Search results

Search for "thiourea" in Full Text gives 24 result(s) in Beilstein Journal of Nanotechnology.

Gap-directed chemical lift-off lithographic nanoarchitectonics for arbitrary sub-micrometer patterning

  • Chang-Ming Wang,
  • Hong-Sheng Chan,
  • Chia-Li Liao,
  • Che-Wei Chang and
  • Wei-Ssu Liao

Beilstein J. Nanotechnol. 2023, 14, 34–44, doi:10.3762/bjnano.14.4

Graphical Abstract
  • purchased from Echo Chemical (Taipei, Taiwan). Hexamethyldisilazane (HMDS) was purchased from Sigma-Aldrich (St Louis, MO, USA). Iron nitrate and thiourea were purchased from Showa Chemical Industry Co., Ltd. (Tokyo, Japan). Positive photoresist AZ6112 was purchased from AZ Electronic Materials Taiwan Co
  • structure characterization To transfer chemical patterns created by CLL to the underneath metal layer, a wet chemical etching process was adopted. After lifting the PDMS stamp from a SAM-modified Au substrate, the Au surface was immersed in an aqueous mixture containing 40 mM iron nitrate and 60 mM thiourea
  • lift-off surface can serve as the molecular resist for the underneath material structure transfer. This concept is demonstrated by immersing a post-lift off surface in an aqueous mixture containing iron nitrate and thiourea for wet chemical etching (Figure 3A). The absence of SAM molecule protection at
PDF
Album
Full Research Paper
Published 04 Jan 2023

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • fluoride (NH4F), N-acetyl-ʟ-cysteine, ammonium heptamolybdate ((NH4)6Mo7O24), thiourea (CH4N2S), nitrogen gas, melamine, and nafion solution. All chemicals and materials were purified and used without further treatment. Preparation of materials The individual materials including TNAs, MoS2, and g-C3N4 were
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • the reported gold nanostars and nanoflowers [96]. Concerning the biocompatibility of the nanomaterials synthesized using DESs, only a couple of studies has been carried out in vivo and in vitro. Mineral-substituted apatite nanoparticles synthesized using a choline chloride/thiourea mixture for
PDF
Album
Review
Published 18 Aug 2021

High-responsivity hybrid α-Ag2S/Si photodetector prepared by pulsed laser ablation in liquid

  • Raid A. Ismail,
  • Hanan A. Rawdhan and
  • Duha S. Ahmed

Beilstein J. Nanotechnol. 2020, 11, 1596–1607, doi:10.3762/bjnano.11.142

Graphical Abstract
  • Raid A. Ismail Hanan A. Rawdhan Duha S. Ahmed Department of Applied Science, University of Technology, Baghdad, Iraq 10.3762/bjnano.11.142 Abstract We report the synthesis of α-Ag2S nanoparticles (NPs) by one-step laser ablation of a silver target in aqueous solution of thiourea (Tu, CH4N2S
  • . Keywords: cetyltrimethylammonium bromide (CTAB); laser ablation; monodisperse; photodetector; silver(I) sulfide (Ag2S); thiourea; Introduction Nanomaterials have attracted considerable attention due to their superior chemical and physical properties. The size-dependent properties of nanomaterials have
  • melting/fragmentation [19]. In the present work, we demonstrate a novel technique to prepare monodisperse Ag2S NPs using CTAB surfactant-assisted pulsed laser ablation of Ag2S NPs in a thiourea (Tu) solution. Moreover, a high-performance hybrid Ag2S/Si photodetector was fabricated. Experimental Colloidal
PDF
Album
Full Research Paper
Published 21 Oct 2020

Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium–sulfur battery performance

  • Chengxiang Tian,
  • Juwei Wu,
  • Zheng Ma,
  • Bo Li,
  • Pengcheng Li,
  • Xiaotao Zu and
  • Xia Xiang

Beilstein J. Nanotechnol. 2019, 10, 2251–2260, doi:10.3762/bjnano.10.217

Graphical Abstract
  • nanosheets For the synthesis of the C-MoS2/rGO nanosheets, 1.23 g hexaammonium heptamolybdate tetrahydrate, 0.89 g of glucose, and 2.28 g thiourea were dissolved in 25 mL of deionized water to form solution A; 0.03 g of GO was dissolved into 10 mL of deionized water by ultrasonic to form solution B. Then
  • conductivity and catalytic activity [13][25] while the defect-rich 2H phase of MoS2 has catalytic effects on polysulfides [3]. In this work, we focus on the defect-rich phase MoS2. Therefore, the 2H phase of MoS2 was prepared by designing a reaction with a high concentration of precursors and excess thiourea
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Improved adsorption and degradation performance by S-doping of (001)-TiO2

  • Xiao-Yu Sun,
  • Xian Zhang,
  • Xiao Sun,
  • Ni-Xian Qian,
  • Min Wang and
  • Yong-Qing Ma

Beilstein J. Nanotechnol. 2019, 10, 2116–2127, doi:10.3762/bjnano.10.206

Graphical Abstract
  • , the desired amount of thiourea (99%, Aladdin) was added; the molar ratio of S in the thiourea to Ti in TiO2 (RS/Ti) was chosen 0, 0.5, 1, 2, 3, 4 and 5. After magnetic stirring for 30 min, the solution was transferred to a 120 mL quartz crucible that was subsequently placed inside a 500 mL Hastelloy
  • is assigned to the stretching vibration of the C–N group, which is a residue of the thiourea decomposition [37][38]. In order to investigate the variation of the chemical states (CSs) of the S-doped (001)-TiO2 as a function of the RS/Ti, core level XPS of the Ti 2p, O 1s and S 2p regions was
  • not detected in the S-doped samples at 180 °C, but they appear in the S-doped samples at 250 °C due to the reducibility of thiourea [45] and the influence of the S-doped element. Furthermore, the XP spectrum of the S 2p region can be fitted by three peaks, and the CSs correspond to Ti–S, S0 and S6
PDF
Album
Full Research Paper
Published 01 Nov 2019

Green and scalable synthesis of nanocrystalline kuramite

  • Andrea Giaccherini,
  • Giuseppe Cucinotta,
  • Stefano Martinuzzi,
  • Enrico Berretti,
  • Werner Oberhauser,
  • Alessandro Lavacchi,
  • Giovanni Orazio Lepore,
  • Giordano Montegrossi,
  • Maurizio Romanelli,
  • Antonio De Luca,
  • Massimo Innocenti,
  • Vanni Moggi Cecchi,
  • Matteo Mannini,
  • Antonella Buccianti and
  • Francesco Di Benedetto

Beilstein J. Nanotechnol. 2019, 10, 2073–2083, doi:10.3762/bjnano.10.202

Graphical Abstract
  • Haën AG), thiourea SC(NH2)2 (TU, Merck), and ethylene glycol (EG, 99%, Alfa Aesar). The solvothermal approach used in this work exploits TU as a sulfide source in a one-pot synthesis with the solvent and the metal salts similar to the synthesis of FeS2 and Cu2ZnSnS4 [35][45] nanopowders. In a two-neck
PDF
Album
Supp Info
Full Research Paper
Published 29 Oct 2019

CuInSe2 quantum dots grown by molecular beam epitaxy on amorphous SiO2 surfaces

  • Henrique Limborço,
  • Pedro M.P. Salomé,
  • Rodrigo Ribeiro-Andrade,
  • Jennifer P. Teixeira,
  • Nicoleta Nicoara,
  • Kamal Abderrafi,
  • Joaquim P. Leitão,
  • Juan C. Gonzalez and
  • Sascha Sadewasser

Beilstein J. Nanotechnol. 2019, 10, 1103–1111, doi:10.3762/bjnano.10.110

Graphical Abstract
  • passivation layer was deposited on top of the samples. CdS was deposited by conventional chemical bath deposition (CBD) with a solution of 1.1 M ammonia, 0.100 M thiourea, and 0.003 M cadmium acetate [36]. The solution is mixed in a beaker at room temperature, and the samples are immersed into the beaker
PDF
Album
Full Research Paper
Published 22 May 2019

Synthesis of novel C-doped g-C3N4 nanosheets coupled with CdIn2S4 for enhanced photocatalytic hydrogen evolution

  • Jingshuai Chen,
  • Chang-Jie Mao,
  • Helin Niu and
  • Ji-Ming Song

Beilstein J. Nanotechnol. 2019, 10, 912–921, doi:10.3762/bjnano.10.92

Graphical Abstract
  • as precursors. Subsequently, the CCN was dispersed in an aqueous solution containing thiourea, Cd(NO3)2·4H2O and In(NO3)3·4.5H2O. As a result of the electrostatic attraction between cations and negatively charged CCN [34], Cd2+ and In3+ could easily load on to the surface of the CCN nanosheets
  • . Typically, an appropriate amount of Cd(NO3)2·4H2O, In(NO3)3·4.5H2O and thiourea (TU) were added into 60 mL of deionized water, followed by 15 min of ultrasonication. Meanwhile, 0.5 g of as-obtained CCN powder was dispersed in the above solution by ultrasound for 1 h. The suspension was transferred into a
PDF
Album
Full Research Paper
Published 18 Apr 2019

Uniform Sb2S3 optical coatings by chemical spray method

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Ilona Oja Acik,
  • Arvo Mere and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 198–210, doi:10.3762/bjnano.10.18

Graphical Abstract
  • Sb2S3 layers and presented the first planar TiO2/Sb2S3/P3HT solar cells comprising ultrasonically sprayed Sb2S3 (power conversion efficiency η ≤ 1.9%) [12]. SbCl3 and thiourea (SC(NH2)2) are often used in the field to deposit Sb2S3 thin films. Spraying the SbCl3/SC(NH2)2 (henceforth Sb/S) 1:6 molar
  • uniform thickness to be applied as a photovoltaic absorber by ultrasonic spraying on planar glass/ITO/TiO2 substrates, followed by a post-deposition treatment. To this end, we studied the effect of the deposition temperature (TD), the molar ratio of precursors SbCl3 and thiourea (SC(NH2)2) in the spray
  • layers is affected more by the Sb/S molar ratio in solution or by the deposition time. Sb2S3 tends to yield different morphologies in similar deposition conditions, possibly due to liquid phase reactions between molten-boiling SbCl3 (mp 73.4 °C, bp 223.5 °C [30]) and molten thiourea (TU, mp 182 °C [14
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2019

Spin-coated planar Sb2S3 hybrid solar cells approaching 5% efficiency

  • Pascal Kaienburg,
  • Benjamin Klingebiel and
  • Thomas Kirchartz

Beilstein J. Nanotechnol. 2018, 9, 2114–2124, doi:10.3762/bjnano.9.200

Graphical Abstract
  • elevated temperatures to obtain crystalline Sb2S3. Choi and Il Seok reported an antimony–thiourea (Sb–TU) complex and demonstrated efficiencies above 5% in an ETA configuration with poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b’]-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] PCPDTBT as the
  • different impact on device performance for the two precursor process routes. For both precursor routes, the efficiency of the presented optimized devices exceeds that of previous reports. Results and Discussion In the process described in [29] antimony chloride SbCl3 and thiourea SC(NH2)2, or short TU, are
  • used to form an antimony-thiourea complex [Sb(TU)2]Cl3 in the high boiling point solvent N,N-dimethylformamide DMF. While [31][38] chose 2-methoxyethanol instead of DMF as the solvent, we stuck to the original recipe with DMF. The second process route applied in this work and described in [37] uses
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2018

Sulfur-, nitrogen- and platinum-doped titania thin films with high catalytic efficiency under visible-light illumination

  • Boštjan Žener,
  • Lev Matoh,
  • Giorgio Carraro,
  • Bojan Miljević and
  • Romana Cerc Korošec

Beilstein J. Nanotechnol. 2018, 9, 1629–1640, doi:10.3762/bjnano.9.155

Graphical Abstract
  • (ammonium nitrate, urea), sulfur (thiourea) and platinum (chloroplatinic acid), coated onto glass substrates by dip-coating, and thermally treated in a muffle furnace to promote crystallization. The resulting thin films were then characterized by various techniques (i.e., TGA-DSC-MS, XRD, BET, XPS, SEM
  • by the creation of new extra states within the band gap created by interstitially doped N and S [18]. On the other hand, Pt acts as a trap for free electrons and inhibits electron–hole recombination. Doping our reference sample with urea and thiourea has shown to significantly decrease the band gap
  • nitrate (NH4NO3) from Zorka Šabac; hydroxypropyl cellulose (HPC, Mw = 100.000 g/mol) from Sigma-Aldrich; plasmocorinth B (PB, dye content ≈60%) from Sigma-Aldrich; thiourea (pro analysis) from Kemika and urea (98%) from Acros Organics. Synthesis Titanium dioxide was prepared by a particulate sol–gel
PDF
Album
Full Research Paper
Published 04 Jun 2018

Sensing behavior of flower-shaped MoS2 nanoflakes: case study with methanol and xylene

  • Maryam Barzegar,
  • Masoud Berahman and
  • Azam Iraji zad

Beilstein J. Nanotechnol. 2018, 9, 608–615, doi:10.3762/bjnano.9.57

Graphical Abstract
  • Among various methods for preparing MoS2 few-layer sheets, we followed the synthesis process reported before in [23]. In short, the MoS2 sheets were synthesized through sulfurization of MoO3 powder in an aqueous medium as follows: 0.05 g MoO3 powder and 0.13 g thiourea were dissolved in 40 mL deionized
PDF
Album
Full Research Paper
Published 16 Feb 2018

Co-reductive fabrication of carbon nanodots with high quantum yield for bioimaging of bacteria

  • Jiajun Wang,
  • Xia Liu,
  • Gesmi Milcovich,
  • Tzu-Yu Chen,
  • Edel Durack,
  • Sarah Mallen,
  • Yongming Ruan,
  • Xuexiang Weng and
  • Sarah P. Hudson

Beilstein J. Nanotechnol. 2018, 9, 137–145, doi:10.3762/bjnano.9.16

Graphical Abstract
  • , Ireland School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 10.3762/bjnano.9.16 Abstract A simple and straightforward synthetic approach for carbon nanodots (C-dots) is proposed. The strategy is based on a one-step hydrothermal chemical reduction with thiourea and urea
  • , leading to high quantum yield C-dots. The obtained C-dots are well-dispersed with a uniform size and a graphite-like structure. A synergistic reduction mechanism was investigated using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The findings show that using both thiourea
  • introduces secondary pollution products. Therefore, in order to promote and extend their range of applications, new methods to obtain C-dots with high QY are required. Citric acid, citrate, urea or thiourea have been used in the past to obtain high-QY C-dots with different growth mechanisms proposed [18][19
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2018

Patterning of supported gold monolayers via chemical lift-off lithography

  • Liane S. Slaughter,
  • Kevin M. Cheung,
  • Sami Kaappa,
  • Huan H. Cao,
  • Qing Yang,
  • Thomas D. Young,
  • Andrew C. Serino,
  • Sami Malola,
  • Jana M. Olson,
  • Stephan Link,
  • Hannu Häkkinen,
  • Anne M. Andrews and
  • Paul S. Weiss

Beilstein J. Nanotechnol. 2017, 8, 2648–2661, doi:10.3762/bjnano.8.265

Graphical Abstract
  • , Ithaca, NY, USA) for 40 s and contacted with SAMs. The stamps were removed from Au substrates after 2 h. The substrates were then treated with 20 mM iron(III) nitrate and 30 mM thiourea for 10–15 min to etch the Au selectively from the exposed regions. Fabricating flat poly(dimethylsiloxane) stamps The
PDF
Album
Supp Info
Full Research Paper
Published 08 Dec 2017

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
  • semiconductors and carbon-based materials can be easily designed and synthesized by thermal condensation of several low cost, solid precursor materials such as urea, thiourea, dicyandiamide, cyanamide and guanidine hydrochloride at high temperature (500–600 °C) in air or inert atmosphere (Figure 3c) [88][89][90
  • morphology of catalytic material. Therefore the fabrication of g-C3N4 with different microstructures is expected to show different surface properties and ability to enhance the photocatalytic performance. As per one of the reports by Zhu et al., g-C3N4 synthesized by using melamine, thiourea, or urea as
PDF
Album
Review
Published 03 Aug 2017

Facile fabrication of luminescent organic dots by thermolysis of citric acid in urea melt, and their use for cell staining and polyelectrolyte microcapsule labelling

  • Nadezhda M. Zholobak,
  • Anton L. Popov,
  • Alexander B. Shcherbakov,
  • Nelly R. Popova,
  • Mykhailo M. Guzyk,
  • Valeriy P. Antonovich,
  • Alla V. Yegorova,
  • Yuliya V. Scrypynets,
  • Inna I. Leonenko,
  • Alexander Ye. Baranchikov and
  • Vladimir K. Ivanov

Beilstein J. Nanotechnol. 2016, 7, 1905–1917, doi:10.3762/bjnano.7.182

Graphical Abstract
  • luminescent properties. A large number of studies have been devoted to the synthesis of citrate O-dots using urea as a nitrogen source [21][24][26][27][28][29][30]. For instance, highly luminescent O-dots were obtained by hydrothermal treatment of citric acid and urea or thiourea (molar ratio 1:3) solutions
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2016

Sb2S3 grown by ultrasonic spray pyrolysis and its application in a hybrid solar cell

  • Erki Kärber,
  • Atanas Katerski,
  • Ilona Oja Acik,
  • Arvo Mere,
  • Valdek Mikli and
  • Malle Krunks

Beilstein J. Nanotechnol. 2016, 7, 1662–1673, doi:10.3762/bjnano.7.158

Graphical Abstract
  • precursors for Sb and S have been SbCl3 and thiourea (tu) [21] or thioacetamide [22], respectively, dissolved in water together with a complexing agent such as tartaric acid to reduce the hydrolysis of the SbCl3 in the spray solution [21][22]. We have observed that the use of tartaric acid as the complexing
  • films whereas films prepared from non-aqueous solvents have been reported as polycrystalline [22][24]. So far, we have shown that for growing Sb2S3 by pneumatic CSP the use of SbCl3 and thiourea (tu) precursors with an SbCl3/tu molar ratio of 1:3 dissolved in methanol and sprayed on substrate at a
  • test the Sb2S3 layer in a planar TiO2/Sb2S3/P3HT configuration solar cell. In the present work we will show that by using an excess of thiourea as the sulfur source in the spray solution, such as with a SbCl3/tu molar ratio of 1:6, one can rapidly grow single-phase and crystalline Sb2S3 by ultrasonic
PDF
Album
Supp Info
Full Research Paper
Published 10 Nov 2016

Surfactant-controlled composition and crystal structure of manganese(II) sulfide nanocrystals prepared by solvothermal synthesis

  • Elena Capetti,
  • Anna M. Ferretti,
  • Vladimiro Dal Santo and
  • Alessandro Ponti

Beilstein J. Nanotechnol. 2015, 6, 2319–2329, doi:10.3762/bjnano.6.238

Graphical Abstract
  • ][21][27], organic (thiourea [16], thioacetamide [26], bistrimethylsilylsulfide [18], dodecanethiol [30]) and inorganic (sulfur [22][23][24][28], ammonium sulfide [29]) compounds. The S/Mn molar ratio varied greatly, ranging from (1/3):1 to 4:1, but in most cases S/Mn ≥ 1. Use of S/Mn < 1 was
  • oleylamine (100:1 with respect to Mn) [27]. Polymorphism control could also be achieved by chemical means. By reacting manganese(II) chloride and thiourea in an autoclave (T = 190 °C) for 12 h, 30 nm α-MnS NCs were prepared using water as a solvent, whereas when the solvent was benzene, γ-MnS rods (d = 40
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2015

A simple approach to the synthesis of Cu1.8S dendrites with thiamine hydrochloride as a sulfur source and structure-directing agent

  • Xiaoliang Yan,
  • Sha Li,
  • Yun-xiang Pan,
  • Zhi Yang and
  • Xuguang Liu

Beilstein J. Nanotechnol. 2015, 6, 881–885, doi:10.3762/bjnano.6.90

Graphical Abstract
  • shapes from sulfur powder [6]. Lim et al. found that copper sulfide dendritic structures could be obtained at high ethylenediamine and low tributylphosphite concentrations by using a copper(I) thiobenzoate (CuTB) precursor [7]. In general, sulfur, Na2S2O3, mercaptan and thiourea are used as sulfur
PDF
Album
Full Research Paper
Published 01 Apr 2015

Growth evolution and phase transition from chalcocite to digenite in nanocrystalline copper sulfide: Morphological, optical and electrical properties

  • Priscilla Vasthi Quintana-Ramirez,
  • Ma. Concepción Arenas-Arrocena,
  • José Santos-Cruz,
  • Marina Vega-González,
  • Omar Martínez-Alvarez,
  • Víctor Manuel Castaño-Meneses,
  • Laura Susana Acosta-Torres and
  • Javier de la Fuente-Hernández

Beilstein J. Nanotechnol. 2014, 5, 1542–1552, doi:10.3762/bjnano.5.166

Graphical Abstract
  • received. The aqueous reaction: deionized water (10 MΩ·cm), thiourea (H2NCSNH2, Aldrich ≥99%), copper(II) sulfate pentahydrate (CuSO4·5H2O, Baker 99.3%), triethanolamine (TEA, C6H15NO3, Baker 99.8%), and sodium acetate (NaCOOCH3, Baker, 99.5%) Synthesis of nanocrystalline copper sulfide from organic
  • aqueous solution In this reaction thiourea and copper(II) sulfate pentahydrate (CuSO4·5H2O) were the sulfur and copper precursors, respectively, and the TEA ligand was an intermediary in the reaction. The synthesis proceeded as follows: A three-necked reactor containing 440 mL of deionized water was
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2014

Liquid fuel cells

  • Grigorii L. Soloveichik

Beilstein J. Nanotechnol. 2014, 5, 1399–1418, doi:10.3762/bjnano.5.153

Graphical Abstract
  • towards hydrolysis turned out to be more efficient catalysts than platinum. Thiourea, a known hydrogen evolution inhibitor, was also used as an additive to increase the coulombic efficiency [181]. Nanoporous gold electrodes prepared by extracting Ag from an AgAu alloy catalyze the oxidation of AB at a
PDF
Album
Review
Published 29 Aug 2014

Template based precursor route for the synthesis of CuInSe2 nanorod arrays for potential solar cell applications

  • Mikhail Pashchanka,
  • Jonas Bang,
  • Niklas S. A. Gora,
  • Ildiko Balog,
  • Rudolf C. Hoffmann and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2013, 4, 868–874, doi:10.3762/bjnano.4.98

Graphical Abstract
  • indirectly confirmed the flexibility of the solution route in preparation of semiconductors with controlled elemental composition. We recently successfully demonstrated electroless deposition of molecular precursors (Cu- and In-oximato complexes and thiourea) into track-etched polycarbonate templates and the
  • synthesis of stoichiometric ternary CuInS2 nanorod arrays [9]. In the present work, we extend our method to the photochemically even more active CuInSe2 material and demonstrate the synthesis of uniform polycrystalline CuInSe2 nanorod arrays. Selenourea was used as a Se source analogous to thiourea in our
PDF
Album
Full Research Paper
Published 10 Dec 2013

Junction formation of Cu3BiS3 investigated by Kelvin probe force microscopy and surface photovoltage measurements

  • Fredy Mesa,
  • William Chamorro,
  • William Vallejo,
  • Robert Baier,
  • Thomas Dittrich,
  • Alexander Grimm,
  • Martha C. Lux-Steiner and
  • Sascha Sadewasser

Beilstein J. Nanotechnol. 2012, 3, 277–284, doi:10.3762/bjnano.3.31

Graphical Abstract
  • solution containing thiourea (Scharlau) and cadmium chloride (CdCl2) (Merck) as sources of S2− and Cd2+, respectively. The thickness of the films was ~80 nm, as measured with a Veeco Dektak 150 surface profiler. For specific experimental conditions see [22]. ZnS films were grown by coevaporation of
PDF
Album
Full Research Paper
Published 23 Mar 2012
Other Beilstein-Institut Open Science Activities