Search results

Search for "topography" in Full Text gives 406 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • distinguished according to their basic defense mechanism. These are (A) surface topography, which disturbs and inhibits the initial adhesion based on morphological features, (B) material modification, where intrinsic chemical and physical properties result in microbe-repellence, and (C) additives and coatings
  • that inhibit initial attachment or directly kill microbes (see Figure 2) [50]. Natural surfaces provide many examples of anti-adhesive topography, including nanostructured pikes on Cicada wings [51], micro-structured and patterned riblets of the shark skin scales [52], hierarchically micro- and
PDF
Album
Review
Published 08 Sep 2022

Temperature and chemical effects on the interfacial energy between a Ga–In–Sn eutectic liquid alloy and nanoscopic asperities

  • Yujin Han,
  • Pierre-Marie Thebault,
  • Corentin Audes,
  • Xuelin Wang,
  • Haiwoong Park,
  • Jian-Zhong Jiang and
  • Arnaud Caron

Beilstein J. Nanotechnol. 2022, 13, 817–827, doi:10.3762/bjnano.13.72

Graphical Abstract
  • could be tuned by texturing the substrate surface. The wetting of gallium-based liquid alloys is thus complex and depends on the stability of the oxide at the liquid–substrate interface, the reactivity with the substrate material, and the substrate topography. In this work, we applied atomic force
  • manufactured by ThermoFischer Scientific, USA. We used a monochromated Al Kα source and a spot size of 400 µm. The results presented below consist of the average of ten consecutively recorded measurements. Results and Discussion Figure 2 shows contact AFM topography images recorded at room temperature on the
  • surface of the eutectic Ga–In–Sn melt with three AFM tips of different chemistries, namely SiOx, PtSi, and Au. Figure 2 also indicates the surface roughness Rq value for each topography image. We recorded the presented topography images in contact mode by setting and controlling the normal force to Fn = 2
PDF
Album
Full Research Paper
Published 23 Aug 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • ) above the surface, thus, reproducing its topography. Fabrication and characterization of graphene field-effect transistors Receded-gate graphene field-effect transistors were fabricated on an 8″ Si/SiO2 (200 nm thick) wafers. Two arrays of devices were fabricated with different process steps (Wafer 1
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy

  • Masato Miyazaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2022, 13, 712–720, doi:10.3762/bjnano.13.63

Graphical Abstract
  • -AFM was operated in the FM mode [32] with a constant oscillation amplitude A of 500 pm. The cantilever deflection was measured by an optical beam deflection (OBD) method [33]. AC-KPFM was carried out in the FM mode, in which the topography and SPV were measured simultaneously. An AC bias VAC with
PDF
Album
Full Research Paper
Published 25 Jul 2022

Effects of substrate stiffness on the viscoelasticity and migration of prostate cancer cells examined by atomic force microscopy

  • Xiaoqiong Tang,
  • Yan Zhang,
  • Jiangbing Mao,
  • Yuhua Wang,
  • Zhenghong Zhang,
  • Zhengchao Wang and
  • Hongqin Yang

Beilstein J. Nanotechnol. 2022, 13, 560–569, doi:10.3762/bjnano.13.47

Graphical Abstract
  • , Figure S3c,d. Cell surface roughness is a quantitative measurement of the variability of cellular surface topography and serves as an indicator to assess the state of the cell (i.e., the greater the roughness, the greater the undulation of the cell surface topography [27]). It can be involved in many
  • with 2 mL of PBS. Then, the cells were observed in QI working mode with Setpoint 1 nN, Z length of 2000 nm, and pixel time of 50 ms. The topography scanning at each pixel position (128 × 128) of the selected area (50 μm × 50 μm) was done to obtain high-resolution surface topography features of cells
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
PDF
Album
Review
Published 11 Apr 2022

Selected properties of AlxZnyO thin films prepared by reactive pulsed magnetron sputtering using a two-element Zn/Al target

  • Witold Posadowski,
  • Artur Wiatrowski,
  • Jarosław Domaradzki and
  • Michał Mazur

Beilstein J. Nanotechnol. 2022, 13, 344–354, doi:10.3762/bjnano.13.29

Graphical Abstract
  • a function of the distance from the target axis on both sides (front and back) of the substrate. The lowest measured resistivity was about 4 × 10−3 Ω·cm. Additionally, optical properties, surface topography, and elemental composition were determined in selected areas of the substrate. Keywords
PDF
Album
Full Research Paper
Published 31 Mar 2022

The effect of metal surface nanomorphology on the output performance of a TENG

  • Yiru Wang,
  • Xin Zhao,
  • Yang Liu and
  • Wenjun Zhou

Beilstein J. Nanotechnol. 2022, 13, 298–312, doi:10.3762/bjnano.13.25

Graphical Abstract
  • above experiments, it can be concluded that at high temperatures and small pH values, the copper nanoscale topography grows more finely. When solution concentration and current density are high, and when the flow rate of the plating solution is low, the electrodeposited copper nanoscale structures will
  • agglomerate. Results and Discussion The XRD data (Figure 4) were processed using the JADE software to calculate the average particle sizes. SEM micrographs were screened according to the surface morphology size of the nanoparticles and colored according to the nanoscale topography size (Figure 5 and Figure 6
  • particles accounted for 1% of the particles in experiment 2 (0.25 mol/L, 100 A/m2, pH 2, 45 °C). The output performance was 6.5 V, which was 37% higher than that of a copper sheet without nanoscale topography (Figure 9). The output performance of experiments 6, 12, and 15, was improved by 35% to 40% (Figure
PDF
Album
Full Research Paper
Published 15 Mar 2022

Relationship between corrosion and nanoscale friction on a metallic glass

  • Haoran Ma and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2022, 13, 236–244, doi:10.3762/bjnano.13.18

Graphical Abstract
  • (Figure 1b), there are no pits on the sample surface even after immersion in NaCl solution for 72 h. This weak corrosion during immersion without applied potential will be discussed in more detail below. Figure 3a shows the topography of the scan field and corresponding friction force images after 16 scan
  • central repetitively scanned field and the surrounding area in the topography image. However, we do observe a contrast between these two areas in the friction force image, revealing the position of the scan field. The corresponding line-scan profiles across the scan field and surrounding area are
  • friction and topography, on the one hand, and double layer structure, on the other hand, was observed for MG surfaces after polarization in phosphate buffer [21]. We will now discuss our experimental results in view of the double layer structure of the surface oxide film formed during immersion. The tip
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • corona alters the surface properties and transforms the physical, chemical, and biological characteristics of the nanomaterial. The types and amounts of adsorbed proteins are influenced by certain physiochemical qualities of the nanomaterial, such as the size, shape, charge as well as topography
PDF
Album
Review
Published 14 Feb 2022

Topographic signatures and manipulations of Fe atoms, CO molecules and NaCl islands on superconducting Pb(111)

  • Carl Drechsel,
  • Philipp D’Astolfo,
  • Jung-Ching Liu,
  • Thilo Glatzel,
  • Rémy Pawlak and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2022, 13, 1–9, doi:10.3762/bjnano.13.1

Graphical Abstract
  • metal surface, as observed on different noble metals [45][46]. Figure 1b and Figure 1c show STM topographic images after such process. While the surface topography remains unchanged in comparison to Figure 1a, numerous scan instabilities are now present, which we attribute to CO molecules diffusing
  • (111) superconducting surface. Carbon monoxide (CO) molecules adsorbed on Pb(111). (a) STM overview image of pristine Pb(111) (Vt = −0.1 V, It = 1 pA). (b) STM image after CO deposition. The estimated coverage is below 0.2 monolayers. (c) Close-up STM topography of CO molecules diffusing on the surface
PDF
Album
Letter
Published 03 Jan 2022

Measurement of polarization effects in dual-phase ceria-based oxygen permeation membranes using Kelvin probe force microscopy

  • Kerstin Neuhaus,
  • Christina Schmidt,
  • Liudmila Fischer,
  • Wilhelm Albert Meulenberg,
  • Ke Ran,
  • Joachim Mayer and
  • Stefan Baumann

Beilstein J. Nanotechnol. 2021, 12, 1380–1391, doi:10.3762/bjnano.12.102

Graphical Abstract
  • were performed in a single-pass experiment. For this kind of measurements, the surface potential and the sample topography are mapped in a single pass in intermittent contact mode with the cantilever vibrating at its resonance frequency (i.e., the cantilever is not in lift mode during this experiment
  • occur along the entire length of the grain boundary and is instead localized in one area. Neither for the positive nor for the negative polarization experiments, a change of the local sample topography was observed, which would hint at a local phase transformation. As the surface potential also relaxes
PDF
Album
Full Research Paper
Published 15 Dec 2021

Alteration of nanomechanical properties of pancreatic cancer cells through anticancer drug treatment revealed by atomic force microscopy

  • Xiaoteng Liang,
  • Shuai Liu,
  • Xiuchao Wang,
  • Dan Xia and
  • Qiang Li

Beilstein J. Nanotechnol. 2021, 12, 1372–1379, doi:10.3762/bjnano.12.101

Graphical Abstract
  • the cancer cells from the normal ones, the mechanical properties underneath the topography of different cells were evaluated. Figure 3 shows the nanomechanical mapping, typical force–distance curve and the corresponding Young’s modulus distributions of single cells of different types. For the
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2021

A review on slip boundary conditions at the nanoscale: recent development and applications

  • Ruifei Wang,
  • Jin Chai,
  • Bobo Luo,
  • Xiong Liu,
  • Jianting Zhang,
  • Min Wu,
  • Mingdan Wei and
  • Zhuanyue Ma

Beilstein J. Nanotechnol. 2021, 12, 1237–1251, doi:10.3762/bjnano.12.91

Graphical Abstract
  • surface roughness on the flow boundary conditions, since a perfectly smooth surface is an idealized model even at molecular scales. Numerous investigations have demonstrated that the variations of topography on the surface can drastically influence the effective slip length [81][82]. However, the
  • surfaces as shown in Figure 6. Such structured surfaces, with definite dimensions of the structures, are very crucial for the design and fabrication of nanofluidic devices [83][84][85]. Many previous works have shown that the topography variation of structured surfaces can induce the variation of the
PDF
Album
Review
Published 17 Nov 2021

Two dynamic modes to streamline challenging atomic force microscopy measurements

  • Alexei G. Temiryazev,
  • Andrey V. Krayev and
  • Marina P. Temiryazeva

Beilstein J. Nanotechnol. 2021, 12, 1226–1236, doi:10.3762/bjnano.12.90

Graphical Abstract
  • strictly limited to the measurement of topography. When scanning in air, the interaction of the tip with the sample can be reduced, and the measurements themselves are performed more delicately when using resonance modes. In this class of AFM techniques, the probe is forced to oscillate close to its
  • signal is saturated. If p = 50%, then the maximum value of δA does not exceed A0/2 and can be significantly less than h. This leads to inaccurate profile measurements. When descending from a step edge, so-called parachuting is observed and the actual topography profile is smoothed out. The climb to a
  • steep topography. Likewise, when descending a steep edge, parachuting will not happen, as the probe will remain over each point as long as necessary to reach the reference level of the amplitude. Thus, the actual time taking to acquire a scan is determined both by the speed of movement between the
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2021

Open-loop amplitude-modulation Kelvin probe force microscopy operated in single-pass PeakForce tapping mode

  • Gheorghe Stan and
  • Pradeep Namboodiri

Beilstein J. Nanotechnol. 2021, 12, 1115–1126, doi:10.3762/bjnano.12.83

Graphical Abstract
  • the measured electrical tip–sample interaction is directly affixed to the topography rendered by the mechanical PFT modulation at each tap. Furthermore, because the detailed response of the cantilever to the bias stimulation was recorded, it was possible to analyze and separate an average contribution
  • the out-of-contact intervals of the PFT motion. Because this method consists of a single-pass scan, the CPD determined from the acquired data at a given location can be directly affixed to the topography provided by PFT at that location; in two-pass KPFM scans, the CPD trace determined in the second
  • pass is distributed over the topography line recorded in the first pass. Also, because the response to the applied bias modulation was fully acquired in the proposed OL KPFM implementation, the CPD was determined by modeling the electrostatic interaction between the AFM probe and the sample. This was
PDF
Album
Full Research Paper
Published 06 Oct 2021

Is the Ne operation of the helium ion microscope suitable for electron backscatter diffraction sample preparation?

  • Annalena Wolff

Beilstein J. Nanotechnol. 2021, 12, 965–983, doi:10.3762/bjnano.12.73

Graphical Abstract
  • was measured by TEM for different grains (see Supporting Information File 1). Both the TEM image and the FSD image, the latter is recorded with the EBSD detector and highlights the surface topography, show the different milling depths for different grains. Faster milling grains were milled to a 226 nm
  • maps were recorded and evaluated. The measurements and evaluations are shown in Figure 7a–c. The figure insets show the experiments with the lowest ion dose. The 0° incidence angle milling creates a strong surface topography in both cases, as evidenced in the forward scatter diffraction image (Figure
  •  7a). Figure 7a shows an overlay of the FSD image with the phase map. A strong surface topography was expected as different grain orientations mill at different rates. As a result of the induced strong topography, a lot of the regions cannot be indexed, returning twice the amount of zero solutions for
PDF
Album
Supp Info
Full Research Paper
Published 31 Aug 2021

Self-assembly of Eucalyptus gunnii wax tubules and pure ß-diketone on HOPG and glass

  • Miriam Anna Huth,
  • Axel Huth and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2021, 12, 939–949, doi:10.3762/bjnano.12.70

Graphical Abstract
  • solvent and were done in tapping mode with tapping-mode cantilevers (Tap300-G, Budget Sensors, Sofia, Bulgaria). The scan rates ranged from 0.7 to 2.3 Hz and the scan sizes from 3 × 3 to 10 × 10 µm. The maximum possible set point was used (approx. 60–70% of drive amplitude). Obtained topography and
PDF
Album
Full Research Paper
Published 20 Aug 2021

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
  • topography, for example, adhesion, phase shift, stiffness, work function, or friction. In the following section, the utility of CNN in SPM is illustrated through several examples taken from the literature. Enhancing speed of image acquisition As discussed above, SPM imaging is inherently slow. One of the
  • acquired using an enhanced scanning technique termed “ringing mode”, which simultaneously gives mappings of other surface properties together with topography [133]. In this case, it was found that whereas topography was a poor criterion for separating the two populations, adhesion was much better
PDF
Album
Review
Published 13 Aug 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • piezoelectricity has been patterned into multilayered MoTe2 [56]. In the case of helium ion irradiation of a bulk van der Waals layered ferroelectric semiconductor crystal (CuInP2S6), local volume expansion due to helium ion implantation was observed, forming a conical surface topography within which for
  • silicon substrate supporting an amorphous nanoporous aluminum oxide structure was irradiated with helium ions causing dome-shaped swelling of the substrate and thereby 3D deformation of the supported material, accompanied by enlargement of the nanopores to accommodate the new topography [96]. 3
PDF
Album
Review
Published 02 Jul 2021

Impact of GaAs(100) surface preparation on EQE of AZO/Al2O3/p-GaAs photovoltaic structures

  • Piotr Caban,
  • Rafał Pietruszka,
  • Jarosław Kaszewski,
  • Monika Ożga,
  • Bartłomiej S. Witkowski,
  • Krzysztof Kopalko,
  • Piotr Kuźmiuk,
  • Katarzyna Gwóźdź,
  • Ewa Płaczek-Popko,
  • Krystyna Lawniczak-Jablonska and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 578–592, doi:10.3762/bjnano.12.48

Graphical Abstract
  • analyzed using a scanning electron microscope (Hitachi SU-70) with a secondary electron detector operating at 15 kV. The topography of the surface of the layers was analyzed using an atomic force microscope (Bruker Dimension Icon) working in peak-force tapping mode using a ScanAsyst algorithm. A ScanAsyst
  • B series, respectively. From the AFM results shown in Figure 3 and Figure 4, one can see that A1, A2, A4, B1, and B4 samples exhibit uniform surfaces by the means of polycrystalline thin film topography. By taking into consideration the roughness of the surfaces (RMS was measured for an area of 4
  • and SEM and the value obtained for the AZO layer thickness was approx. 50 nm in the cross-sections. The topography of the surface depends on the substrate preparation method. The lowest roughness (by means of RMS) was found in the samples etched with ammonium hydroxide solution. Also, these samples
PDF
Album
Full Research Paper
Published 28 Jun 2021

Properties of graphene deposited on GaN nanowires: influence of nanowire roughness, self-induced nanogating and defects

  • Jakub Kierdaszuk,
  • Piotr Kaźmierczak,
  • Justyna Grzonka,
  • Aleksandra Krajewska,
  • Aleksandra Przewłoka,
  • Wawrzyniec Kaszub,
  • Zbigniew R. Zytkiewicz,
  • Marta Sobanska,
  • Maria Kamińska,
  • Andrzej Wysmołek and
  • Aneta Drabińska

Beilstein J. Nanotechnol. 2021, 12, 566–577, doi:10.3762/bjnano.12.47

Graphical Abstract
  • graphene is observed in the N500 sample (Figure 1c, Figure 1f). Contrarily to the other samples, in this case graphene touches only the highest NWs and does not have any contact with the lowest ones. Furthermore, graphene in the N100 and N500 samples is pierced by some of the highest NWs. The topography of
PDF
Album
Full Research Paper
Published 22 Jun 2021

Local stiffness and work function variations of hexagonal boron nitride on Cu(111)

  • Abhishek Grewal,
  • Yuqi Wang,
  • Matthias Münks,
  • Klaus Kern and
  • Markus Ternes

Beilstein J. Nanotechnol. 2021, 12, 559–565, doi:10.3762/bjnano.12.46

Graphical Abstract
  • 6.1 eV [35], which can be modulated by the Moiré pattern [30]. We analyse the substrate using STM topography, dI/dV, and frequency shift, Δf, AFM maps under low (in-gap) and high (conduction band onset) bias conditions (see Figure 2). Due to h-BN being insulating, no spectroscopic contribution is
  • expected at low bias voltages making it transparent to STM, as seen in Figure 2b,d. At this bias, only Friedel oscillations due to the scattering of the Cu(111) surface-state electrons on defects and adsorbates are observed. Contrarily, as Figure 2a reveals, at higher bias, the STM topography corresponds
  • images and the STM topography. Also, the Δf variation between rim and valley areas in both images changes only marginally. The additionally imaged adsorbates (dots or ring-like features) allow, thereby, the precise alignment between the subsequently acquired data sets. Work function variation While the
PDF
Album
Letter
Published 17 Jun 2021

Influence of electrospray deposition on C60 molecular assemblies

  • Antoine Hinaut,
  • Sebastian Scherb,
  • Sara Freund,
  • Zhao Liu,
  • Thilo Glatzel and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2021, 12, 552–558, doi:10.3762/bjnano.12.45

Graphical Abstract
  • nc-AFM topography image of a Au(111) surface covered with 0.35 monolayers of C60 molecules is shown in Figure 2a. Large clean terraces separated by monoatomic step edges are observed. On top, the adsorbed C60 molecules are seen in two possible locations. First, all step edges of the surface are
  • molecules deposited on Au(111) surfaces with HV-ESD are known to form large assemblies [5]. A Au(111) surface with a coverage of 0.30 monolayers of C60 after HV-ESD, similar to that after TE in Figure 2a, is shown in the topography map in Figure 2b. Monoatomic step edges and terraces of a few hundreds of
  • responsible for the nucleation of islands in the middle of the terraces. C60 on KBr(001) surface The deposition of C60 on bulk insulators is known to lead to the creation of large islands [22][31]. A typical KBr(001) surface after TE of C60 is shown in the nc-AFM topography image in Figure 3a. Large clean
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2021

Reconstruction of a 2D layer of KBr on Ir(111) and electromechanical alteration by graphene

  • Zhao Liu,
  • Antoine Hinaut,
  • Stefan Peeters,
  • Sebastian Scherb,
  • Ernst Meyer,
  • Maria Clelia Righi and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2021, 12, 432–439, doi:10.3762/bjnano.12.35

Graphical Abstract
  • temperature and density functional theory (DFT) calculations. The results suggest that this particular reconstruction of KBr occurs on Ir(111), due to a specific correlation of the lattice parameter. When deposited on a single layer of graphene on the same substrate, the topography of the KBr islands returns
  • the iridium terraces. Figure 1a shows a large-scale topography image of a KBr island on Ir(111) measured by nc-AFM at room temperature. The monoatomic steps between the Ir terraces have a height of 235 pm as expected for Ir(111). The KBr islands are monolayers with an average height of 340 pm under
  • Kelvin probe force microscopy (KPFM), as can be seen in Supporting Information File 1, Figure S3. To be able to tune this corrugated structure, a monolayer of graphene was prepared on Ir(111) before KBr deposition. Figure 4a shows a large-area topography of the Ir(111) surface, half of which is covered
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2021
Other Beilstein-Institut Open Science Activities