Search results

Search for "Henry reaction" in Full Text gives 31 result(s) in Beilstein Journal of Organic Chemistry.

Evaluation of a chiral cubane-based Schiff base ligand in asymmetric catalysis reactions

  • Kyle F. Biegasiewicz,
  • Michelle L. Ingalsbe,
  • Jeffrey D. St. Denis,
  • James L. Gleason,
  • Junming Ho,
  • Michelle L. Coote,
  • G. Paul Savage and
  • Ronny Priefer

Beilstein J. Org. Chem. 2012, 8, 1814–1818, doi:10.3762/bjoc.8.207

Graphical Abstract
  • , MA 01119, USA 10.3762/bjoc.8.207 Abstract Recently, a novel chiral cubane-based Schiff base ligand was reported to yield modest enantioselectivity in the Henry reaction. To further explore the utility of this ligand in other asymmetric organic transformations, we evaluated its stereoselectivity in
  • /fragmentation to afford benzaldehyde, which further reacts to give benzyl benzoate [18]. Recently, we synthesized the first cubane-based Schiff base ligand (Figure 1) and screened it in the Henry reaction in the synthesis of β-nitroalcohols [19]. The cubyl moiety can be considered a cross between a tert-butyl
  • 3). As previously reported, CuCl gave the best results with the Henry reaction [19]; hence, we decided to evaluate this copper source. This, however, did not yield any encouraging results with only a maximum ee value of 4% when performed in Et2O (Table 2, entry 4). We next evaluated a Cu(OTf
PDF
Album
Supp Info
Letter
Published 22 Oct 2012

Organocatalytic tandem Michael addition reactions: A powerful access to the enantioselective synthesis of functionalized chromenes, thiochromenes and 1,2-dihydroquinolines

  • Chittaranjan Bhanja,
  • Satyaban Jena,
  • Sabita Nayak and
  • Seetaram Mohapatra

Beilstein J. Org. Chem. 2012, 8, 1668–1694, doi:10.3762/bjoc.8.191

Graphical Abstract
  • salicylaldehydes and α,β-unsaturated nitro compounds are well documented in literature [54][55][56][57][58][59], but there are very few reports on the organocatalyzed synthesis of chiral nitrochromenes. Xu et al. [60] in 2008 first reported a novel organocatalytic tandem oxa-Michael–Henry reaction between
  • 15:1 dr). In the same year Zhao et al. [70] reported an efficient synthesis of highly functionalized thiochromans having three chiral centers, using a tandem thio-Michael–Henry reaction of 2-mercaptobenzaldehydes 34 with β-nitrostyrenes 46 and using cupreine XXXIXa as catalyst in anhydrous diethyl
  • organocatalytic enantioselective domino aza-Michael–Henry reaction of 2-aminobenzaldehydes 54 and aromatic/aliphatic nitro olefins 27, catalyzed by bifunctional thiourea catalyst XXXVIa in benzoic acid, to generate synthetically versatile 3-nitro-1,2-dihydroquinolines 61. Synergistic activation of both reactants
PDF
Album
Review
Published 04 Oct 2012

Synthesis and evaluation of new guanidine-thiourea organocatalyst for the nitro-Michael reaction: Theoretical studies on mechanism and enantioselectivity

  • Tatyana E. Shubina,
  • Matthias Freund,
  • Sebastian Schenker,
  • Timothy Clark and
  • Svetlana B. Tsogoeva

Beilstein J. Org. Chem. 2012, 8, 1485–1498, doi:10.3762/bjoc.8.168

Graphical Abstract
  • for its ability to mediate the enantioselective C–C bond-formation reactions. As an initial model transformation we studied the Henry reaction of 3-phenylpropionaldehyde (8) with nitromethane (9) in the presence of 10 mol % of 7, with the reaction proceeding for 48 h at room temperature in toluene
  • (m, 1H), 3.44–3.58 (m, 1H), 3.71–3.98 (m, 1H), 4.60 (br s, 4H), 7.22–7.50 (m, 5H) ppm; MS–FAB (m/z): 107, 120, 136, 154, 176, 199, 286, 307, 320 [M + H]+, 376, 391. Henry reaction of 3-phenylpropionaldehyde (8) and nitromethane (9), mediated by 7: 4-Phenyl-1-nitro-2-butanol (10): A solution of 7 (0.1
  • ). Bond lengths are in Å. Synthesis of guanidine-thiourea organocatalyst 7. Henry reaction of 3-phenylpropionaldehyde (8) with nitromethane (9). Michael addition of (12) and (14) to trans-β-nitrostyrene (11). Energy profile for the first step of the reaction between catalyst 7 and malonate 14. Energies
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2012

Control over molecular motion using the cistrans photoisomerization of the azo group

  • Estíbaliz Merino and
  • María Ribagorda

Beilstein J. Org. Chem. 2012, 8, 1071–1090, doi:10.3762/bjoc.8.119

Graphical Abstract
  • inaccessible. The trans–cis photoisomerization process changes the disposition of the aromatic rings, unlocking access to the basic center of the piperidine. This switch, of Brønsted base type, has been tested in the Henry reaction between p-nitrobenzaldehyde and nitroethane ensuring that only the cis isomer
PDF
Album
Review
Published 12 Jul 2012

An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals

  • Marcus Baumann,
  • Ian R. Baxendale,
  • Steven V. Ley and
  • Nikzad Nikbin

Beilstein J. Org. Chem. 2011, 7, 442–495, doi:10.3762/bjoc.7.57

Graphical Abstract
PDF
Album
Review
Published 18 Apr 2011

Continuous flow based catch and release protocol for the synthesis of α-ketoesters

  • Alessandro Palmieri,
  • Steven V. Ley,
  • Anastasios Polyzos,
  • Mark Ladlow and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2009, 5, No. 23, doi:10.3762/bjoc.5.23

Graphical Abstract
  • first reported example of Henry reaction conducted in flow and we intend to elaborate on this important transformation in future studies. Figure 2 illustrates the examples and yields of α-ketoester products afforded by this new approach. While the list is not extensive, we have established that the
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2009
Other Beilstein-Institut Open Science Activities