Search results

Search for "electrospinning" in Full Text gives 75 result(s) in Beilstein Journal of Nanotechnology.

Bulk chemical composition contrast from attractive forces in AFM force spectroscopy

  • Dorothee Silbernagl,
  • Media Ghasem Zadeh Khorasani,
  • Natalia Cano Murillo,
  • Anna Maria Elert and
  • Heinz Sturm

Beilstein J. Nanotechnol. 2021, 12, 58–71, doi:10.3762/bjnano.12.5

Graphical Abstract
  • surface was modified with taurine (coverage of ≈16%) which was found to enable the subsequent electrospinning process. The nanoparticles were mixed in a solution of methylene chloride (CH2Cl2) and PC. The solution was electrospun to form fibers at 30 kV and at distance of 10 cm from the collector. The
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2021

Piezoelectric sensor based on graphene-doped PVDF nanofibers for sign language translation

  • Shuai Yang,
  • Xiaojing Cui,
  • Rui Guo,
  • Zhiyi Zhang,
  • Shengbo Sang and
  • Hulin Zhang

Beilstein J. Nanotechnol. 2020, 11, 1655–1662, doi:10.3762/bjnano.11.148

Graphical Abstract
  • PVDF nanofibers. The fiber properties after electrospinning were measured, and a potential application of the PES in the translation of sign language was successfully demonstrated. The designed PES shows a high sensitivity regarding both pressure and bending. In particular, a stable angle mapping under
  • concentrated in the bent part of the material, and the potential is generated on the opposite side of the device. Electrospinning is used to manufacture GR-doped PVDF fibers. The overall process is shown in Figure 2a. Firstly, GR is dispersed in dimethylformamide (DMF). After ultrasonic treatment, PVDF powder
  • is added under stirring to yield the spinning solution for electrospinning. After preparation of the fibers, an aqueous solution of Ti3C2 MXene and Ag NWs is sprayed on both sides of the material and then dried. Finally, the nanowire membrane is covered on both sides with PDMS to obtain the
PDF
Album
Full Research Paper
Published 02 Nov 2020

High-responsivity hybrid α-Ag2S/Si photodetector prepared by pulsed laser ablation in liquid

  • Raid A. Ismail,
  • Hanan A. Rawdhan and
  • Duha S. Ahmed

Beilstein J. Nanotechnol. 2020, 11, 1596–1607, doi:10.3762/bjnano.11.142

Graphical Abstract
  • hydrothermal methods, chemical bath deposition, laser ablation in liquid reverse microemulsion, electrospinning, sol–gel, electrochemical method, template method, sonochemical method, and hydrochemical bath deposition [10][11][12][13]. The size of Ag2S NPs depends on the preparation conditions [14]. Ag2S NPs
PDF
Album
Full Research Paper
Published 21 Oct 2020

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • , Lopez de Dicastillo et al. (2018, 2019) have recently developed hollow titanium dioxide nanotubes and nanospheres through the deposition of tetrakis(dimethylamide) titanium and water, as precursors, on polymeric structures obtained via electrospinning. The resulting hollow nanotubes and nanospheres had
  • NPs has been directed towards water disinfection, food packaging in addition to their known use as a UV filter to prevent skin cancer [114]. Lopez de Dicastillo et al. (2019) developed hollow TiO2 nanotubes and nanospheres with high antimicrobial activity through the combination of electrospinning and
PDF
Album
Review
Published 25 Sep 2020

Structure and electrochemical performance of electrospun-ordered porous carbon/graphene composite nanofibers

  • Yi Wang,
  • Yanhua Song,
  • Chengwei Ye and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 1280–1290, doi:10.3762/bjnano.11.112

Graphical Abstract
  • configurations were used as a material to fabricate supercapacitor electrodes. These nanofibers were synthesized by applying a modified parallel electrode to the electrospinning method (MPEM) in order to generate electrospun polyacrylonitrile (PAN) nanofibers containing graphene. After synthesis, these fibers
  • ; electrochemistry; electrode material; electrospinning method; ordered and porous nanofibers; supercapacitor; Introduction As the technology sector develops, societal demands for energy storage devices also increases. Supercapacitors, including electric double-layer capacitors (EDLCs) and pseudo-capacitance
  • improvement of the current supercapacitor electrochemical performance, the capacitance and cycle stability of supercapacitors are still subjects of research interest. Electrospinning is one of the most convenient methods to synthesize nanofibers in a continuous manner. Electrospinning has many advantages over
PDF
Album
Full Research Paper
Published 27 Aug 2020

Wet-spinning of magneto-responsive helical chitosan microfibers

  • Dorothea Brüggemann,
  • Johanna Michel,
  • Naiana Suter,
  • Matheus Grande de Aguiar and
  • Michael Maas

Beilstein J. Nanotechnol. 2020, 11, 991–999, doi:10.3762/bjnano.11.83

Graphical Abstract
  • immunogenicity [17] and, therefore, has become highly used in tissue regeneration [18][19]. Chitosan fibers are particularly well-suited for tissue engineering due to their highly porous scaffold architecture [20]. Using electrospinning, chitosan fibers can be produced with a diameter ranging from several tens
  • of nanometers to a few micrometers [21]. Blends of chitosan with alginate, silk, fibroin, cellulose or collagen can also be processed into composite fibers by electrospinning [22]. Wet-spinning is another well-established method of fabricating chitosan fibers with a diameter in the micrometer range
  • ]. Additionally, by using either wet-spinning or electrospinning techniques, nanoparticles can be suspended into the viscous spinning solution and embedded into the fiber matrix. For example, silver nanoparticles have been incorporated into electrospun chitosan fibers enabling antibacterial activity in wound
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2020

A novel dry-blending method to reduce the coefficient of thermal expansion of polymer templates for OTFT electrodes

  • Xiangdong Ye,
  • Bo Tian,
  • Yuxuan Guo,
  • Fan Fan and
  • Anjiang Cai

Beilstein J. Nanotechnol. 2020, 11, 671–677, doi:10.3762/bjnano.11.53

Graphical Abstract
  • a sol–gel precursor by adding tetraethyl orthosilicate (TEOS) to polyvinyl pyrrolidone (PVP), and then synthesized a silica/PVP nanofiber composite by electrospinning. The content of silica nanofibers in the composite is 9.1 wt %, and the CTE was decreased by ca. 40%. Jeyranpour et al. [13] studied
PDF
Album
Full Research Paper
Published 20 Apr 2020

Preparation, characterization and photocatalytic performance of heterostructured CuO–ZnO-loaded composite nanofiber membranes

  • Wei Fang,
  • Liang Yu and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 631–650, doi:10.3762/bjnano.11.50

Graphical Abstract
  • environmental monitoring, industry, aviation, and transportation. In this paper, heterostructured CuO–ZnO-loaded CNF membranes (CNFMs) were prepared successfully by a combination of electrospinning, heat treatment, and hydrothermal synthesis. The influence of the synthesis parameters on morphology, structure
  • three times, and the degradation rate remained above 90%. Keywords: electrospinning; composite nanofibers; heterostructured CuO–ZnO; hydrothermal synthesis; photocatalysis; semiconductor oxide; Introduction Water remediation is one of the main scientific research subjects regarding environmental
  • , electrical, mechanical and chemical properties, which might result in applications in photocatalysis [26]. Electrospinning is a simple and convenient method for preparing composite nanofibers (CNFs) [27][28][29][30][31]. CNFs have been widely applied as carrier material due to their outstanding
PDF
Album
Full Research Paper
Published 15 Apr 2020

Four self-made free surface electrospinning devices for high-throughput preparation of high-quality nanofibers

  • Yue Fang and
  • Lan Xu

Beilstein J. Nanotechnol. 2019, 10, 2261–2274, doi:10.3762/bjnano.10.218

Graphical Abstract
  • Yue Fang Lan Xu National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China 10.3762/bjnano.10.218 Abstract Four different self-made free surface electrospinning (FSE) techniques, namely, modified bubble
  • -electrospinning (MBE), modified free surface electrospinning (MFSE), oblique section free surface electrospinning (OSFSE) and spherical section free surface electrospinning (SSFSE), designed for high-throughput preparation of high-quality nanofibers, are presented in this paper. The mechanisms of fiber
  • device performs best, providing the highest quality and yield of nanofibers. The SSFE device could yield 20.03 g/h of nanofibers at an applied voltage of 40 kV. Keywords: electric field; free surface electrospinning; high-throughput preparation; Maxwell 3D; mechanism; nanofibers; Introduction Due to
PDF
Album
Full Research Paper
Published 15 Nov 2019

A novel all-fiber-based LiFePO4/Li4Ti5O12 battery with self-standing nanofiber membrane electrodes

  • Li-li Chen,
  • Hua Yang,
  • Mao-xiang Jing,
  • Chong Han,
  • Fei Chen,
  • Xin-yu Hu,
  • Wei-yong Yuan,
  • Shan-shan Yao and
  • Xiang-qian Shen

Beilstein J. Nanotechnol. 2019, 10, 2229–2237, doi:10.3762/bjnano.10.215

Graphical Abstract
  • , Chongqing, 400715, China 10.3762/bjnano.10.215 Abstract Electrodes with high conductivity and flexibility are crucial to the development of flexible lithium-ion batteries. In this study, three-dimensional (3D) LiFePO4 and Li4Ti5O12 fiber membrane materials were prepared through electrospinning and directly
  • network; electrospinning; flexible electrodes; lithium ion battery; nanofiber; self-standing electrodes; Introduction With the rapid development of renewable energy technologies, electric vehicles and electronic devices, energy storage technology has become a focus of global research [1][2][3][4][5][6][7
  • increased, the utilization ratio of the active material is improved, and the structural stability of the material is enhanced [18][27][28]. Therefore, it is highly desirable to fabricate all-fiber-based batteries to achieve high performance for practical applications [34][35]. Electrospinning is an
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • , vinylidenefluoride-tetrafluoroethylene-hexafluoropropylene, and an ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulphonyl)imide, through an electrospinning process. The prepared sensor can only sense normal pressure without significant disturbance up to a bending radius of 80 µm. This sensor system
PDF
Album
Review
Published 16 Oct 2019

Optimization and performance of nitrogen-doped carbon dots as a color conversion layer for white-LED applications

  • Tugrul Guner,
  • Hurriyet Yuce,
  • Didem Tascioglu,
  • Eren Simsek,
  • Umut Savaci,
  • Aziz Genc,
  • Servet Turan and
  • Mustafa M. Demir

Beilstein J. Nanotechnol. 2019, 10, 2004–2013, doi:10.3762/bjnano.10.197

Graphical Abstract
  • to inorganic phosphors that are commonly employed in white-LED configurations. Keywords: color conversion layer; electrospinning; nitrogen-doped carbon dots; PVP; solid-state lighting; white LED; white-light generation; Introduction Light-emitting carbon dots (CDots) are a new class of
  • of the red emission component on the white-light properties. Additionally, composite fibers were prepared by electrospinning of the water-based PVP/N-CDots. By adjusting the amount of fibers in the color conversion layers, the quality of the generated white light was improved, and a high CRI together
  • first, 3.0 g of PVP was mixed with 2.5 mL of ethanol and 2.5 mL of pure water in a glass vial. Then, 2.0 mL of the PVP solution was mixed with 15.0 µL of the N-CDot dispersion for electrospinning. The PVP/N-CDot fibers were fabricated by employing a potential difference of 15 kV and a flow rate of 1 mL
PDF
Album
Supp Info
Full Research Paper
Published 15 Oct 2019

Nanostructured and oriented metal–organic framework films enabling extreme surface wetting properties

  • Andre Mähringer,
  • Julian M. Rotter and
  • Dana D. Medina

Beilstein J. Nanotechnol. 2019, 10, 1994–2003, doi:10.3762/bjnano.10.196

Graphical Abstract
  • example, sol–gel synthesis, electrochemical deposition, anodization, electrochemical polymerization, electrospinning, plasma treatment, chemical or hydrothermal methods, vapor deposition, layer-by-layer assembly or laser ablation [19][27][28][29][30][31][32][33][34][35][36][37][38][39]. However, the
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2019

Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria

  • Carol López de Dicastillo,
  • Cristian Patiño,
  • María José Galotto,
  • Yesseny Vásquez-Martínez,
  • Claudia Torrent,
  • Daniela Alburquenque,
  • Alejandro Pereira and
  • Juan Escrig

Beilstein J. Nanotechnol. 2019, 10, 1716–1725, doi:10.3762/bjnano.10.167

Graphical Abstract
  • this work, novel, hollow, calcined titanium dioxide nanospheres (CSTiO2) were successfully synthesized for the first time through the combination of electrospinning and atomic layer deposition techniques. Poly(vinylpyrrolidone) (PVP) electrosprayed spherical particles were double-coated with alumina
  • ; atomic layer deposition; electrospinning; hollow nanospheres; titanium dioxide; Introduction Microbial contamination and the increase of multidrug bacterial resistance have become two major current concerns for food safety and human health due to the number of food-borne diseases and nosocomial
  • [10][15]. In this work, the combination of electrospinning and atomic layer deposition (ALD) technologies are presented as an innovative strategy to develop titanium dioxide hollow nanospheres with controlled and homogeneous dimensions. Electrospinning is a technique able to produce different
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2019

High-temperature resistive gas sensors based on ZnO/SiC nanocomposites

  • Vadim B. Platonov,
  • Marina N. Rumyantseva,
  • Alexander S. Frolov,
  • Alexey D. Yapryntsev and
  • Alexander M. Gaskov

Beilstein J. Nanotechnol. 2019, 10, 1537–1547, doi:10.3762/bjnano.10.151

Graphical Abstract
  • dispersed silicon carbide (SiC). In this work, ZnO and SiC nanofibers were synthesized by electrospinning of polymer solutions followed by heat treatment, which is necessary for polymer removal and crystallization of semiconductor materials. ZnO/SiC nanocomposites (15–45 mol % SiC) were obtained by mixing
  • an n–n heterojunction at the ZnO/SiC interface. Keywords: electrospinning; high temperature gas sensor; n–n heterojunction; ZnO/SiC nanocomposite; Introduction The risk of air pollution is growing due to the development of new technologies in the chemical, metallurgical and food industries, the use
  • been practically studied. A few works of the MO/SiC composite material based on highly dispersed silicon carbide [8][15] showed the stability of the material structure at 600 °C and its high response to carbon monoxide. Electrospinning is inexpensive tool widely used today for preparation porous
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

Tailoring the magnetic properties of cobalt ferrite nanoparticles using the polyol process

  • Malek Bibani,
  • Romain Breitwieser,
  • Alex Aubert,
  • Vincent Loyau,
  • Silvana Mercone,
  • Souad Ammar and
  • Fayna Mammeri

Beilstein J. Nanotechnol. 2019, 10, 1166–1176, doi:10.3762/bjnano.10.116

Graphical Abstract
  • fibers, made by electrospinning [9]. Focusing on this latter class of materials, the polymer exhibiting the most interesting ferro-and piezoelectric properties is a semi-crystalline fluoropolymer: poly(vinylidene fluoride) or PVDF. Mixing PVDF with magnetic nanoparticles leads to a higher polymer
PDF
Album
Full Research Paper
Published 04 Jun 2019

An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite

  • Mamta Sham Lal,
  • Thirugnanam Lavanya and
  • Sundara Ramaprabhu

Beilstein J. Nanotechnol. 2019, 10, 781–793, doi:10.3762/bjnano.10.78

Graphical Abstract
  • carbon nanofiber/TiO2 (Cu/CuO/PCNF/TiO2) composite uniformly covered with TiO2 nanoparticles was synthesized by electrospinning and a simple hydrothermal technique. The synthesized composite exhibits a unique morphology and excellent supercapacitive performance, including both electric double layer and
  • have been envisaged as a prospective electrode material due to its good mechanical strength, high surface area, relatively high conductivity [11][12]. Hence, carbon nanofibers produced by electrospinning, which is a cost-effective, simple and industry-viable technology, offer high production rate, high
  • behavior. Herein, we report a novel approach for the fabrication of a Cu/CuO/porous carbon nanofiber (PCNF)/TiO2 (Cu/CuO/PCNF/TiO2) composite that is uniformly covered by TiO2 nanoparticles and is synthesized using the electrospinning method together with a hydrothermal technique, followed by air
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Graphene-enhanced metal oxide gas sensors at room temperature: a review

  • Dongjin Sun,
  • Yifan Luo,
  • Marc Debliquy and
  • Chao Zhang

Beilstein J. Nanotechnol. 2018, 9, 2832–2844, doi:10.3762/bjnano.9.264

Graphical Abstract
  • the single components. The mechanisms through which graphene enhances the sensing performance of MOS sensors will be interpreted in the following sections. Wang et al. [35] reported that a formaldehyde (HCHO) sensor based on SnO2–GO composites, fabricated via electrospinning, exhibited a three times
  • electrospinning. The Co3O4–rGO room-temperature sensor showed excellent sensitivity to low concentrations of NH3, an ultrafast response time of only 4 s with exceptional selectivity to NH3. The authors claimed that the introduction of rGO exhibiting a strong attraction to NH3 played a crucial role in improving
PDF
Album
Review
Published 09 Nov 2018

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
  • cellulose pulp is required to produce CNF/CNC. In general, most CNCs and CNFs are produced through breaking down the cellulose fibres into nanosize fragments (top-down process), except for BC and electrospun cellulose nanofiber (ECNF) which utilize bacteria and an electrospinning technique (bottom-up
  • counter collision, ball milling, blending, cryocrushing, electrospinning, extrusion, grinding, homogenization, refining, steam explosion, ultrasonication, or a combination thereof. Chemical reaction Effective and energy-efficient nanocellulose preparation techniques are being pursued to sustain and meet
PDF
Album
Review
Published 19 Sep 2018

Effect of electrospinning process variables on the size of polymer fibers and bead-on-string structures established with a 23 factorial design

  • Paulina Korycka,
  • Adam Mirek,
  • Katarzyna Kramek-Romanowska,
  • Marcin Grzeczkowicz and
  • Dorota Lewińska

Beilstein J. Nanotechnol. 2018, 9, 2466–2478, doi:10.3762/bjnano.9.231

Graphical Abstract
  • diameter of uniform and heterogeneous fibers (with and without bead-on-string structures) and the size of beads obtained during the electrospinning process. A 23 factorial design was performed to determine the influence of the following factors: electrical voltage, flow rate and dynamic viscosity of the
  • viscosity, while the voltage had the greatest influence on the bead-free fiber diameter. The interactions between the studied factors were also analyzed. It was found that the presented method can be used for the design of an optimal and cost-effective electrospinning process, allowing the desired product
  • to be obtained with expected features. Keywords: bead-on-string structure; electrospinning; factorial design; polymer fiber; Introduction Since the beginning of the 21st century, the interest in electrospinning processes has been growing constantly. The reason for this is the wide range of
PDF
Album
Full Research Paper
Published 17 Sep 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • in everyday life. Herein, we review recent developments of gas sensors based on electrospun 1D nanostructures in different sensing platforms, including optical, conductometric and acoustic resonators. After explaining the principle of electrospinning, we classify sensors based on the type of
  • benefits and limitations for every approach. Keywords: 1D nanostructures; conductometric devices; electrospinning; gas sensors; optical sensors; resonators; Review 1 Introduction The monitoring and control of air pollutants, toxic gases and explosives has become increasingly important for human wellness
  • produced by many different approaches. For example, by use of a molten-salt method, wet (or liquid) chemistry, nanocarving, self-catalyst growth, template-assisted (or sacrificial template) synthesis, chemical vapour deposition, thermal evaporation, spray pyrolysis or electrospinning [34][35][36]. Among
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Biomimetic and biodegradable cellulose acetate scaffolds loaded with dexamethasone for bone implants

  • Aikaterini-Rafailia Tsiapla,
  • Varvara Karagkiozaki,
  • Veroniki Bakola,
  • Foteini Pappa,
  • Panagiota Gkertsiou,
  • Eleni Pavlidou and
  • Stergios Logothetidis

Beilstein J. Nanotechnol. 2018, 9, 1986–1994, doi:10.3762/bjnano.9.189

Graphical Abstract
  • work, a drug-delivery nanoplatform system consisting of polymeric celluloce acetate (CA) scaffolds loaded with dexamethasone was fabricated through electrospinning. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) indicated the successful fabrication of these structures
  • inflammations along with a simultaneous controlled release of the drug. Keywords: drug delivery; electrospinning; nanocoatings; orthopedics; tissue engineering; Introduction The application of nanotechnology in medicine, known as nanomedicine, aims to overcome problems associated with diseases at the
  • are placed as coatings in medical devices in order to enhance the biocompatibility [2][3][4]. One technique to produce such coatings is electrospinning, which yields long micro- and nanofibers [5]. More specifically, physical and synthetic polymeric fibers of 30–20000 nm in length are produced by
PDF
Album
Full Research Paper
Published 13 Jul 2018

Influence of the preparation method on the photocatalytic activity of Nd-modified TiO2

  • Patrycja Parnicka,
  • Paweł Mazierski,
  • Tomasz Grzyb,
  • Wojciech Lisowski,
  • Ewa Kowalska,
  • Bunsho Ohtani,
  • Adriana Zaleska-Medynska and
  • Joanna Nadolna

Beilstein J. Nanotechnol. 2018, 9, 447–459, doi:10.3762/bjnano.9.43

Graphical Abstract
  • materials for various applications. According to the literature, RE-modified TiO2 could be prepared through a wide spectrum of methods, such as sol–gel [18][25], hydrothermal [23][26][27], solvothermal [28], electrospinning [29], co-precipitation [30] and electrochemical [8] methods. In our previous papers
PDF
Album
Full Research Paper
Published 06 Feb 2018

Facile synthesis of ZnFe2O4 photocatalysts for decolourization of organic dyes under solar irradiation

  • Arjun Behera,
  • Debasmita Kandi,
  • Sanjit Manohar Majhi,
  • Satyabadi Martha and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 436–446, doi:10.3762/bjnano.9.42

Graphical Abstract
  • ZnFe2O4 by different physical (SSR and μW) and chemical (PC and SPC) methods with the formation of different structures [22]. Ponhan et al. prepared ZnFe2O4 nanofibres by electrospinning at room temperature. The resultant ZnFe2O4/PVP composite nano-fibres were calcined at 500, 600 and 700 °C for 2 h in a
PDF
Album
Full Research Paper
Published 05 Feb 2018

Engineering of oriented carbon nanotubes in composite materials

  • Razieh Beigmoradi,
  • Abdolreza Samimi and
  • Davod Mohebbi-Kalhori

Beilstein J. Nanotechnol. 2018, 9, 415–435, doi:10.3762/bjnano.9.41

Graphical Abstract
  • and production ability of the fibers in semi-industrial quantities [44]. The two methods commonly used to make CNT/nanofiber are described below. Electrospinning: Electrospinning (ES) can be used to produce fibers from a viscous solution of polymer/CNTs, it is also employed for aligning CNTs in the
  • arranged CNTs (b). Adapted with permission from [42], copyright 2009 American Chemical Society. Schematic structure of an aligned CNT in a polymer nanofiber. TEM micrograph, adapted with permission from [48], copyright 2003 American Chemical Society. An electrospinning workflow illustrates a standard
  • electrospinning setup, including power supply, syringe pump and collector plate and other collectors developed to collect oriented fibers. (I) [50][53][54][55], (II) [56], (III) [57], (IV) [58], (V) [59], (VI) [60], (VII) [61][62], (VIII) [63], (IX) [64], (X) [65]. SEM images: (I) Reproduced with permission from
PDF
Album
Review
Published 05 Feb 2018
Other Beilstein-Institut Open Science Activities