Search results

Search for "titanium" in Full Text gives 264 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal

  • Eduardo Aluicio-Sarduy,
  • Simone Callegari,
  • Diana Gisell Figueroa del Valle,
  • Andrea Desii,
  • Ilka Kriegel and
  • Francesco Scotognella

Beilstein J. Nanotechnol. 2016, 7, 1404–1410, doi:10.3762/bjnano.7.131

Graphical Abstract
  • . In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric
  • (i.e. decrease of the effective refractive index). These results are the first demonstration of active colour tuning in silver/titanium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic switches. Keywords: electro-optic
  • evidence of structural colour tuning with an electric field in a one-dimensional photonic crystal made of alternating layers of silver nanoparticles and titanium dioxide nanoparticles. We have observed a blue shift of about 10 nm with an applied voltage of 10 V. We give an interpretation of the phenomenon
PDF
Album
Supp Info
Full Research Paper
Published 06 Oct 2016

High antiviral effect of TiO2·PL–DNA nanocomposites targeted to conservative regions of (−)RNA and (+)RNA of influenza A virus in cell culture

  • Asya S. Levina,
  • Marina N. Repkova,
  • Elena V. Bessudnova,
  • Ekaterina I. Filippova,
  • Natalia A. Mazurkova and
  • Valentina F. Zarytova

Beilstein J. Nanotechnol. 2016, 7, 1166–1173, doi:10.3762/bjnano.7.108

Graphical Abstract
  • TiO2·PL–DNA nanocomposite consisting of titanium dioxide nanoparticles and polylysine (PL)-containing oligonucleotides. Results: The TiO2·PL–DNA nanocomposites bearing the DNA fragments targeted to different conservative regions of (−)RNA and (+)RNA of segment 5 of influenza A virus (IAV) were studied
PDF
Album
Full Research Paper
Published 10 Aug 2016

Manufacturing and investigation of physical properties of polyacrylonitrile nanofibre composites with SiO2, TiO2 and Bi2O3 nanoparticles

  • Tomasz Tański,
  • Wiktor Matysiak and
  • Barbara Hajduk

Beilstein J. Nanotechnol. 2016, 7, 1141–1155, doi:10.3762/bjnano.7.106

Graphical Abstract
  • diameters in the range from 80 to 200 nm belonged to the bismuth oxide powder (Figure 3). For titanium oxide the obtained particle diameters ranged from 18 to 50 nm. The lowest measured diameter values were registered for silicon oxide nanoparticles, the particle sizes of which were in the range from 8 to
  • composite PAN/TiO2 nanofibres was observed for samples with the highest concentration of the strengthening phase, produced with a 20 cm distance between the nozzle and the collector. The measured diameter values of the composite nanofibres reinforced with titanium oxide included values in the range from 120
  • of the strengthening phase. When using nanoparticles of Bi2O3 as the reinforcing phase, the increase in the diameter of the nanofibres is approximately linear (Figure 8), with an increase of approx. 10 nm for every 4 wt % of Bi2O3, comparable to the titanium dioxide case. For a shorter distance
PDF
Album
Full Research Paper
Published 05 Aug 2016

Fast diffusion of silver in TiO2 nanotube arrays

  • Wanggang Zhang,
  • Yiming Liu,
  • Diaoyu Zhou,
  • Hui Wang,
  • Wei Liang and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2016, 7, 1129–1140, doi:10.3762/bjnano.7.105

Graphical Abstract
  • the outmost surface of TiO2 nanotubes. Probably there are hardly any Ag nanocrystals formed inside the TiO2 nanotubes through the migration of Ag. Keywords: activation energy; fast diffusion; magnetron sputtering; silver; TiO2 nanotube; Introduction Titanium dioxide (TiO2) has gained great attention
  • TiO2 nanotubes on Ti foils (99.9 atom %) were fabricated via a two-step anodization process [44]. Briefly, commercially available pure titanium foils (30 × 10 × 0.1 mm3, China Research Institute of Nonferrous Metals, China) were ultrasonically cleaned with acetone, ethanol, and deionized water for 15
PDF
Album
Supp Info
Full Research Paper
Published 03 Aug 2016

Advanced atomic force microscopy techniques III

  • Thilo Glatzel and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2016, 7, 1052–1054, doi:10.3762/bjnano.7.98

Graphical Abstract
  • Eva Roblegg and co-workers [20]. The local elastic stiffness and damping of individual phases in a titanium alloys was measured by using atomic force acoustic microscopy (AFAM) and mapping of contact-resonance spectra [21]. Another alloy, namely a Pt containing metallic glass, was characterized by AFM
PDF
Editorial
Published 21 Jul 2016

NO gas sensing at room temperature using single titanium oxide nanodot sensors created by atomic force microscopy nanolithography

  • Li-Yang Hong and
  • Heh-Nan Lin

Beilstein J. Nanotechnol. 2016, 7, 1044–1051, doi:10.3762/bjnano.7.97

Graphical Abstract
  • Li-Yang Hong Heh-Nan Lin Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan 10.3762/bjnano.7.97 Abstract In this work, the fabrication of single titanium oxide nanodot (ND) resistive sensors for NO gas sensing at room temperature is reported. Two
  • atomic force microscopy nanolithography methods, nanomachining and nano-oxidation, are employed. A single titanium nanowire (NW) is created first along with contact electrodes and a single titanium oxide ND is subsequently produced in the NW. Gas sensing is realized by the photo-activation and the photo
  • potential application of single metal oxide NDs for gas sensing with a performance that is comparable with that of metal oxide nanowire gas sensors. Keywords: atomic force microscopy nanolithography; photo-activation; photo-recovery; resistive NO gas sensor; titanium oxide nanodot sensor; Introduction In
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2016

Tight junction between endothelial cells: the interaction between nanoparticles and blood vessels

  • Yue Zhang and
  • Wan-Xi Yang

Beilstein J. Nanotechnol. 2016, 7, 675–684, doi:10.3762/bjnano.7.60

Graphical Abstract
  • Asian sand dust, which caused acute inflammation in the lung [44]. Studies also present the effect of NPs on reproductive organs. A study on the toxicity of titanium dioxide nanoparticles showed the ability of NPs to cross the brain–testis barrier and accumulate in mice testes [22]. To further explain
PDF
Album
Review
Published 06 May 2016

Unraveling the neurotoxicity of titanium dioxide nanoparticles: focusing on molecular mechanisms

  • Bin Song,
  • Yanli Zhang,
  • Jia Liu,
  • Xiaoli Feng,
  • Ting Zhou and
  • Longquan Shao

Beilstein J. Nanotechnol. 2016, 7, 645–654, doi:10.3762/bjnano.7.57

Graphical Abstract
  • Bin Song Yanli Zhang Jia Liu Xiaoli Feng Ting Zhou Longquan Shao Guizhou Provincial People’s Hospital, Guiyang 550002, China Nanfang Hospital, Southern Medical University, Guangzhou 510515, China 10.3762/bjnano.7.57 Abstract Titanium dioxide nanoparticles (TiO2 NPs) possess unique characteristics
  • investigated comprehensively through studying every possible molecular mechanism. Keywords: autophagy; brain; DNA methylation; neurotoxicity; titanium dioxide nanoparticles; Introduction Titanium dioxide nanoparticles, smaller than 1 μm in at least one dimension, possess specific physico-chemical
  • NPs, and improve the bio-safety of TiO2 NPs-based products, every possible molecular mechanism of TiO2 NPs-induced neurotoxicity must be investigated comprehensively. Mechanisms of neurotoxicity of titanium dioxide nanoparticles in in vivo studies. Main mechanisms of neurotoxicity of titanium dioxide
PDF
Review
Published 29 Apr 2016

Comparison of the interactions of daunorubicin in a free form and attached to single-walled carbon nanotubes with model lipid membranes

  • Dorota Matyszewska

Beilstein J. Nanotechnol. 2016, 7, 524–532, doi:10.3762/bjnano.7.46

Graphical Abstract
  • fields. Such magnetic nanoparticles conjugated with DNR were reported to induce apoptosis of cancer cell lines [11][12]. Other examples of nanoparticles include titanium dioxide (TiO2) and gold nanoparticles (AuNPs) [13][14]. In the latter case the nanoparticles were also modified with aptamer – single
PDF
Album
Supp Info
Full Research Paper
Published 08 Apr 2016

Functional fusion of living systems with synthetic electrode interfaces

  • Oskar Staufer,
  • Sebastian Weber,
  • C. Peter Bengtson,
  • Hilmar Bading,
  • Joachim P. Spatz and
  • Amin Rustom

Beilstein J. Nanotechnol. 2016, 7, 296–301, doi:10.3762/bjnano.7.27

Graphical Abstract
  • -coated with a gold layer and applied to titanium/gold coated coverslips (a, 2). During wet chemical electrodeposition, monocrystalline gold pillars grow within the filter pores (a, 3). After dissolving the filter membrane using dichloromethane (DCM), free-standing electrodes (a, 4) are covered with a
PDF
Album
Supp Info
Letter
Published 26 Feb 2016

Application of biclustering of gene expression data and gene set enrichment analysis methods to identify potentially disease causing nanomaterials

  • Andrew Williams and
  • Sabina Halappanavar

Beilstein J. Nanotechnol. 2015, 6, 2438–2448, doi:10.3762/bjnano.6.252

Graphical Abstract
  • were examined and functionally related biclusters of genes showing similar expression profiles were identified. The identified biclusters were then used to conduct a gene set enrichment analysis on pulmonary gene expression profiles derived from mice exposed to nano-titanium dioxide (nano-TiO2), carbon
  • toxicity induced by nanoparticles of titanium dioxide (nano-TiO2) [46][47][48] and carbon nanotubes (CNTs) [49][50] of various sizes and properties. This work identified the properties of nano-TiO2 that influence their inflammogenic potential [51]. These studies have generated a large repository of gene
PDF
Album
Full Research Paper
Published 21 Dec 2015

Impact of ultrasonic dispersion on the photocatalytic activity of titania aggregates

  • Hoai Nga Le,
  • Frank Babick,
  • Klaus Kühn,
  • Minh Tan Nguyen,
  • Michael Stintz and
  • Gianaurelio Cuniberti

Beilstein J. Nanotechnol. 2015, 6, 2423–2430, doi:10.3762/bjnano.6.250

Graphical Abstract
  • oxidation, discoloration, mineralization, and degradation of organic pollutants [1][2]. Photocatalysis is an example of an AOP that has been effectively applied for the treatment of highly polluted water such as dye sewage [3][4]. Among the materials for this application, titanium dioxide (TiO2) is a very
  • conducted with commercial titanium(IV) oxide powder (Aeroxide® P25, Evonik, CAS-No. 13463-67-7), which consists of an approximately 80/20 w/w rutile/anatase mixture. MB (Merck, KGaA), a model substance in dye wastewater research [4][7], was chosen as the organic compound in the photocatalysis. The
PDF
Album
Supp Info
Full Research Paper
Published 17 Dec 2015

Orthogonal chemical functionalization of patterned gold on silica surfaces

  • Francisco Palazon,
  • Didier Léonard,
  • Thierry Le Mogne,
  • Francesca Zuttion,
  • Céline Chevalier,
  • Magali Phaner-Goutorbe,
  • Éliane Souteyrand,
  • Yann Chevolot and
  • Jean-Pierre Cloarec

Beilstein J. Nanotechnol. 2015, 6, 2272–2277, doi:10.3762/bjnano.6.233

Graphical Abstract
  • to 100 µm. Electron beam lithography was used to develop the gold nanostructures (typical dimensions of 100 nm). Titanium (8 nm) and gold (30 nm) were deposited by electron beam evaporation. After lift-off, the samples were cleaned by oxygen plasma treatment (Anatech) at 400 sccm of oxygen, 350 W of
PDF
Album
Letter
Published 01 Dec 2015

Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR) method

  • Mikalai V. Malashchonak,
  • Alexander V. Mazanik,
  • Olga V. Korolik,
  • Еugene А. Streltsov and
  • Anatoly I. Kulak

Beilstein J. Nanotechnol. 2015, 6, 2252–2262, doi:10.3762/bjnano.6.231

Graphical Abstract
  • microscopy (SEM) images of indium, zinc, and titanium oxide prepared films are shown in Figure 1. The In2O3 films (Figure 1a,d) have a uniform thickness and are characterized by a more dense packing of the grains as compared to the ZnO deposit, which consists of plate-like crystallites with approximately 100
  • titanium, respectively. Mesoporous In2O3 films were prepared by spin coating of an indium hydroxide colloidal solution with subsequent heat treatment [36]. A stable indium hydroxide sol was prepared by hydrolysis of a 0.25 mol/L In(NO3)3 solution with aqueous ammonia (12%) under vigorous stirring at 0 °C
  • . The synthesis of the titanium dioxide nanotube arrays was carried out in a two-electrode electrochemical cell by anodization of metallic titanium with a graphite counter electrode in an aqueous electrolyte containing 1 mol/L (NH4)2SO4, 0.1 mol/L NH4F and 0.2 mol/L H2C2O4 with pH 2.8 (corrected with
PDF
Album
Full Research Paper
Published 30 Nov 2015

Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration

  • Amirreza Shayganpour,
  • Alberto Rebaudi,
  • Pierpaolo Cortella,
  • Alberto Diaspro and
  • Marco Salerno

Beilstein J. Nanotechnol. 2015, 6, 2183–2192, doi:10.3762/bjnano.6.224

Graphical Abstract
  • , Italy 10.3762/bjnano.6.224 Abstract Clinical long-term osteointegration of titanium-based biomedical devices is the main goal for both dental and orthopedical implants. Both the surface morphology and the possible functionalization of the implant surface are important points. In the last decade
  • titanium. We anodized dental implants made of commercial grade titanium under different experimental conditions and characterized the resulting surface morphology with scanning electron microscopy equipped with an energy dispersive spectrometer. The appearance of nanopores on these implants confirm that
  • anodic porous titania can be obtained not only on ultrapure and flat titanium but also as a conformal coating on curved surfaces of real objects made of industrial titanium alloys. Raman spectroscopy showed that the titania phase obtained is anatase. Furthermore, it was demonstrated that by carrying out
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2015

Effect of SiNx diffusion barrier thickness on the structural properties and photocatalytic activity of TiO2 films obtained by sol–gel dip coating and reactive magnetron sputtering

  • Mohamed Nawfal Ghazzal,
  • Eric Aubry,
  • Nouari Chaoui and
  • Didier Robert

Beilstein J. Nanotechnol. 2015, 6, 2039–2045, doi:10.3762/bjnano.6.207

Graphical Abstract
  • films obtained by each process was discussed. Keywords: diffusion barrier; photocatalysis; reactive sputtering; SiNx; sol–gel; titanium dioxide film; TiO2; Introduction Titanium dioxide thin films in active phase (mostly anatase) have been widely studied due to their ability to produce strong oxidant
  • titanium dioxide grown on soda lime glass (SLG) occurs during the calcination step and is due to the diffusion of alkali elements (especially sodium ions, Na+) [3][4]. Usually, TiO2 is amorphous when deposited at low temperature [5][6]. Heat treatment at a higher temperature (around 450 °C) is usually
  • further purification and are as follows: titanium(IV) isopropoxide (TTIP) (Aldrich, 97%); ethanol absolute grade (99.9%); hydrochloric acid (37%) and Orange II (Sigma Chemical Co.). SiNx diffusion barrier In order to prevent the diffusion of sodium ions from the SLG (which contains 14 wt % of Na2O), a
PDF
Album
Full Research Paper
Published 16 Oct 2015

Distribution of Pd clusters on ultrathin, epitaxial TiOx films on Pt3Ti(111)

  • Christian Breinlich,
  • Maria Buchholz,
  • Marco Moors,
  • Tobias Pertram,
  • Conrad Becker and
  • Klaus Wandelt

Beilstein J. Nanotechnol. 2015, 6, 2007–2014, doi:10.3762/bjnano.6.204

Graphical Abstract
  • -type superstructure with fewer and shallower defects, making the template effect less discernible. Keywords: cluster growth; palladium; platinum–titanium alloy; scanning tunnelling microscopy (STM); template; titanium oxide; Introduction Catalysts often consist of metal nanoparticles dispersed on an
  • spillover to the metal particles [1][2]. Thus, the investigation of the properties of supported metal clusters and the influence of the metal-oxide interfaces are of great interest. In particular, titanium oxides are often correlated with the so-called strong metal support interaction (SMSI) effect, which
  • described the detailed protocol on how to grow these TiOx films by direct oxidation of the Pt3Ti(111) surface at elevated temperatures [6]. Granozzi et al., who found very similar phases by “reactive evaporation” of titanium onto a Pt(111) surface in oxygen [7], introduced the notation z'-TiOx (zigzag-like
PDF
Album
Full Research Paper
Published 09 Oct 2015

Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

  • Luc Aymard,
  • Yassine Oumellal and
  • Jean-Pierre Bonnet

Beilstein J. Nanotechnol. 2015, 6, 1821–1839, doi:10.3762/bjnano.6.186

Graphical Abstract
  • reversible capacity of 1500 mA·h·g−1 (irreversible loss of 25%) can be obtained while a reversible capacity of 2700 mA·h·g−1 (irreversible loss 33%) is measured for both processes (Figure 6). II.2 Reaction of TiH2 with lithium The study of the reactions of titanium hydride with lithium is motivated by the
  • properties of titanium hydride. This reaction can be studied without any parasite reaction as Ti does not form alloys with lithium. The TiH2 discharge capacity, presented in Figure 7, drastically differs from that of MgH2 through the presence of two slopes prior to a pseudo plateau. XRD analyses of the
  • Mg2MHx with lithium After studying the reaction of titanium hydride with lithium, during which a reaction path involving the formation of the metastable fco δ-TiH phase occurs, the complex hydrides Mg2FeH6, Mg2CoH5, Mg2NiH4 were chosen as models system for a conversion process with high energy storage
PDF
Album
Review
Published 31 Aug 2015

NanoE-Tox: New and in-depth database concerning ecotoxicity of nanomaterials

  • Katre Juganson,
  • Angela Ivask,
  • Irina Blinova,
  • Monika Mortimer and
  • Anne Kahru

Beilstein J. Nanotechnol. 2015, 6, 1788–1804, doi:10.3762/bjnano.6.183

Graphical Abstract
  • database NanoE-Tox that is available as Supporting Information File 2. The database is based on existing literature on ecotoxicology of eight ENMs with different chemical composition: carbon nanotubes (CNTs), fullerenes, silver (Ag), titanium dioxide (TiO2), zinc oxide (ZnO), cerium dioxide (CeO2), copper
  • Consumer Products Inventory [2]. According to this inventory, the most abundant ENMs used in consumer products are silver (438 products), titanium (107), carbon (90), silica (81), zinc (38) and gold (24) with the main applications in antimicrobial protection (381 products), coatings (188) and health
  • : carbon nanotubes (CNTs), fullerenes, silver (Ag), titanium dioxide (TiO2), zinc oxide (ZnO), cerium dioxide (CeO2), copper oxide (CuO), and iron oxide (FeOx; Fe2O3, Fe3O4). Furthermore, all these ENMs, except CuO, are listed by the Organisation for Economic Co-operation and Development (OECD) Working
PDF
Album
Supp Info
Full Research Paper
Published 25 Aug 2015

Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory

  • Marina E. Vance,
  • Todd Kuiken,
  • Eric P. Vejerano,
  • Sean P. McGinnis,
  • Michael F. Hochella Jr.,
  • David Rejeski and
  • Matthew S. Hull

Beilstein J. Nanotechnol. 2015, 6, 1769–1780, doi:10.3762/bjnano.6.181

Graphical Abstract
  • primary particles have at least one dimension between 1 and 100 nm, with no provisions for “novel properties” stemming from their small size [16]. Cosmetics that contain nanomaterials are also regulated by the European Commission, and although the use of nanoscale titanium dioxide is permitted, zinc oxide
  • nanomaterial component and 62 of those products list more than one nanomaterial component (e.g., a product comprised of both silver and titanium dioxide nanomaterials). There are 39 different types of nanomaterial components listed in the inventory (listed in Supporting Information File 1, Table S2), which
  • . Titanium dioxide (TiO2), silicon dioxide, and zinc oxide are the most produced nanomaterials worldwide (on a mass basis) and the global annual production of silver nanoparticles represents only 2% of that of TiO2 [20][21]. However, silver nanoparticles are the most popular advertised nanomaterial in the
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2015

How decision analysis can further nanoinformatics

  • Matthew E. Bates,
  • Sabrina Larkin,
  • Jeffrey M. Keisler and
  • Igor Linkov

Beilstein J. Nanotechnol. 2015, 6, 1594–1600, doi:10.3762/bjnano.6.162

Graphical Abstract
  • nanomaterial research is identified. A case study by Hristozov et al. used a quantitative WOE framework to evaluate the hazards associated with titanium dioxide nanoparticles. Three sets of criteria (physiochemical properties, toxicity, and data quality) were used to evaluate and calculate the hazard scores by
  • to prioritize research portfolios at the national level. This PDA was an extension of a VOI approach evaluating multiple research topics for three emerging nanomaterials: multiwalled carbon nanotubes, silver nanoparticles, and titanium dioxide nanoparticles [26]. First, a preliminary screening tool
PDF
Commentary
Published 22 Jul 2015

Transformations of PTCDA structures on rutile TiO2 induced by thermal annealing and intermolecular forces

  • Szymon Godlewski,
  • Jakub S. Prauzner-Bechcicki,
  • Thilo Glatzel,
  • Ernst Meyer and
  • Marek Szymoński

Beilstein J. Nanotechnol. 2015, 6, 1498–1507, doi:10.3762/bjnano.6.155

Graphical Abstract
  • example, titanium dioxide surfaces are exceptionally useful in various applications, including the catalysis, solar energy conversion, gas sensing and others [8][9][10][11][12][13][14][15]. Merging two classes of materials, i.e., metal oxide surfaces with organic molecules, seems to be one of the most
  • titanium dioxide. The chosen perylene derivative, i.e., PTCDA, is often considered as a model planar-stacking organic molecule for organic semiconductors [19][20][21][22][23][24][25][26], similar to how the CO molecule is regarded as a model for small inorganic molecules. There are several important
  • established on the basis of experimental and theoretical studies [14]. The (110) face is the most stable face of rutile titanium dioxide. The surface is composed of protruding oxygen rows running along the [001] crystallographic direction separated by approximately 0.649 nm. The structural model of the
PDF
Album
Full Research Paper
Published 10 Jul 2015

Using natural language processing techniques to inform research on nanotechnology

  • Nastassja A. Lewinski and
  • Bridget T. McInnes

Beilstein J. Nanotechnol. 2015, 6, 1439–1449, doi:10.3762/bjnano.6.149

Graphical Abstract
  • the sentence “The purpose of this study was to review published dose-response data on acute lung inflammation in rats after instillation of titanium dioxide particles or six types of carbon nanoparticles.” with the NANO, EXPO, TARGET and TOXIC mentions within the sentence “The purpose of this study
  • was to review published dose-response data on acute lung inflammation in rats after installation of titanium dioxide particles or six types of carbon nanoparticles ).” Features extracted from the context
PDF
Review
Published 01 Jul 2015

Scalable, high performance, enzymatic cathodes based on nanoimprint lithography

  • Dmitry Pankratov,
  • Richard Sundberg,
  • Javier Sotres,
  • Dmitry B. Suyatin,
  • Ivan Maximov,
  • Sergey Shleev and
  • Lars Montelius

Beilstein J. Nanotechnol. 2015, 6, 1377–1384, doi:10.3762/bjnano.6.142

Graphical Abstract
  • evaporation of metal films All samples were covered with 5 nm of Ti followed by 100 nm of Au by thermal evaporation in a custom built system at low pressure. Titanium wire (99.99+%) was used as the Ti source and was purchased from Goodfellow Cambridge, Ltd. (Huntingdon, England), while the Au nuggets (99.9999
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2015

Polymer blend lithography for metal films: large-area patterning with over 1 billion holes/inch2

  • Cheng Huang,
  • Alexander Förste,
  • Stefan Walheim and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2015, 6, 1205–1211, doi:10.3762/bjnano.6.123

Graphical Abstract
  • diameters of these holes range from 200 to 800 nm. The metal islands deposited into the holes are stable and resist the snow-jet treatment that is used for the lift-off of the PMMA mask. For some metals such as gold and silver, an adhesion enhancing interlayer of metal, e.g., titanium or chromium is
PDF
Album
Full Research Paper
Published 26 May 2015
Other Beilstein-Institut Open Science Activities