Search results

Search for "metal-free" in Full Text gives 249 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Green and sustainable approaches for the Friedel–Crafts reaction between aldehydes and indoles

  • Periklis X. Kolagkis,
  • Eirini M. Galathri and
  • Christoforos G. Kokotos

Beilstein J. Org. Chem. 2024, 20, 379–426, doi:10.3762/bjoc.20.36

Graphical Abstract
PDF
Album
Review
Published 22 Feb 2024

Nucleophilic functionalization of thianthrenium salts under basic conditions

  • Xinting Fan,
  • Duo Zhang,
  • Xiangchuan Xiu,
  • Bin Xu,
  • Yu Yuan,
  • Feng Chen and
  • Pan Gao

Beilstein J. Org. Chem. 2024, 20, 257–263, doi:10.3762/bjoc.20.26

Graphical Abstract
  • -free conditions. This strategy exhibits good functional-group tolerance, operational simplicity, and an extensive range of compatible substrates. Keywords: amination; functionalization of alcohol; metal-free; S-(alkyl)thianthrenium salts; thioetherification; Introduction Sulfonium salts [1][2][3][4
  • the resulting products (3ah–aj) can also be obtained with high efficiency. This underscores the viability of integrating this metal-free thioetherification method with other traditional cross-coupling reactions. Sterically hindered ortho-disubstituted thiophenol 2k is also compatible with this
  • investigate simple alkylamines (2s and 2t) as the substrates. In doing so, we could not isolate the corresponding amination products 3as and 3at. To showcase the practical utility of our metal-free thioether formation process, we conducted a 5.0 mmol scale reaction and obtained the target product 3aa in 69
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2024

Metal-catalyzed coupling/carbonylative cyclizations for accessing dibenzodiazepinones: an expedient route to clozapine and other drugs

  • Amina Moutayakine and
  • Anthony J. Burke

Beilstein J. Org. Chem. 2024, 20, 193–204, doi:10.3762/bjoc.20.19

Graphical Abstract
  • carbonylative intramolecular cyclization of the intermediate 3a using different catalytic systems. To elucidate the role of the palladium catalyst in this process, we carried out the initial attempt under metal free-conditions using molybdenum hexacarbonyl (Mo(CO)6) as CO surrogate, in the presence of Et3N in
PDF
Album
Supp Info
Full Research Paper
Published 31 Jan 2024

Correction: Synthesis of highly substituted fluorenones via metal-free TBHP-promoted oxidative cyclization of 2-(aminomethyl)biphenyls. Application to the total synthesis of nobilone

  • Ilya A. P. Jourjine,
  • Lukas Zeisel,
  • Jürgen Krauß and
  • Franz Bracher

Beilstein J. Org. Chem. 2024, 20, 170–172, doi:10.3762/bjoc.20.16

Graphical Abstract
PDF
Original
Article
Correction
Published 30 Jan 2024

Copper-promoted C5-selective bromination of 8-aminoquinoline amides with alkyl bromides

  • Changdong Shao,
  • Chen Ma,
  • Li Li,
  • Jingyi Liu,
  • Yanan Shen,
  • Chen Chen,
  • Qionglin Yang,
  • Tianyi Xu,
  • Zhengsong Hu,
  • Yuhe Kan and
  • Tingting Zhang

Beilstein J. Org. Chem. 2024, 20, 155–161, doi:10.3762/bjoc.20.14

Graphical Abstract
  • selective C5-bromination of 8-aminoquinoline amides using carbon tetrabromide and dibromomethane under photo- and electrocatalysis conditions [27][28]. In 2017, Xia and co-workers reported a novel, mild, metal-free, and regioselective bromination of amides, wherein the organic dye eosin Y acted as the
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2024

Cycloaddition reactions of heterocyclic azides with 2-cyanoacetamidines as a new route to C,N-diheteroarylcarbamidines

  • Pavel S. Silaichev,
  • Tetyana V. Beryozkina,
  • Vsevolod V. Melekhin,
  • Valeriy O. Filimonov,
  • Andrey N. Maslivets,
  • Vladimir G. Ilkin,
  • Wim Dehaen and
  • Vasiliy A. Bakulev

Beilstein J. Org. Chem. 2024, 20, 17–24, doi:10.3762/bjoc.20.3

Graphical Abstract
  • and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium 10.3762/bjoc.20.3 Abstract A novel and efficient base-catalyzed, transition-metal-free method for the synthesis of diheterocyclic compounds connected by an amidine linker, including apart from the common
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2024

Beyond n-dopants for organic semiconductors: use of bibenzo[d]imidazoles in UV-promoted dehalogenation reactions of organic halides

  • Kan Tang,
  • Megan R. Brown,
  • Chad Risko,
  • Melissa K. Gish,
  • Garry Rumbles,
  • Phuc H. Pham,
  • Oana R. Luca,
  • Stephen Barlow and
  • Seth R. Marder

Beilstein J. Org. Chem. 2023, 19, 1912–1922, doi:10.3762/bjoc.19.142

Graphical Abstract
  • bibenzyls being the dominant products. These reaction conditions represent an alternative metal-free approach to the conventional synthesis of bibenzyls through the reaction of Grignard or organolithium reagents with benzyl halides, or to the use of highly active metal reagents [33][34][35][36] or metal
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2023

Aromatic systems with two and three pyridine-2,6-dicarbazolyl-3,5-dicarbonitrile fragments as electron-transporting organic semiconductors exhibiting long-lived emissions

  • Karolis Leitonas,
  • Brigita Vigante,
  • Dmytro Volyniuk,
  • Audrius Bucinskas,
  • Pavels Dimitrijevs,
  • Sindija Lapcinska,
  • Pavel Arsenyan and
  • Juozas Vidas Grazulevicius

Beilstein J. Org. Chem. 2023, 19, 1867–1880, doi:10.3762/bjoc.19.139

Graphical Abstract
  • Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia 10.3762/bjoc.19.139 Abstract The pyridine-3,5-dicarbonitrile moiety has gained significant attention in the field of materials chemistry, particularly in the development of heavy-metal-free pure organic light-emitting diodes (OLEDs). Extensive
  • pyridine-3,5-dicarbonitrile moiety attracted a great deal of attention in the last decade in the field of materials chemistry, precisely in the development of novel heavy-metal-free pure organic light-emitting diodes (OLEDs). Inexpensive and environmentally friendly emitters are vital for organic
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2023

Recent advancements in iodide/phosphine-mediated photoredox radical reactions

  • Tinglan Liu,
  • Yu Zhou,
  • Junhong Tang and
  • Chengming Wang

Beilstein J. Org. Chem. 2023, 19, 1785–1803, doi:10.3762/bjoc.19.131

Graphical Abstract
  • mechanistic aspects of the reaction and highlighted the potential of the NaI/PPh3 catalytic system for achieving efficient and transition-metal-free photocatalytic transformations. Following that, Li and his research group documented similar results (Scheme 4) [10]. They extensively investigated the
PDF
Album
Review
Published 22 Nov 2023

Radical chemistry in polymer science: an overview and recent advances

  • Zixiao Wang,
  • Feichen Cui,
  • Yang Sui and
  • Jiajun Yan

Beilstein J. Org. Chem. 2023, 19, 1580–1603, doi:10.3762/bjoc.19.116

Graphical Abstract
  • down to 10 ppm [56], which to some extent, solves the problem of metal impurities. Meanwhile, the presence of external stimuli in eATRP, photoATRP, and ultrasonic ATRP, allows spatial and temporal control over the polymerization [57]. Hawker et al. proposed a metal-free ATRP in 2014 using an organic
  • mechanism (cf. section 3.2) [86]. 2.3 Metal-free ring opening metathesis polymerization (MF-ROMP) ROMP is a powerful and broadly applicable technique for synthesizing polymers. Traditional ROMP systems are initiated by transition-metal complexes and Ru-based alkylidene complexes, which are also known as
  • propagation. However, removing this residue from the product by traditional chromatographic methods can be a challenging task and limits the application of ROMP-produced polymers in biomedical and microelectronic fields [88]. To avoid such drawbacks, the development of a metal-free (MF) procedures is
PDF
Album
Review
Published 18 Oct 2023

C–H bond functionalization: recent discoveries and future directions

  • Indranil Chatterjee

Beilstein J. Org. Chem. 2023, 19, 1568–1569, doi:10.3762/bjoc.19.114

Graphical Abstract
  • its combination with organometallic chemistry for site-selective C−H bond functionalization [3][4]. Recent years have witnessed many viable strategies for the synthesis of complex targets utilizing photoredox catalysis, electroorganic catalysis, Lewis acid catalysis, and transition-metal-free
PDF
Editorial
Published 17 Oct 2023

Morpholine-mediated defluorinative cycloaddition of gem-difluoroalkenes and organic azides

  • Tzu-Yu Huang,
  • Mario Djugovski,
  • Sweta Adhikari,
  • Destinee L. Manning and
  • Sudeshna Roy

Beilstein J. Org. Chem. 2023, 19, 1545–1554, doi:10.3762/bjoc.19.111

Graphical Abstract
  • Tzu-Yu Huang Mario Djugovski Sweta Adhikari Destinee L. Manning Sudeshna Roy Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA 10.3762/bjoc.19.111 Abstract Here, we report the first transition-metal-free defluorinative cycloaddition of
  • are typically accessed in two ways: (1) direct synthesis using metal or metal-free catalysis and (2) post-functionalization of disubstituted-1,2,3-triazoles [17][18]. The direct synthesis of fully substituted triazoles entails either metal-free carbonyl-based [19][20][21] or metal-mediated and strain
  • organic azides in morpholine as a solvent forming C-4-morpholine functionalized fully decorated 1,2,3-triazoles with potential applications in pharmaceutical, biomedical, agrichemical, and materials sciences. This study fills a critical gap in the literature as it is a transition-metal-free and
PDF
Album
Supp Info
Letter
Published 05 Oct 2023

N-Sulfenylsuccinimide/phthalimide: an alternative sulfenylating reagent in organic transformations

  • Fatemeh Doraghi,
  • Seyedeh Pegah Aledavoud,
  • Mehdi Ghanbarlou,
  • Bagher Larijani and
  • Mohammad Mahdavi

Beilstein J. Org. Chem. 2023, 19, 1471–1502, doi:10.3762/bjoc.19.106

Graphical Abstract
  • functional materials and indispensable synthetic intermediates in drug discovery [31][32][33]. Because of their value, constructing C–S bonds has attracted significant attention via metal-catalyzed cross-coupling reactions and metal-free C–S bond formation [34][35][36][37]. Direct sulfenylation of the C–H
  • 102 were obtained in moderate to excellent yields with good to excellent enantioselectivities (Scheme 42) [76]. It should be noted that the authors did not define the exact role of the organocatalyst in the reaction mechanism. Transition-metal-free C–H sulfenylation of electron-rich arenes 103 by N
  • . developed a metal-free procedure for the synthesis of functionalized alkynyl disulfides 149 and acyl disulfides 151 under acid catalysis (Scheme 64) [94]. In this regard, they used N-alkynylthiophthalimides in the reaction with thiols to make a series of bioactive disulfides. Various simple thiols, cystines
PDF
Album
Review
Published 27 Sep 2023

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • attractive features of this approach. Li et al. reported a new strategy for a metal-free CDC alkylation under mild conditions using 2,3-butanedione (diacetyl) as the hydrogen atom abstractor to extrude a hydrogen from the ether substrate to generate the radical intermediate which affords the products (Scheme
PDF
Album
Review
Published 06 Sep 2023
Graphical Abstract
  • various acids [49]. This system is completely metal-free and uses one photocatalyst rather than separate sensitizer and catalyst species. However, the electron source for the reductions was a thiolate sacrificial donor and not water. Thiolates are used as redox mediators in other systems such as dye
PDF
Album
Supp Info
Review
Published 08 Aug 2023

Exploring the role of halogen bonding in iodonium ylides: insights into unexpected reactivity and reaction control

  • Carlee A. Montgomery and
  • Graham K. Murphy

Beilstein J. Org. Chem. 2023, 19, 1171–1190, doi:10.3762/bjoc.19.86

Graphical Abstract
  • elimination) more commonly associated with transition metal-mediated chemistry; however, halogen- or σ-hole bonding has recently emerged as a credible explanation for the diverse reactivity that iodonium ylides undergo. σ-Hole bonding theory offers a means to explain the occurrence of transition metal-free
  • ]. However, numerous inconsistencies have been observed when comparing the outcomes of diazo- and iodonium ylide-based metallocarbene reactions, especially during metal-free control experiments, which led researchers to propose alternative, carbene-free reaction pathways for iodonium ylides. This was first
  • reported by Hadjiarapoglou, Varvoglis and co-workers [107][108][109][110][111][112] and Moriarty et al. [113][114][115], who observed metal-free cycloadditions between iodonium ylides and olefins in the absence of a transition metal catalyst. These reactions proceeded under mild conditions without catalyst
PDF
Album
Review
Published 07 Aug 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
PDF
Album
Review
Published 28 Jul 2023

Copper-catalyzed N-arylation of amines with aryliodonium ylides in water

  • Kasturi U. Nabar,
  • Bhalchandra M. Bhanage and
  • Sudam G. Dawande

Beilstein J. Org. Chem. 2023, 19, 1008–1014, doi:10.3762/bjoc.19.76

Graphical Abstract
  • , catalyzed by a copper catalyst [39]. Murphy and co-workers reported blue LED-mediated metal-free cyclopropanation of alkenes with iodonium ylides through a diradical intermediate [40]. However, iodonium ylides are relatively unexplored for the arylation of amines. So far only Spyroudis’s group reported N
PDF
Album
Supp Info
Letter
Published 04 Jul 2023

Clauson–Kaas pyrrole synthesis using diverse catalysts: a transition from conventional to greener approach

  • Dileep Kumar Singh and
  • Rajesh Kumar

Beilstein J. Org. Chem. 2023, 19, 928–955, doi:10.3762/bjoc.19.71

Graphical Abstract
  • process has many advantages because it is a metal-free, easy to use, and environmentally friendly method that also gives good product yields with a wide range of substrates. The deep eutectic solvent used in this protocol is cheap, reusable, non-toxic, and biodegradable. In this study, it was found that
  • of N-arylpyrroles from various amines 78 via the reaction with 2,5-dimethoxytetrahydrofuran (2). Oxone is a mild, inexpensive, nontoxic, stable, and transition-metal-free catalyst that is very easy to handle during this transformation and provided high yields of the product. The authors also proposed
  • (2). Further, a nucleophilic attack of amines 40 with intermediate A, MeOH removal, dehydration, and aromatization steps produce N-substituted pyrroles 41 in good to excellent yields. In 2019, Wani et al. [73] used the alkaline-earth metal-based catalyst Ca(NO3)2∙4H2O for a mild, transition metal
PDF
Album
Review
Published 27 Jun 2023

Pyridine C(sp2)–H bond functionalization under transition-metal and rare earth metal catalysis

  • Haritha Sindhe,
  • Malladi Mounika Reddy,
  • Karthikeyan Rajkumar,
  • Akshay Kamble,
  • Amardeep Singh,
  • Anand Kumar and
  • Satyasheel Sharma

Beilstein J. Org. Chem. 2023, 19, 820–863, doi:10.3762/bjoc.19.62

Graphical Abstract
  • , diversely functionalized pyridines have been synthesized via C–H activation under transition-metal and rare earth metal catalysis, including C–H alkylation, alkenylation, arylation, heteroarylation, borylation, etc. Recently, metal-free approaches have also been developed for the C–H functionalization of N
PDF
Album
Review
Published 12 Jun 2023

Photocatalytic sequential C–H functionalization expediting acetoxymalonylation of imidazo heterocycles

  • Deepak Singh,
  • Shyamal Pramanik and
  • Soumitra Maity

Beilstein J. Org. Chem. 2023, 19, 666–673, doi:10.3762/bjoc.19.48

Graphical Abstract
  • acetylating agent. The developed method is heavy-metal free, as shown by the use of inexpensive PTH, as well as a base-free approach, and involves aerial oxygen to generate exciting derivatives, which may prove to be valuable in the field of radical chemistry research in future. Strategies of C-3
PDF
Album
Supp Info
Letter
Published 12 May 2023

Direct C2–H alkylation of indoles driven by the photochemical activity of halogen-bonded complexes

  • Martina Mamone,
  • Giuseppe Gentile,
  • Jacopo Dosso,
  • Maurizio Prato and
  • Giacomo Filippini

Beilstein J. Org. Chem. 2023, 19, 575–581, doi:10.3762/bjoc.19.42

Graphical Abstract
  • and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia San Sebastián, Spain Basque Fdn Sci, Ikerbasque, 48013 Bilbao, Spain 10.3762/bjoc.19.42 Abstract A light-driven metal-free protocol for the synthesis of sulfone-containing indoles under mild conditions is reported. Specifically
  • to photochemically generate electrophilic radicals that can drive the functionalization of suitable electron-rich substrates [23]. Exploiting this strategy, here we report a novel metal-free methodology for the direct homolytic aromatic substitution (HAS) reaction of indoles 1 with α-iodosulfones 2
PDF
Album
Supp Info
Letter
Published 27 Apr 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • to domino reactions which include at least two distinct reactions. The review is divided on the basis of the transition-metal catalyst used in the reaction and will not cover metal-free methods. The literature is covered up to and including January 2023. For reasons of clarity, newly formed bonds are
PDF
Album
Review
Published 24 Apr 2023

CuAAC-inspired synthesis of 1,2,3-triazole-bridged porphyrin conjugates: an overview

  • Dileep Kumar Singh

Beilstein J. Org. Chem. 2023, 19, 349–379, doi:10.3762/bjoc.19.29

Graphical Abstract
  • 85 and porphyrin-psoralen conjugate 87 could be potential candidates for PDT applications. Recently, Charisiadis et al. [45] explored this modular click chemistry protocol for the synthesis of a noble metal-free meso-triazole cobalt porphyrin diimine-dioxime conjugate 91 by covalently connecting a
  • Cheng [63] designed a click inspired synthesis of novel discotic mesogen bearing a porphyrin unit, a triazole linkage, and a peripheral 3,4,5-trialkoxybenzyl unit (Scheme 32). Firstly, free-base porphyrin conjugates 151a–c were obtained by the CuAAC reaction between metal free tetraalkynylporphyrin 149
PDF
Album
Review
Published 22 Mar 2023

An efficient metal-free and catalyst-free C–S/C–O bond-formation strategy: synthesis of pyrazole-conjugated thioamides and amides

  • Shubham Sharma,
  • Dharmender Singh,
  • Sunit Kumar,
  • Vaishali,
  • Rahul Jamra,
  • Naveen Banyal,
  • Deepika,
  • Chandi C. Malakar and
  • Virender Singh

Beilstein J. Org. Chem. 2023, 19, 231–244, doi:10.3762/bjoc.19.22

Graphical Abstract
  • Department of Chemistry, Central University of Punjab, Bathinda, 151401, Punjab, India, Department of Chemistry, National Institute of Technology (NIT) Manipur, Imphal, 795004, India 10.3762/bjoc.19.22 Abstract An operationally simple and metal-free approach is described for the synthesis of pyrazole
  • , metal-free and easy to perform reaction conditions. Moreover, the pyrazole C-3/5-linked amide conjugates were also synthesized via an oxidative amination of pyrazole carbaldehydes and 2-aminopyridines using hydrogen peroxide as an oxidant. Keywords: C–S/O bond formation; metal-free; oxidative amidation
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2023
Other Beilstein-Institut Open Science Activities