/Fe(x)]10/Nb(50 nm) superconductor/ferromagnet heterostructures

  • Yury Khaydukov,
  • Sabine Pütter,
  • Laura Guasco,
  • Roman Morari,
  • Gideok Kim,
  • Thomas Keller,
  • Anatolie Sidorenko and
  • Bernhard Keimer

Beilstein J. Nanotechnol. 2020, 11, 1254–1263, doi:10.3762/bjnano.11.109

Graphical Abstract
  • the Al2O3(1−102) substrate. Samples grown at this condition possess a high residual resistivity ratio of 15–20. By using neutron reflectometry we show that Fe/Nb superlattices with x < 4 nm form a depth-modulated FeNb alloy with concentration of iron varying between 60% and 90%. This alloy has weak
  • metallic springs touching the surface of the sample. The tension of the springs is sufficiently high to ensure good contact with the sample surface and to measure the resistivity using a standard four-point contact method. The setup is designed to enable simultaneous PNR and transport experiments, though
  • we waited 10–15 min to stabilize the temperature. From the transport measurements we derived the residual resistivity ratio RRR = (300K)/(10K), the superconducting transition temperature TC and its width ΔTC. The latter two parameters were defined as the center and the width of derivative d/dT
PDF
Album
Full Research Paper
Published 21 Aug 2020

High permittivity, breakdown strength, and energy storage density of polythiophene-encapsulated BaTiO3 nanoparticles

  • Adnanullah Khan,
  • Amir Habib and
  • Adeel Afzal

Beilstein J. Nanotechnol. 2020, 11, 1190–1197, doi:10.3762/bjnano.11.103

Graphical Abstract
  • resistivity of grain boundaries, more energy is required for electron hopping, thus, increasing the loss [27][28]. In the high frequency region that corresponds to the higher conductivity, energy required for the hopping of electrons is less and therefore, the loss decreases [27][28]. Dielectric loss is an
PDF
Album
Full Research Paper
Published 10 Aug 2020

Gas-sensing features of nanostructured tellurium thin films

  • Dumitru Tsiulyanu

Beilstein J. Nanotechnol. 2020, 11, 1010–1018, doi:10.3762/bjnano.11.85

Graphical Abstract
  • dielectric relaxation time (τr). As τr = εε0ρ (ρ is the bulk resistivity, ε and ε0 are the permittivity and the electric constant, respectively), it is clear that τr decreases since there is a reduction in the resistivity when the temperature increase and the system reaches steady state in less time. Another
PDF
Album
Full Research Paper
Published 10 Jul 2020

Measurement of electrostatic tip–sample interactions by time-domain Kelvin probe force microscopy

  • Christian Ritz,
  • Tino Wagner and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2020, 11, 911–921, doi:10.3762/bjnano.11.76

Graphical Abstract
  • characterize doping profiles via scanning capacitance measurements [6]. Especially in the field of nanoelectronic devices, this kind of electrical characterizations is of great interest. Local potential drops across active nanostructures reveal information about the local resistivity and can provide crucial
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2020

Band tail state related photoluminescence and photoresponse of ZnMgO solid solution nanostructured films

  • Vadim Morari,
  • Aida Pantazi,
  • Nicolai Curmei,
  • Vitalie Postolache,
  • Emil V. Rusu,
  • Marius Enachescu,
  • Ion M. Tiginyanu and
  • Veaceslav V. Ursaki

Beilstein J. Nanotechnol. 2020, 11, 899–910, doi:10.3762/bjnano.11.75

Graphical Abstract
  • microscopy (AFM), UV–vis spectroscopy, photoluminescence (PL) and resistivity measurements in Zn1−xMgxO thin films deposited by the sol–gel spin-coating route in the composition range x = 0.00–0.40 [23]. It was found that the phase segregation manifests itself starting at a Mg content of x = 0.25. However
  • demonstrated photosensitivity under UV light irradiation, where the photosensitivity was much higher in samples prepared by spin coating as compared to those prepared by aerosol spray pyrolysis. Additionally, the resistivity of films deposited by spin coating was found to be much higher. Apart from that, a
  • different numbers of technological steps and the different temperature of the substrate during the deposition processes. In our opinion, the higher resistivity of the films prepared by spin coating as compared to those obtained by spray pyrolysis indicates a higher degree of conductivity compensation, due
PDF
Album
Full Research Paper
Published 12 Jun 2020

A Josephson junction based on a highly disordered superconductor/low-resistivity normal metal bilayer

  • Pavel M. Marychev and
  • Denis Yu. Vodolazov

Beilstein J. Nanotechnol. 2020, 11, 858–865, doi:10.3762/bjnano.11.71

Graphical Abstract
  • composed of a highly disordered superconductor (S) and a low-resistivity normal metal (N) with proximity-induced superconductivity. In such a junction, the N layer provides both a large concentration of phase in the weak link and good heat dissipation. We find that when the thickness of the S and the N
  • the thickness of the N layer leads to a significant decrease of Rn and, hence, to smaller values of Vc. In our work, we calculate the current–phase relation and heating effects in SN-S-SN Josephson junctions of variable thickness based on a thin dirty superconductor with large normal-state resistivity
  • , ρS ≥ 100 μΩ·cm, and a thin normal metal layer with low resistivity, ρN ≥ 2 μΩ·cm. In such a thin SN bilayer the superconducting current mainly flows in the N layer (due to proximity-induced superconductivity and ρS/ρN ≫ 1), and the critical current of the SN bilayer may exceed the critical current of
PDF
Album
Full Research Paper
Published 02 Jun 2020

Epitaxial growth and superconducting properties of thin-film PdFe/VN and VN/PdFe bilayers on MgO(001) substrates

  • Wael M. Mohammed,
  • Igor V. Yanilkin,
  • Amir I. Gumarov,
  • Airat G. Kiiamov,
  • Roman V. Yusupov and
  • Lenar R. Tagirov

Beilstein J. Nanotechnol. 2020, 11, 807–813, doi:10.3762/bjnano.11.65

Graphical Abstract
  • epitaxially. Electric resistance measurements demonstrate a metallic-type temperature dependence for the VN film with a small residual resistivity of 9 μΩ·cm at 10 K, indicating high purity and structural quality of the film. The transition to the superconducting state was observed at 7.7 K for the VN film
  • intervals, one above 250 K and another one in the range of 80–180 K, of quasi-linear temperature dependence with different temperature coefficients of resistivity (TCR), i.e., 9.7 × 10−3 Ω/K and 2.1 × 10−2 Ω/K, respectively, marked by red straight lines over the green line in Figure 5a. It is similar to the
  • , from impurities and imperfections. Further cooling results in the phase transition to the superconducting state as it is shown in Figure 5b. The RRR value of 5.2 and the room-temperature resistivity of 42.5 μΩ·cm for the 30 nm thick VN film are among the best values obtained to date [42][43][44][45
PDF
Album
Full Research Paper
Published 15 May 2020

Structural optical and electrical properties of a transparent conductive ITO/Al–Ag/ITO multilayer contact

  • Aliyu Kabiru Isiyaku,
  • Ahmad Hadi Ali and
  • Nafarizal Nayan

Beilstein J. Nanotechnol. 2020, 11, 695–702, doi:10.3762/bjnano.11.57

Graphical Abstract
  • excellent optical and electrical properties [4][5]. It is a wide-bandgap material (3.6–4.0 eV) with low electrical resistivity. ITO contains the rare and expensive metal indium, which is reflected in the market value of the material [6]. Hence, a reduction of the ITO consumption is desirable. ITO films with
  • smaller thickness would result in high optical transmittance in the visible region. However, the resistivity would increase, which is an issue [4][7][8]. Therefore, the search for new material compositions and structures of ITO-based films to enhance the performance in optoelectronic devices is of
  • improve the transport from the lower to the upper part of the device [9]. The good adhesion, low resistivity, and the stability against oxidation and corrosion of Al films make them suitable for application in optical and electronic devices [18][19][20]. The low resistivity and relatively high
PDF
Album
Full Research Paper
Published 27 Apr 2020

Nanoparticles based on the zwitterionic pillar[5]arene and Ag+: synthesis, self-assembly and cytotoxicity in the human lung cancer cell line A549

  • Dmitriy N. Shurpik,
  • Denis A. Sevastyanov,
  • Pavel V. Zelenikhin,
  • Pavel L. Padnya,
  • Vladimir G. Evtugyn,
  • Yuriy N. Osin and
  • Ivan I. Stoikov

Beilstein J. Nanotechnol. 2020, 11, 421–431, doi:10.3762/bjnano.11.33

Graphical Abstract
  • , slit width 1 nm). Deionized water with a resistivity >18.0 MΩ cm was used to prepare the solutions. The deionized water was obtained from a Millipore-Q purification system. Recording of the absorption spectra of the mixtures of pillar[5]arenes 3 and 4 (1 × 10−5 М) with AgNO3 (1 × 10−4 М) was carried
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2020

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • resistivity (ρ) of 100–150 nm thick Sb2S3 films on glass/TiO2 substrate was measured by the collinear four-wire technique and by van der Pauw measurements to be in the range of 2–3 × 106 Ω cm, as anticipated. Figure 3b shows the external quantum efficiency (EQE) of solar cells with 70, 100 and 150 nm thick
  • solar cells with Sb2S3 grown by USP as the following: (1) enlarging the cell area causes FF loss, possibly because of minute, nontrivial discrepancies in layer thickness of Sb2S3, and particularly P3HT; (2) enlarging the cell area introduces loss in JSC and loss in FF due to the large resistivity of the
  •  1 [71]: where λ is the wavelength, and T(λ) (%) is the total transmittance at λ. The resistivity of Sb2S3 layers on glass/TiO2 substrate was measured at room temperature in dark by using the van der Pauw technique (MMR Technologies H50) and collinear four-wire I–V sensing (Eco Chemie BV, AutoLab
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells

  • Olivia Amargós-Reyes,
  • José-Luis Maldonado,
  • Omar Martínez-Alvarez,
  • María-Elena Nicho,
  • José Santos-Cruz,
  • Juan Nicasio-Collazo,
  • Irving Caballero-Quintana and
  • Concepción Arenas-Arrocena

Beilstein J. Nanotechnol. 2019, 10, 2238–2250, doi:10.3762/bjnano.10.216

Graphical Abstract
  • measurements provide information about the different factors limiting solar cell efficiency: charge storage, carrier lifetimes, recombination and resistivity [60]. Figure 8 shows the IS measurements (Nyquist plot) and the corresponding simulations (with the equivalent circuit model presented in Figure 8c) of
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Microbubbles decorated with dendronized magnetic nanoparticles for biomedical imaging: effective stabilization via fluorous interactions

  • Da Shi,
  • Justine Wallyn,
  • Dinh-Vu Nguyen,
  • Francis Perton,
  • Delphine Felder-Flesch,
  • Sylvie Bégin-Colin,
  • Mounir Maaloum and
  • Marie Pierre Krafft

Beilstein J. Nanotechnol. 2019, 10, 2103–2115, doi:10.3762/bjnano.10.205

Graphical Abstract
  • , resistivity 18.2 MΩ cm). Synthesis of dendrons The approach to the synthesis of the dendrons C2F5OEG8Den and C4F9OEG8Den is described in [47]. From the intermediate D2-2P, the piperazine unit was installed in two steps (Scheme 1): 1) deprotection of the tert-butyl group and 2) amide coupling by using HATU
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2019
Other Beilstein-Institut Open Science Activities