Search results

Search for "peroxide" in Full Text gives 216 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Advancements in hydrochlorination of alkenes

  • Daniel S. Müller

Beilstein J. Org. Chem. 2024, 20, 787–814, doi:10.3762/bjoc.20.72

Graphical Abstract
  • addition. Therefore, anti-Markovnikov products are generally not observed. b) In contrast to the reactions with HBr (peroxide effect) [31][32], the formation of anti-Markovnikov products is low even in the presence of peroxides or photochemical activation. For instance, Whitmore and co-workers observed
  • only 10–25% of the primary chloride for the reaction of tert-butylethylene with HCl in the presence of benzoyl peroxide [33]. c) Several metal halides such as AlCl3, SnCl4, FeCl3, and CuCl exhibit catalytic activities for the hydrochlorination of alkenes. The enthalpy of formation for the hydrogen
PDF
Album
Review
Published 15 Apr 2024

Methodology for awakening the potential secondary metabolic capacity in actinomycetes

  • Shun Saito and
  • Midori A. Arai

Beilstein J. Org. Chem. 2024, 20, 753–766, doi:10.3762/bjoc.20.69

Graphical Abstract
  • ), which upon sensing ROS, release their repression and activate the expression of various genes [93][94][95]. Wei et al. reported that the production of validamycin A (25) by Streptomyces hygroscopicus 5008 could be activated at the transcriptional level by simply adding hydrogen peroxide (H2O2; which
PDF
Album
Review
Published 10 Apr 2024

Synthesis of π-conjugated polycyclic compounds by late-stage extrusion of chalcogen fragments

  • Aissam Okba,
  • Pablo Simón Marqués,
  • Kyohei Matsuo,
  • Naoki Aratani,
  • Hiroko Yamada,
  • Gwénaël Rapenne and
  • Claire Kammerer

Beilstein J. Org. Chem. 2024, 20, 287–305, doi:10.3762/bjoc.20.30

Graphical Abstract
  • dithienonaphthalene products (e.g., 16) exhibit very different fluorescence properties, S-extrusion from thiophene-annelated thiepines was consequently exploited for peroxide sensing. Very recently, Zhou et al. reported the synthesis of S-doped phenanthrene and triphenylene derivatives via the thermally-induced ring
  • dithienonaphthalenes, upon S-extrusion triggered by electrochemical oxidation. Bottom: Exploitation of the S-extrusion process for peroxide sensing, taking advantage of the lability of oxidized dithienobenzothiepine to generate highly fluorescent dithienonaphthalene [63]. Synthesis of S-doped extended triphenylene
PDF
Album
Review
Published 15 Feb 2024

Optimizations of lipid II synthesis: an essential glycolipid precursor in bacterial cell wall synthesis and a validated antibiotic target

  • Milandip Karak,
  • Cian R. Cloonan,
  • Brad R. Baker,
  • Rachel V. K. Cochrane and
  • Stephen A. Cochrane

Beilstein J. Org. Chem. 2024, 20, 220–227, doi:10.3762/bjoc.20.22

Graphical Abstract
  • -phosphite intermediate was then oxidized with hydrogen peroxide to yield dibenzyl α-phosphate 6, achieving an overall yield of 89% for these two steps. Removal of the 2-(phenylsulfonyl)ethanol protecting group in compound 6 was successfully achieved through treatment with 1,8-diazabicyclo[5.4.0]undec-7-ene
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2024

Aromatic systems with two and three pyridine-2,6-dicarbazolyl-3,5-dicarbonitrile fragments as electron-transporting organic semiconductors exhibiting long-lived emissions

  • Karolis Leitonas,
  • Brigita Vigante,
  • Dmytro Volyniuk,
  • Audrius Bucinskas,
  • Pavels Dimitrijevs,
  • Sindija Lapcinska,
  • Pavel Arsenyan and
  • Juozas Vidas Grazulevicius

Beilstein J. Org. Chem. 2023, 19, 1867–1880, doi:10.3762/bjoc.19.139

Graphical Abstract
  • the photocatalytic production of H2 while the nanospheres produced hydrogen peroxide (H2O2). The introduction of the additional carbazolylphenyl moiety in the CPC molecule [4] allowed us to improve the EQEmax of an OLED to 25% [7]. In continuation of our studies in the field of the development of new
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2023

Radical chemistry in polymer science: an overview and recent advances

  • Zixiao Wang,
  • Feichen Cui,
  • Yang Sui and
  • Jiajun Yan

Beilstein J. Org. Chem. 2023, 19, 1580–1603, doi:10.3762/bjoc.19.116

Graphical Abstract
  • successful nitroxide-mediated polymerization (NMP). In 1993, Georges et al. used benzoyl peroxide (BPO) as the initiator and 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) as the control agent. It was called a bicomponent initiating system containing both stable free nitroxide and a conventional thermal
  • technique requires radical generation on the polymer backbone. A typical approach involves hydrogen abstraction by organic oxidants such as oxygen radicals from peroxide initiators [114], which is similar to the radical crosslinking process, vide infra. Radicals may also be generated thermally, through
  • initiator is needed to start the radical crosslinking. Besides sulfur, peroxides such as di-tert-butylcumyl peroxide (BCUP) and dicumyl peroxide (DCP) are often used in radical crosslinking. Free radicals are generated at the peroxides’ decomposition temperature and attack the polymer chains to achieve
PDF
Album
Review
Published 18 Oct 2023

Cyclodextrins permeabilize DPPC liposome membranes: a focus on cholesterol content, cyclodextrin type, and concentration

  • Ghenwa Nasr,
  • Hélène Greige-Gerges,
  • Sophie Fourmentin,
  • Abdelhamid Elaissari and
  • Nathalie Khreich

Beilstein J. Org. Chem. 2023, 19, 1570–1579, doi:10.3762/bjoc.19.115

Graphical Abstract
  • . Triton X-100, sodium chloride (NaCl), and Sephadex G25 gel were purchased from Sigma-Aldrich, Belgium. Ammonium molybdate, hydrogen peroxide, potassium dihydrogen phosphate, sodium sulfite, sodium bisulfite, chloroform, and methanol were purchased from Sigma-Aldrich, Germany. Cholesterol and
PDF
Album
Supp Info
Full Research Paper
Published 17 Oct 2023

N-Sulfenylsuccinimide/phthalimide: an alternative sulfenylating reagent in organic transformations

  • Fatemeh Doraghi,
  • Seyedeh Pegah Aledavoud,
  • Mehdi Ghanbarlou,
  • Bagher Larijani and
  • Mohammad Mahdavi

Beilstein J. Org. Chem. 2023, 19, 1471–1502, doi:10.3762/bjoc.19.106

Graphical Abstract
  • of the product, while benzoyl peroxide (BPO) gave a low yield. Various nucleophiles 161, including ammonia, alkylamines, hydrazines, alcohols and alkoxides, indole, N-alkylpyrrole, N-substituted anilines, PhSH, and PhMgBr worked well under these conditions. Asymmetric thiolation of 4-substituted
PDF
Album
Review
Published 27 Sep 2023

Synthesis of ether lipids: natural compounds and analogues

  • Marco Antônio G. B. Gomes,
  • Alicia Bauduin,
  • Chloé Le Roux,
  • Romain Fouinneteau,
  • Wilfried Berthe,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2023, 19, 1299–1369, doi:10.3762/bjoc.19.96

Graphical Abstract
PDF
Album
Review
Published 08 Sep 2023

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • benzothiazole, in which benzothiazole compounds have higher reactivity and regioselectivity than thiazole. In 2014, Lei et al. successfully realized the copper-catalyzed oxidative alkenylation of simple ethers to construct allyl ethers in the presence of di-tert-butyl peroxide and KI (Scheme 10) [60]. The
  • in combination with di-tert-butyl peroxide (DTBP) as an oxidant enables the CDC of the C(sp3)–H bond in the α-position to oxygen of various ethers with the active methylene C(sp3)–H bond in 1,3-diketones (Scheme 17) [78]. This method can generate various functionalized molecules and is expected to
PDF
Album
Review
Published 06 Sep 2023

Selective and scalable oxygenation of heteroatoms using the elements of nature: air, water, and light

  • Damiano Diprima,
  • Hannes Gemoets,
  • Stefano Bonciolini and
  • Koen Van Aken

Beilstein J. Org. Chem. 2023, 19, 1146–1154, doi:10.3762/bjoc.19.82

Graphical Abstract
  • selectivity and safety. Traditional oxidants, such as Oxone, CrO3, NaIO4, or KMnO4, produce significant amounts of toxic waste, exacerbating these issues (Scheme 1A) [1]. As environmental concerns and economic factors increasingly affect chemical processes, hydrogen peroxide and oxygen (or air) are becoming
  • more popular as oxidants due to their low cost and minimal side products. However, these reagents have practical limitations. Hydrogen peroxide is typically produced off-site and requires transportation and storage, and is commonly obtained through the non-sustainable anthraquinone process (Scheme 1B
  • ) [2][3][4]. Additionally, practical implementation of hydrogen peroxide can be challenging due to requirements for precise dosing to avoid issues such as dismutation, overoxidation, and catalyst degradation [5]. In this respect, oxygen, or preferably air, represents a better alternative to traditional
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
PDF
Album
Review
Published 28 Jul 2023

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • successfully treated by artemisinin combination therapy (ACT). Artemisinin can be isolated from the Artemisia annua (sweet wormwood) plant. This sesquiterpene lactone bearing a peroxide is a prodrug of the biologically active dihydroartemisinin. In 2012, Zhu and Cook developed a gram-scale asymmetric total
PDF
Album
Review
Published 04 May 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
  • refluxed in the presence of a small amount of dilauroyl peroxide (DLP) as radical initiator. The eight-membered ring 176 was obtained in 60% yield as a single diastereomer [79]. 5 Pauson–Khand reaction Discovered in the seventies [80], the Pauson–Khand reaction has been widely used for the formation of
PDF
Album
Review
Published 03 Mar 2023

An efficient metal-free and catalyst-free C–S/C–O bond-formation strategy: synthesis of pyrazole-conjugated thioamides and amides

  • Shubham Sharma,
  • Dharmender Singh,
  • Sunit Kumar,
  • Vaishali,
  • Rahul Jamra,
  • Naveen Banyal,
  • Deepika,
  • Chandi C. Malakar and
  • Virender Singh

Beilstein J. Org. Chem. 2023, 19, 231–244, doi:10.3762/bjoc.19.22

Graphical Abstract
  • , metal-free and easy to perform reaction conditions. Moreover, the pyrazole C-3/5-linked amide conjugates were also synthesized via an oxidative amination of pyrazole carbaldehydes and 2-aminopyridines using hydrogen peroxide as an oxidant. Keywords: C–S/O bond formation; metal-free; oxidative amidation
  • (entry 16, Table 2). From the above screening experiments, it was concluded that 10.0 equiv of hydrogen peroxide in THF at 70 °C proved to be the optimal conditions for the construction of the pyrazole-pyridine conjugate with an amide linkage (entry 16, Table 2). Having the optimized conditions in hand
  • available substituted 2-aminopyridines and hydrogen peroxide as an oxidant. The biological evaluation of the thioamide and amide conjugates is underway in our laboratory. Experimental General information All chemicals and reagents were purchased from Sigma-Aldrich, Acros, Avera Synthesis, Spectrochem Pvt
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • from ent-kaurane diterpenoids through carbocationic rearrangements [42]. Jungermatrobrunin A (89) [43] bears a highly oxidized scaffold with a unique bicyclo[3.2.1]octene backbone and an unprecedented peroxide bridge (Scheme 7). Natural product (−)-1α,6α-diacetoxyjungermannenone C (88) [43] was
PDF
Album
Review
Published 02 Jan 2023

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • /peroxide, quinones, and iodine(I/III) compounds are the most developed catalyst types which are covered here. Keywords: CH-functionalization; free radicals; hypervalent iodine; N-oxyl radicals; redox-active molecules; Introduction Organocatalysis can be defined as catalysis by small organic molecules
  • , the acidic and basic sites of the catalyst are suggested to be involved in the activation of only hydrogen peroxide within a well-defined and deep chiral cavity. The enantioselective approach of sulfide to H2O2 is ensured by the sterically demanding structure of the catalyst. It should also be noted
  • radical-chain PINO/NHPI-catalyzed autoxidation proceeds with the selective formation of a benzylic hydroperoxide (Scheme 9), a product that frequently decomposes in the presence of transition metal ions or photoredox catalysts. It was shown that the peroxide is converted to the ketone on the TiO2 surface
PDF
Album
Perspective
Published 09 Dec 2022

Synthesis of (−)-halichonic acid and (−)-halichonic acid B

  • Keith P. Reber and
  • Emma L. Niner

Beilstein J. Org. Chem. 2022, 18, 1629–1635, doi:10.3762/bjoc.18.174

Graphical Abstract
  • organic co-solvent), and slow decomposition occurred under acidic conditions at elevated temperatures. Alternative methods to cleave the benzamide using sodium peroxide [11] or triethyloxonium tetrafluoroborate [12] were also unsuccessful, giving either no reaction or significant decomposition
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2022

Design, synthesis, and evaluation of chiral thiophosphorus acids as organocatalysts

  • Karen R. Winters and
  • Jean-Luc Montchamp

Beilstein J. Org. Chem. 2022, 18, 1471–1478, doi:10.3762/bjoc.18.154

Graphical Abstract
  • synthesized from 2-aminobiphenyl according to the literature [47]. Subsequent reaction with phosphorus trichloride and electrophilic aromatic substitution gave a chlorophosphine intermediate, which was directly reacted with (S)-1-phenylethylamine, then hydrogen peroxide. Phosphonamide diastereoisomers 17 were
PDF
Album
Supp Info
Full Research Paper
Published 17 Oct 2022

On drug discovery against infectious diseases and academic medicinal chemistry contributions

  • Yves L. Janin

Beilstein J. Org. Chem. 2022, 18, 1355–1378, doi:10.3762/bjoc.18.141

Graphical Abstract
  • combination with piperaquine (Synriam), the analog artefenomel (42) is undergoing clinical trials, including in combination with DSM-265 (39) [215][216][217][218]. Of note is that prior to 1971, thinking of developing a peroxide-containing compound for a clinical use against malaria would have not been
  • the 2015 Nobel price. This also triggered extensive research aiming at improving the rather poor pharmacological properties of artemisinin (43) and led to many hemisynthetic derivatives [221]. Moreover, artificial peroxide-containing compounds were also investigated at least partly to address the
PDF
Album
Perspective
Published 29 Sep 2022

Polymer and small molecule mechanochemistry: closer than ever

  • José G. Hernández

Beilstein J. Org. Chem. 2022, 18, 1225–1235, doi:10.3762/bjoc.18.128

Graphical Abstract
  • BMPF mechanophore into glassy and rubbery polymeric networks such as poly(butyl methacrylate) and a poly(hexyl methacrylate) [28]. Upon treatment of the polymeric material 2 in a mixer mill (Figure 1b), the BMPF units underwent a mechanical homolytic fragmentation of the O−O peroxide bond, releasing
  • -methylphenyl-9-fluorenyl) peroxide (BMPF)-containing poly(butyl methacrylate) 2, in a mixer mill. Mechanochemical activation of dendronized polymer-based compound 4 by ultrasonication and ball milling in a mixer mill. Comparative mechanochemical dissociation of the central C–C bond in TASN derivatives 6 and 8
PDF
Album
Perspective
Published 14 Sep 2022

Electro-conversion of cumene into acetophenone using boron-doped diamond electrodes

  • Mana Kitano,
  • Tsuyoshi Saitoh,
  • Shigeru Nishiyama,
  • Yasuaki Einaga and
  • Takashi Yamamoto

Beilstein J. Org. Chem. 2022, 18, 1154–1158, doi:10.3762/bjoc.18.119

Graphical Abstract
  • hydroperoxide/dicumyl peroxide/phenol from cumene, acetophenone from ethylbenzene, and others. Generally, molecular oxygen has been utilized in the straightforward oxidation of aromatic alkyls. However, since molecular oxygen is highly stable, activation of the molecular oxygen itself is necessary, which
PDF
Album
Supp Info
Letter
Published 07 Sep 2022

Synthetic strategies for the preparation of γ-phostams: 1,2-azaphospholidine 2-oxides and 1,2-azaphospholine 2-oxides

  • Jiaxi Xu

Beilstein J. Org. Chem. 2022, 18, 889–915, doi:10.3762/bjoc.18.90

Graphical Abstract
  • peroxide and sulfurization with sulfur, respectively (Scheme 16) [37][38]. Synthesis via formation of the C–C bond neighboring at the ring phosphorus atom In 1984, Collins and co-workers attempted the synthesis of benzo-γ-phosphonolactams 56a and 93 from (chloromethyl)(phenyl)-N-methyl-N
PDF
Album
Review
Published 22 Jul 2022

Synthesis of odorants in flow and their applications in perfumery

  • Merlin Kleoff,
  • Paul Kiler and
  • Philipp Heretsch

Beilstein J. Org. Chem. 2022, 18, 754–768, doi:10.3762/bjoc.18.76

Graphical Abstract
  • state of the decatungstate anion generates carbon-centered radical 48 which is trapped in a segmented flow with molecular oxygen provided by a mass flow controller. Peroxide 49 is formed as intermediate which further reacts to phthalide (50) in 71% yield. This method efficiently utilizes the advantages
  • flowers of orchids among with the structurally related and better known Ambrettolide [(Z)-7-hexadecen-16-olide], having a sweet odor with “great tenacity and fixative power” [9][48]. Notably, and already in 1970, Story and co-workers described that cyclic ketones can be reacted with hydrogen peroxide
  • safe two-step synthesis of 56 from cyclohexanone. In the first step, a solution of cyclohexanone in dodecane is mixed in a Q-piece with hydrogen peroxide, nitric acid, and formic acid and subsequently pumped at room temperature through a PTFE tube reactor with a residence time of 93 min. The resulting
PDF
Album
Review
Published 27 Jun 2022

Structural basis for endoperoxide-forming oxygenases

  • Takahiro Mori and
  • Ikuro Abe

Beilstein J. Org. Chem. 2022, 18, 707–721, doi:10.3762/bjoc.18.71

Graphical Abstract
  • endoperoxygenase NvfI. Keywords: biosynthesis; endoperoxide; enzyme; natural products; X-ray crystallography; Introduction Endoperoxide-containing compounds form a large group of natural products with cyclic peroxide structures [1][2][3][4][5]. These compounds are widely distributed in nature, and many
  • endoperoxide containing alkaloids, terpenoids, and polyketides have been isolated from plants, animals, bacteria, fungi, and other organisms (Figure 1) [6][7]. Because of the high reactivity of the cyclic peroxide O–O bond, these compounds exhibit various biological activities [1][2][3][4][5]. For example
  • ], which share ≈60% amino acid identity [33]. Both isoforms catalyze the incorporation of two oxygen atoms into arachidonic acid (AA) to form an endoperoxide between C9 and C11 and a peroxide at C15 to generate prostaglandin G2 (PGG2) (Scheme 1) [24][34]. Subsequently, the 15-hydroperoxide in PGG2 is
PDF
Album
Review
Published 21 Jun 2022
Other Beilstein-Institut Open Science Activities