Search results

Search for "proteins" in Full Text gives 471 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

A new glance at the chemosphere of macroalgal–bacterial interactions: In situ profiling of metabolites in symbiosis by mass spectrometry

  • Marine Vallet,
  • Filip Kaftan,
  • Veit Grabe,
  • Fatemeh Ghaderiardakani,
  • Simona Fenizia,
  • Aleš Svatoš,
  • Georg Pohnert and
  • Thomas Wichard

Beilstein J. Org. Chem. 2021, 17, 1313–1322, doi:10.3762/bjoc.17.91

Graphical Abstract
  • is an important part of the MALDI-MSI experiment. MALDI-MS can be used to identify proteins and metabolic signatures [22][23][24] from bacteria and microalgae, as well as biofilms [25]. The primary function of the applied matrix is to improve the quality of the MS spectra, particularly the signal
PDF
Album
Supp Info
Full Research Paper
Published 19 May 2021

Synthesis of multiply fluorinated N-acetyl-D-glucosamine and D-galactosamine analogs via the corresponding deoxyfluorinated glucosazide and galactosazide phenyl thioglycosides

  • Vojtěch Hamala,
  • Lucie Červenková Šťastná,
  • Martin Kurfiřt,
  • Petra Cuřínová,
  • Martin Dračínský and
  • Jindřich Karban

Beilstein J. Org. Chem. 2021, 17, 1086–1095, doi:10.3762/bjoc.17.85

Graphical Abstract
  • . Keywords: amino sugars; deoxyfluorination; fluorinated carbohydrates; hexosamine hemiacetals; thioglycosides; Introduction Fluorinated carbohydrates are versatile carbohydrate mimetics used to probe or manipulate the recognition of carbohydrates by carbohydrate-binding proteins or carbohydrate-processing
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2021

Beyond ribose and phosphate: Selected nucleic acid modifications for structure–function investigations and therapeutic applications

  • Christopher Liczner,
  • Kieran Duke,
  • Gabrielle Juneau,
  • Martin Egli and
  • Christopher J. Wilds

Beilstein J. Org. Chem. 2021, 17, 908–931, doi:10.3762/bjoc.17.76

Graphical Abstract
  • , replication, splicing and other fundamental processes in biological information transfer. More specifically, they can affect chemical and thermodynamic stability, folding, secondary and tertiary structure, activity and interactions between nucleic acids, proteins and receptors. Particularly, as far as
  • production of proteins, enzymes and receptors that may be inhibited by small-molecule and antibody therapeutics. However, native RNA oligonucleotides do not possess sufficient metabolic stability for in vivo applications. Therefore, chemical modification is absolutely essential to re-engineer RNA into a
  • targeted to proviral HIV DNA [68], and as a triplex-forming oligonucleotide that selectively binds a sequence within the chromatin structure of cell nuclei [69]. Remarkably, 3'-NP DNA can also act as an RNA mimic in interactions with binding proteins despite lacking a ribose moiety, making them useful
PDF
Album
Review
Published 28 Apr 2021

Enhanced target cell specificity and uptake of lipid nanoparticles using RNA aptamers and peptides

  • Roslyn M. Ray,
  • Anders Højgaard Hansen,
  • Maria Taskova,
  • Bernhard Jandl,
  • Jonas Hansen,
  • Citra Soemardy,
  • Kevin V. Morris and
  • Kira Astakhova

Beilstein J. Org. Chem. 2021, 17, 891–907, doi:10.3762/bjoc.17.75

Graphical Abstract
  • of the nature of the target proteins. CCR5, a cell surface receptor, is internalized upon ligand binding before recycling back to the cell surface or processed for degradation in the lysosome [34]. On the other hand, gp120 is a viral surface protein that is involved in viral entry through
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2021

Synthetic reactions driven by electron-donor–acceptor (EDA) complexes

  • Zhonglie Yang,
  • Yutong Liu,
  • Kun Cao,
  • Xiaobin Zhang,
  • Hezhong Jiang and
  • Jiahong Li

Beilstein J. Org. Chem. 2021, 17, 771–799, doi:10.3762/bjoc.17.67

Graphical Abstract
  • construction of C–S bonds C–S bonds are commonly present in amino acids, proteins, glycosides, nucleic acids, and other biological macromolecules. In recent years, photocatalyst- and transition-metal strategies have been employed to construct C–S bonds [66][67][68][69]. The C–S bond synthesis via EDA-complex
PDF
Album
Review
Published 06 Apr 2021

DNA with zwitterionic and negatively charged phosphate modifications: Formation of DNA triplexes, duplexes and cell uptake studies

  • Yongdong Su,
  • Maitsetseg Bayarjargal,
  • Tracy K. Hale and
  • Vyacheslav V. Filichev

Beilstein J. Org. Chem. 2021, 17, 749–761, doi:10.3762/bjoc.17.65

Graphical Abstract
  • recognise and cut DNA sequences, or CRISPR-CAS9 [8][9][10] and CAS9-constructs [11][12][13][14] which rely on large proteins to open the target duplex, triplex-forming oligonucleotides (TFOs) [15] can be designed to bind in a sequence-specific manner to double-stranded DNA (dsDNA) [16]. In forming the
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2021

Valorisation of plastic waste via metal-catalysed depolymerisation

  • Francesca Liguori,
  • Carmen Moreno-Marrodán and
  • Pierluigi Barbaro

Beilstein J. Org. Chem. 2021, 17, 589–621, doi:10.3762/bjoc.17.53

Graphical Abstract
  • oxidation, cross-linkage, bond cleavage). The term “biodegradation” indicates a “degradation caused by enzymatic processes resulting from the action of cells”. Although commonly used, also for artificial polymers, the term “biodegradable” specifically refers to biorelated polymers (i.e., proteins, nucleic
PDF
Album
Review
Published 02 Mar 2021

Synthesis and physicochemical evaluation of fluorinated lipopeptide precursors of ligands for microbubble targeting

  • Masayori Hagimori,
  • Estefanía E. Mendoza-Ortega and
  • Marie Pierre Krafft

Beilstein J. Org. Chem. 2021, 17, 511–518, doi:10.3762/bjoc.17.45

Graphical Abstract
  • , which involves the use of targeting ligands, such as monoclonal antibodies, antibody fragments, proteins, peptides, and other small molecules, including vitamins and carbohydrates [7][8]. The targeting ligands are coupled to the surface of the carrier to selectively target tumor cells that overexpress a
PDF
Album
Supp Info
Full Research Paper
Published 19 Feb 2021

Biochemistry of fluoroprolines: the prospect of making fluorine a bioelement

  • Vladimir Kubyshkin,
  • Rebecca Davis and
  • Nediljko Budisa

Beilstein J. Org. Chem. 2021, 17, 439–460, doi:10.3762/bjoc.17.40

Graphical Abstract
  • structure and distinct conformational profile, proline is unique in the repertoire of the 20 amino acids coded into proteins. Here, we summarize the biochemical work on the replacement of proline with (4R)- and (4S)-fluoroproline as well as 4,4-difluoroproline in proteins done mainly in the last two decades
  • proline replacements are able to elevate the protein expression speed and yields and improve the thermodynamic and kinetic folding profiles of individual proteins. In this context, fluoroprolines can be viewed as useful tools in the biotechnological toolbox. As a prospect, we envision that proteome-wide
  • biodiversity, containing fluorine as a bioelement. Keywords: amino acids; evolution; fluorine; proline; proteins; Introduction Nature employs a rather small set of chemical elements for constructing the core biochemical makeup. Most elements of the periodic table are excluded from the biochemical world. Not
PDF
Album
Review
Published 15 Feb 2021

Synthesis of legonmycins A and B, C(7a)-hydroxylated bacterial pyrrolizidines

  • Wilfred J. M. Lewis,
  • David M. Shaw and
  • Jeremy Robertson

Beilstein J. Org. Chem. 2021, 17, 334–342, doi:10.3762/bjoc.17.31

Graphical Abstract
  • ]. Proteins coded by three of these genes (LgnA, LgnB, and LgnD) were shown to assemble legonindolizidines A (1) and B (2) – from proline, threonine, and a fatty acid component – which are then converted by LgnC, a flavin-dependent monooxygenase, into the corresponding legonmycins (3 and 4) via a sequence of
  • was established with, in this case, PxaB achieving the oxidative steps from indolizidine intermediates 5–8 produced by PxaA. An important aspect of this work was the finding that at least 90 different bacterial strains, spanning 23 species, contain gene sequences encoding proteins related to PxaB
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2021

19F NMR as a tool in chemical biology

  • Diana Gimenez,
  • Aoife Phelan,
  • Cormac D. Murphy and
  • Steven L. Cobb

Beilstein J. Org. Chem. 2021, 17, 293–318, doi:10.3762/bjoc.17.28

Graphical Abstract
  • fluorinated probes and their incorporation into macromolecules, the application of 19F NMR to monitor protein–protein interactions, protein–ligand interactions, physiologically relevant ions and in the structural analysis of proteins and nucleic acids. The continued relevance of the technique to investigate
  • labelling 19F NMR offers an attractive option for investigating the interactions between proteins and other biomolecules such as nucleic acids. Many of the advantages of 19F NMR have already been discussed but it is worth highlighting that it is a particularly useful technique to study large proteins that
  • cannot easily be probed by conventional NMR experiments. Given that fluorine atoms (e.g., 19F labels) are not naturally present in proteins, a key element to establishing 19F NMR in this area has been the development of methods that can be used to give access to 19F-labelled proteins. Methods for the
PDF
Album
Review
Published 28 Jan 2021

The preparation and properties of 1,1-difluorocyclopropane derivatives

  • Kymbat S. Adekenova,
  • Peter B. Wyatt and
  • Sergazy M. Adekenov

Beilstein J. Org. Chem. 2021, 17, 245–272, doi:10.3762/bjoc.17.25

Graphical Abstract
PDF
Album
Review
Published 26 Jan 2021

Molecular basis for protein–protein interactions

  • Brandon Charles Seychell and
  • Tobias Beck

Beilstein J. Org. Chem. 2021, 17, 1–10, doi:10.3762/bjoc.17.1

Graphical Abstract
  • design. Protein–protein interactions and their discovery are thus an interesting avenue for understanding how protein complexes, which make up the majority of proteins, work. Keywords: characterisation methods; heterooligomeric complex; homooligomeric complex; molecular interactions; protein–protein
  • interactions; Introduction From signalling over transport to catalysis, the broad functionality of proteins is essential in the cellular machinery. To this effect, proteins can be seen as the workforce of the cell. Proteins relay some of their functionality via interactions between protein nodes called
  • protein–protein interactions (PPIs). Hedin characterised the first PPI with trypsin and antitrypsin in 1906 [1], which provided a landmark for the awareness of what role PPIs have in cellular physiology. In fact, even though individual proteins perform essential functions, their effectiveness in the cell
PDF
Album
Review
Published 04 Jan 2021

Semiautomated glycoproteomics data analysis workflow for maximized glycopeptide identification and reliable quantification

  • Steffen Lippold,
  • Arnoud H. de Ru,
  • Jan Nouta,
  • Peter A. van Veelen,
  • Magnus Palmblad,
  • Manfred Wuhrer and
  • Noortje de Haan

Beilstein J. Org. Chem. 2020, 16, 3038–3051, doi:10.3762/bjoc.16.253

Graphical Abstract
  • separation of glycopeptides in RPLC is mainly driven by the peptide portions. Thus, information on different proteins and glycosylation sites appears in the form of glycopeptide clusters. Next to the peptide portion, glycosylation features, such as sialic acids, can strongly influence the retention time [8
  • this, a sample containing immunoglobulins G and A (IgG and IgA), simultaneously captured from human plasma, was chosen. This sample showed a considerable level of complexity due to the presence of multiple glycoproteins of interest and cocaptured (glyco)proteins from the plasma. The tools included
  • by Byonic The automated and score-based MS/MS glycopeptide identification using Byonic resulted in the confident assignment of ten IgG/IgA N-glycopeptide clusters of interest (Table 1 and Figures S1–S10, Supporting Information File 2). Assigned glycopeptides from copurified human plasma proteins
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2020

Secondary metabolites of Bacillus subtilis impact the assembly of soil-derived semisynthetic bacterial communities

  • Heiko T. Kiesewalter,
  • Carlos N. Lozano-Andrade,
  • Mikael L. Strube and
  • Ákos T. Kovács

Beilstein J. Org. Chem. 2020, 16, 2983–2998, doi:10.3762/bjoc.16.248

Graphical Abstract
  • (“control”). The error bars represent the standard error. N ≥ 5 (control and surfactin-treated assays), N = 2 (MeOH-treated assays). Overview on the biosynthetic pathways of surfactin (A), plipastatin (B), and bacillaene (C) produced by B. subtilis. The lightning bolt indicates the proteins for which the
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2020

Selected peptide-based fluorescent probes for biological applications

  • Debabrata Maity

Beilstein J. Org. Chem. 2020, 16, 2971–2982, doi:10.3762/bjoc.16.247

Graphical Abstract
  • ). Fluorescence resonance energy transfer (FRET) relies on the distance-dependent transfer of energy from a donor fluorophore to an acceptor fluorophore. Genetically encoded fluorophores, such as green fluorescent protein (GFP) and related blue, cyan, yellow and red fluorescent proteins have provided the ability
  • important biomolecules including nucleotides, DNA, proteins, lipids etc. in aqueous media. Fluorescent peptides have also been used for specific organelles such as lysosomes tracking. In this review, it is summarized Schmuck group’s tremendous effort in developing fluorescent peptide-based probes for
  • insulin Schmuck and co-workers reported a supramolecular ensemble in combination of a pyrene-tagged amphiphilic peptide beacon (6) and a macrocyclic host (cucurbit[8]uril, CB[8]) for ratiometric fluorescent detection of amino acid derivatives, specific peptides, and proteins in aqueous media (Figure 6
PDF
Album
Review
Published 03 Dec 2020

UV resonance Raman spectroscopy of the supramolecular ligand guanidiniocarbonyl indole (GCI) with 244 nm laser excitation

  • Tim Holtum,
  • Vikas Kumar,
  • Daniel Sebena,
  • Jens Voskuhl and
  • Sebastian Schlücker

Beilstein J. Org. Chem. 2020, 16, 2911–2919, doi:10.3762/bjoc.16.240

Graphical Abstract
  • , Universitätsstrasse 7, 45141 Essen, Germany 10.3762/bjoc.16.240 Abstract Ultraviolet resonance Raman (UVRR) spectroscopy is a powerful vibrational spectroscopic technique for the label-free monitoring of molecular recognition of peptides or proteins with supramolecular ligands such as guanidiniocarbonyl pyrroles
  • UVRR approach from peptides to proteins as binding partners for GCPs is the UV-excited autofluorescence from aromatic amino acids observed for laser excitation wavelengths >260 nm. These excitation wavelengths are in the electronic resonance with the GCP for achieving both a signal enhancement and the
  • the results from density functional theory (DFT) calculations. Keywords: GCI; GCP; guanidiniocarbonyl indole; guanidiniocarbonyl pyrrole; UVRR; Raman spectroscopy; resonance Raman; Introduction Supramolecular ligands are capable to selectively bind to peptides and proteins via reversible non
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2020

Incorporation of a metal-mediated base pair into an ATP aptamer – using silver(I) ions to modulate aptamer function

  • Marius H. Heddinga and
  • Jens Müller

Beilstein J. Org. Chem. 2020, 16, 2870–2879, doi:10.3762/bjoc.16.236

Graphical Abstract
  • function opens new possibilities for applications of oligonucleotides. Keywords: aptamer; ATP; bioinorganic chemistry; DNA; imidazole; metal-mediated base pairs; Introduction Aptamers are oligonucleotides capable of recognizing and binding to specific molecules up to the size of proteins [1]. While
PDF
Album
Supp Info
Full Research Paper
Published 25 Nov 2020

Using multiple self-sorting for switching functions in discrete multicomponent systems

  • Amit Ghosh and
  • Michael Schmittel

Beilstein J. Org. Chem. 2020, 16, 2831–2853, doi:10.3762/bjoc.16.233

Graphical Abstract
  • cytosine (C) [2]. Similarly, proteins, like microtubules and actin filaments, are self-sorted on the molecular level in living cells [3]. Furthermore, the smaller molecules of life such as sugars [4], peptides, and fatty acids [5] undergo self-sorting in the construction of a cell [6][7]. The above
  • activity in a Knoevenagel addition reaction. At the same time, the click reaction remained shut down (ON-1, OFF-2). In sum, the three interdependent states SelfSORT-I to III regulated two different reaction outcomes and an OFF state. In biology, motor proteins carry out essential tasks by walking along
PDF
Album
Review
Published 20 Nov 2020

3-Acetoxy-fatty acid isoprenyl esters from androconia of the ithomiine butterfly Ithomia salapia

  • Florian Mann,
  • Daiane Szczerbowski,
  • Lisa de Silva,
  • Melanie McClure,
  • Marianne Elias and
  • Stefan Schulz

Beilstein J. Org. Chem. 2020, 16, 2776–2787, doi:10.3762/bjoc.16.228

Graphical Abstract
  • -hydroxyoctadecanoic and stearic acids as well as (E)-2-octadecenoic acids are obtained similarly directly from palmitic acid. The proposed biosynthesis likely takes place in form of the conjugated acids, e.g., coenzyme A esters or acyl carrier proteins. Finally, the acids are converted into the isoprenyl esters and
PDF
Album
Supp Info
Full Research Paper
Published 16 Nov 2020

Encrypting messages with artificial bacterial receptors

  • Pragati Kishore Prasad,
  • Naama Lahav-Mankovski,
  • Leila Motiei and
  • David Margulies

Beilstein J. Org. Chem. 2020, 16, 2749–2756, doi:10.3762/bjoc.16.225

Graphical Abstract
  • of cell-surface receptors to extracellular signals, such as small molecules or proteins. In recent years, there has been considerable interest in modifying cells with artificial receptors, as a means to provide them with new properties [1]. We have recently reported a method for decorating His-tagged
  • cell surface proteins with self-assembled synthetic receptors based on modified DNA duplexes [2] (Figure 1A). One of the oligodeoxynucleotides (ODNs) constituting the artificial receptors (ODN-1) is appended with a trinitrilotriacetic acid group (tri-NTA) that was developed by our group [3] and can
  • approach can be used to fluorescently label the His-tagged proteins with different colors, simply by changing the dye (Y) on Y-ODN-2. An interesting difference between the synthetic and the natural cell surface receptors, which is in the focus of this study, is that the number of artificial receptors per
PDF
Album
Full Research Paper
Published 12 Nov 2020

Selective recognition of ATP by multivalent nano-assemblies of bisimidazolium amphiphiles through “turn-on” fluorescence response

  • Rakesh Biswas,
  • Surya Ghosh,
  • Shubhra Kanti Bhaumik and
  • Supratim Banerjee

Beilstein J. Org. Chem. 2020, 16, 2728–2738, doi:10.3762/bjoc.16.223

Graphical Abstract
  • [20][21]. A number of elegant examples of self-assembled multivalent systems targeting biological analytes such as DNA, heparin, proteins, carbohydrates, etc. have been reported in the literature [22][23][24][25][26][27]. ATP is an important bio-anion that is the energy currency in cells and is
PDF
Album
Supp Info
Full Research Paper
Published 10 Nov 2020

Enzyme-instructed morphological transition of the supramolecular assemblies of branched peptides

  • Dongsik Yang,
  • Hongjian He and
  • Bing Xu

Beilstein J. Org. Chem. 2020, 16, 2709–2718, doi:10.3762/bjoc.16.221

Graphical Abstract
  • of the N-terminal of the branch increased the stability of the branched peptides. Moreover, these branched peptides facilitate the delivery of the proteins into cells. This work contributes insights for the development of peptide supramolecular assemblies via enzymatic noncovalent synthesis in
  • serendipitously found that an enzyme-responsive branched peptide was able to deliver small molecules or proteins to mitochondria efficiently in a cell-specific manner [33]. The branched peptide, which bears FLAG-tag as the branch [32], forms micelles. Certain proteases on the mitochondria of certain cells cleave
  • . Both 1 and 2, being synthesized for the first time, are able to facilitate the delivery of the proteins into cells. This work, illustrating enzymatic debranching to control the morphology of peptide assemblies, contributes to the development of peptide supramolecular assemblies via enzymatic
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2020

Optical detection of di- and triphosphate anions with mixed monolayer-protected gold nanoparticles containing zinc(II)–dipicolylamine complexes

  • Lena Reinke,
  • Julia Bartl,
  • Marcus Koch and
  • Stefan Kubik

Beilstein J. Org. Chem. 2020, 16, 2687–2700, doi:10.3762/bjoc.16.219

Graphical Abstract
  • described for analytes ranging from inorganic ions over low-molecular-weight neutral and charged organic compounds, such as carboxylic acids, amino acids, and nucleotides, to larger biomolecules such as peptides and proteins [1][2][3][4][5][6][13]. All of these systems have specific areas of application
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2020

NMR Spectroscopy of supramolecular chemistry on protein surfaces

  • Peter Bayer,
  • Anja Matena and
  • Christine Beuck

Beilstein J. Org. Chem. 2020, 16, 2505–2522, doi:10.3762/bjoc.16.203

Graphical Abstract
  • interaction of proteins with their interaction partners, both biomolecules and synthetic ligands. In recent years, the focus in chemistry has kept expanding from targeting small binding pockets in proteins to recognizing patches on protein surfaces, mostly via supramolecular chemistry, with the goal to
  • shapes and chemical properties. In contrast, the interaction between two proteins often involves docking of larger patches on the protein surface, which are complementary in shape and charge. The specific recognition of these patches by synthetic molecules poses challenges because these areas on the
  • protein surface are shallow and a similar composition of hydrophilic and charged residues is often found on multiple proteins. To specifically address such an area on a protein without risking non-specific binding to many others, the topology of the surface - including shape, surface accessibility as well
PDF
Album
Review
Published 09 Oct 2020
Other Beilstein-Institut Open Science Activities