Search results

Search for "catalysts" in Full Text gives 306 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • powerful strategy for materials creation by nanoarchitectonics [10]. Nanoarchitectonics can be used to design and fabricate innovative catalysts by tailoring their molecular composition, surface atomic arrangement, and microstructures [11]. However, it requires harmonizing various techniques and phenomena
  • supports in the form of nano- and microparticles. Herein, we report on the deposition of platinum on carbon particles using PLD to fabricate cost-efficient catalysts for PEMFCs with good performance. The research aimed to develop an effective physical method of PtNP deposition on carbon supports directly
  • system for carbon support mixing during PLD deposition. The highly graphitized carbon particles used as support were synthesized using metallothermic reduction. We additionally investigated the influence of deposition process parameters on the morphology of the fabricated Pt/C catalysts. Structure
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • for 1 h and let it dry completely before the next test. We can conclude that the stability of the MoS2/TNAs heterojunction is higher than that of the g-C3N4/TNAs heterojunction. The decrease in catalytic activity of the PEC electrodes is explained by the leaching of the catalysts MoS2 and g-C3N4 after
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

Non-stoichiometric magnetite as catalyst for the photocatalytic degradation of phenol and 2,6-dibromo-4-methylphenol – a new approach in water treatment

  • Joanna Kisała,
  • Anna Tomaszewska and
  • Przemysław Kolek

Beilstein J. Nanotechnol. 2022, 13, 1531–1540, doi:10.3762/bjnano.13.126

Graphical Abstract
  • , Poland Institute of Physics, University of Rzeszow, 1 Pigonia Street, PL-35-310, Rzeszów, Poland 10.3762/bjnano.13.126 Abstract Phenol and 2,6-dibromo-4-methylphenol (DBMP) were removed from aqueous solutions by ozonolysis and photocatalysis. The properties and structural features of the catalysts and
  • ) reduction [18]. The study investigated the degradation of aqueous solutions of phenol (PhOH) and 2,6-dibromo-4-methylphenol (DBMP) via two processes, namely photocatalysis and ozonolysis. Two types of magnetite (M1 and M2) were used as catalysts in the photocatalysis process. The same type of magnetite
  • catalysts has been investigated by us in our previous article [17] as photocatalysts for the degradation of 4,4′-isopropylidenebis(2,6-dibromophenol) in comparison with ozonolysis. Magnetite was chosen as a photocatalyst because of its low cost, interesting electron properties, and indisputably low
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • the photocatalytic performance [4][5]. Because TiO2 only exhibits photochemical activity under UV excitation, which accounts for a small fraction (ca. 4%) of the solar energy, numerous modification methods such as doping with nonmetals, coupling with other catalysts, and attaching to supports have
  • nanocomposite characterizations The surface morphology of MWCNTs and the TiO2@MWCNTs nanocomposite is characterized by using field-emission scanning electron microscopy (FE-SEM, S4800) and transmission electron microscopy (TEM, JEOL-1400). The crystallization behavior of the catalysts is analyzed by X-ray
  • spectra of the prepared catalysts are shown in Figure 6b. The optical absorption of TiO2 is in the UV region, while the light absorption edge of TiO2@MWCNTs redshifts to the visible-light region. As seen from the Tauc plots (inset of Figure 6b), the optical band gap of TiO2 and TiO2@MWCNTs catalysts are
PDF
Album
Full Research Paper
Published 14 Dec 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
PDF
Album
Review
Published 11 Nov 2022

Rapid fabrication of MgO@g-C3N4 heterojunctions for photocatalytic nitric oxide removal

  • Minh-Thuan Pham,
  • Duyen P. H. Tran,
  • Xuan-Thanh Bui and
  • Sheng-Jie You

Beilstein J. Nanotechnol. 2022, 13, 1141–1154, doi:10.3762/bjnano.13.96

Graphical Abstract
  • the dosage of catalysts was 0.2 g for all experiments. Before each catalytic experiment, 0.2 g of the sample was dispersed in 10 mL of DI water, evaporated at 80 °C, and placed in the dark to achieve adsorption–desorption equilibrium. Finally, the sample was illuminated by a Xenon lamp (300 W) for 30
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022

Green synthesis of zinc oxide nanoparticles toward highly efficient photocatalysis and antibacterial application

  • Vo Thi Thu Nhu,
  • Nguyen Duy Dat,
  • Le-Minh Tam and
  • Nguyen Hoang Phuong

Beilstein J. Nanotechnol. 2022, 13, 1108–1119, doi:10.3762/bjnano.13.94

Graphical Abstract
  • electron microscopy, and high-resolution transmission electron microscopy. The fabricated ZnO NP samples are crystalline with a grain size of 30–100 nm. The ZnO NPs were used as catalysts for the photodegradation of methylene blue (MB) and methyl orange (MO) under visible and UV light. The results indicate
  • approach for the complete removal of organic pollutants due to their advantages. Semiconductors can act as catalysts for the complete degradation of organic substances when excited by light with an energy value higher than their bandgap. Among many semiconductors, TiO2 and ZnO are widely used as
  • the use of ZnO catalysts occurs when ZnO is illuminated by light. When excited by light with an energy greater than the bandgap of ZnO, electrons from the valence band (VB) are excited to the conduction band (CB) to form photogenerated electrons in the CB and photogenerated holes in the VB [11][12
PDF
Album
Full Research Paper
Published 07 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
PDF
Album
Review
Published 05 Oct 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • photocatalyst under UV light irradiation [30]. So far, a large number of MOFs have been shown to exhibit photocatalytic activity in H2 production, organic pollutant degradation, and Cr(VI) and CO2 reduction [26][27][31][32][33]. Among MOF catalysts, MIL101(Fe) is a cage-like structure formed by self-assembly of
  • , respectively [41]. In recent years, artificial Z-scheme heterojunction catalysts have generated extensive interest since its special electronic structure not only promotes separation of electron–hole pairs but also remains with high redox capacity [42]. Therefore, the photocatalytic activity of MIL101(Fe) can
  • -prepared catalysts. The k value of BOM-20 (0.01348 min−1) is the largest, which is 5.9 and 4.3 times higher than that of Bi2O3 (0.00226 min−1) and MIL101(Fe) (0.00309 min−1), respectively. The enhanced photocatalytic activity is attributed to the effective separation and migration of the photoinduced
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • the overall performance of the reaction [3][4]. There is an increasing use of platinum catalysts with diverse morphologies and the combination with noble and non-noble metal-based alloy/multimetallic nanoparticles (NPs) as potential electrocatalysts under extreme pH values [5][6][7][8][9][10][11][12
  • ][13][14]. In particular, the ORR in alkaline environments with faster kinetics and lower over potential requires stable transition metal-derived electrocatalysts [15]. The major hurdles for Pt-based ORR electrode catalysts in alkaline media include high cost, low operational stability, fuel crossover
  • slight changes of the peak positions by varying the silver fraction in the trimetallic catalysts (Figure S2a,b, Supporting Information File 1). The surface morphology of rGO-supported bimetallic (Ag-CuO and Ag-Co3O4) and trimetallic (ACC-1, ACC-2 and ACC-3) NPs, as well as the supportless ACC-2*, were
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Effects of focused electron beam irradiation parameters on direct nanostructure formation on Ag surfaces

  • Jānis Sniķeris,
  • Vjačeslavs Gerbreders,
  • Andrejs Bulanovs and
  • Ēriks Sļedevskis

Beilstein J. Nanotechnol. 2022, 13, 1004–1010, doi:10.3762/bjnano.13.87

Graphical Abstract
  • nanophotonics [3]. They can also serve as catalysts for controlled chemical vapour deposition [4]. While gold is the most widely used material for fabrication of plasmonic nanostructures, silver can offer a less expensive alternative [5][6][7]. Electron beam (EB) lithography is a popular method for the
PDF
Album
Full Research Paper
Published 22 Sep 2022

Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants

  • Chao-Wei Huang,
  • Shu-Yu Hsu,
  • Jun-Han Lin,
  • Yun Jhou,
  • Wei-Yu Chen,
  • Kun-Yi Andrew Lin,
  • Yu-Tang Lin and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 882–895, doi:10.3762/bjnano.13.79

Graphical Abstract
  • catalysts would inhibit light penetration and decrease light availability. Accordingly, the catalyst dosage was set at 50 mg. On the other hand, H2O2 could enhance the generation of the hydroxyl radicals in the aqueous solution. Unfortunately, when excess H2O2 produced too many hydroxyl radicals, the
  • (≥98.0%, TC, C22H24N2O8), were provided from Sigma-Aldrich. Commercial tungsten oxide (99.8%, WO3) was bought from Alfa Aesar. Synthesis of LaFexNi1−xO3 The LaFexNi1−xO3 catalysts were synthesized via the sol–gel method with citric acid crosslinking reaction, followed by self-propagating high-temperature
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2022

Nanoarchitectonics of the cathode to improve the reversibility of Li–O2 batteries

  • Hien Thi Thu Pham,
  • Jonghyeok Yun,
  • So Yeun Kim,
  • Sang A Han,
  • Jung Ho Kim,
  • Jong-Won Lee and
  • Min-Sik Park

Beilstein J. Nanotechnol. 2022, 13, 689–698, doi:10.3762/bjnano.13.61

Graphical Abstract
  • metallic catalysts can also be obtained by adjusting metal ions for outstanding electrochemical reactions. In this study, various bimetallic zeolitic imidazolate framework (ZIF)-derived carbons were designed by varying the ratio of Zn to Co ions. Moreover, carbon nanotubes (CNTs) are added to improve the
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2022

Surfactant-free syntheses and pair distribution function analysis of osmium nanoparticles

  • Mikkel Juelsholt,
  • Jonathan Quinson,
  • Emil T. S. Kjær,
  • Baiyu Wang,
  • Rebecca Pittkowski,
  • Susan R. Cooper,
  • Tiffany L. Kinnibrugh,
  • Søren B. Simonsen,
  • Luise Theil Kuhn,
  • María Escudero-Escribano and
  • Kirsten M. Ø. Jensen

Beilstein J. Nanotechnol. 2022, 13, 230–235, doi:10.3762/bjnano.13.17

Graphical Abstract
  • [22]. It only requires a monoalcohol as solvent and reducing agent [25], a base, and a metal precursor to obtain size-controlled NPs [26][27]. This approach leads to catalysts that are more active than those prepared, for example, in polyols [28][29]. Here we investigate whether this simple synthetic
PDF
Album
Supp Info
Letter
Published 16 Feb 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • morphology. Recent studies have been focused on the modification of properties of SnO2 to increase the photocatalytic efficiency of SnO2, including bandgap engineering, defect regulation, surface engineering, heterojunction construction, and using co-catalysts, which will be thoroughly highlighted in this
PDF
Album
Review
Published 21 Jan 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

The effect of cobalt on morphology, structure, and ORR activity of electrospun carbon fibre mats in aqueous alkaline environments

  • Markus Gehring,
  • Tobias Kutsch,
  • Osmane Camara,
  • Alexandre Merlen,
  • Hermann Tempel,
  • Hans Kungl and
  • Rüdiger-A. Eichel

Beilstein J. Nanotechnol. 2021, 12, 1173–1186, doi:10.3762/bjnano.12.87

Graphical Abstract
  • the catalysts to be utilised to their full potential especially in aqueous metal–air systems. Since initial work by Heise and Schumacher in 1932, pressed layer systems have become a standard [6]. In contrast, quite a number of different approaches are being discussed for non-aqueous metal–air systems
  • , although the plateau values of EOCP are consistently lower at around 250 mV vs MMO. The influence of the cobalt catalysts becomes more relevant, when the obtained current densities at an overpotential of 100 mV are considered (Figure 9b). For fibres containing cobalt, there is a distinct increase for
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Prediction of Co and Ru nanocluster morphology on 2D MoS2 from interaction energies

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2021, 12, 704–724, doi:10.3762/bjnano.12.56

Graphical Abstract
  • wide range of potential applications due to the properties of a single layer, which often differ from the bulk material. They are of particular interest as ultrathin diffusion barriers in semiconductor device interconnects and as supports for low-dimensional metal catalysts. Understanding the
  • catalysts or for preventing islanding of conductive metals. Typically, theoretical studies focus on the adsorption of either single atoms of a series of metals [21][23][24][25][27] or large nanoparticle-like structures [19][20]. In our previous study we identified that while these studies do deliver useful
  • MoS2 ML, where n = 1–4. Co and Ru are of great interest in conjunction with MoS2 for application in advanced interconnects as alternatives to Cu [30][31][32][33][34][35] and TaN. Applications in catalysis include Pt-free hydrogen evolution catalysts [36][37][38][39][40][41]. Interconnects require high
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2021

Nanoporous and nonporous conjugated donor–acceptor polymer semiconductors for photocatalytic hydrogen production

  • Zhao-Qi Sheng,
  • Yu-Qin Xing,
  • Yan Chen,
  • Guang Zhang,
  • Shi-Yong Liu and
  • Long Chen

Beilstein J. Nanotechnol. 2021, 12, 607–623, doi:10.3762/bjnano.12.50

Graphical Abstract
  • the sites for photocatalytic proton reduction in water [73]. Cooper and co-workers [74] first reported FSO-based CPs as catalysts for PHP in 2016. The linear FSO–phenyl-based polymer P54 (Figure 8) yielded a moderate HER of 92 μmol·h−1 (25 mg) under visible light. Subsequently, Wang et al. [75
PDF
Album
Review
Published 30 Jun 2021

Stability and activity of platinum nanoparticles in the oxygen electroreduction reaction: is size or uniformity of primary importance?

  • Kirill O. Paperzh,
  • Anastasia A. Alekseenko,
  • Vadim A. Volochaev,
  • Ilya V. Pankov,
  • Olga A. Safronenko and
  • Vladimir E. Guterman

Beilstein J. Nanotechnol. 2021, 12, 593–606, doi:10.3762/bjnano.12.49

Graphical Abstract
  • University, "High-Resolution Transmission Electron Microscopy” Shared Use Center, 344090, 194/2 Stachki st., Rostov-on-Don, Russia 10.3762/bjnano.12.49 Abstract Platinum–carbon catalysts are widely used in the manufacturing of proton-exchange membrane fuel cells. Increasing Pt/C activity and stability is an
  • liquid-phase synthesis. A comparative study of the structural characteristics, catalytic activity in the oxygen electroreduction reaction (ORR), and durability of the synthesized catalysts, as well as their commercial analogs, was carried out. It was shown that the uniformity of the structural and
  • morphological characteristics of Pt/C catalysts makes it possible to reduce the negative effect of the small size of NPs on their stability. As a result, the obtained catalysts were significantly superior to their commercial analogs regarding ORR activity, but not inferior to them in terms of stability
PDF
Album
Supp Info
Full Research Paper
Published 29 Jun 2021

The preparation temperature influences the physicochemical nature and activity of nanoceria

  • Robert A. Yokel,
  • Wendel Wohlleben,
  • Johannes Georg Keller,
  • Matthew L. Hancock,
  • Jason M. Unrine,
  • D. Allan Butterfield and
  • Eric A. Grulke

Beilstein J. Nanotechnol. 2021, 12, 525–540, doi:10.3762/bjnano.12.43

Graphical Abstract
  • family of metal oxide ENMs used industrially, as catalysts in diesel fuel, abrasives in chemical mechanical planarization, in integrated circuit manufacture, as structural supports for catalysts for fuel synthesis applications, in solid oxide fuel cells, and in rechargeable batteries [1][2]. Cerium oxide
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2021

Boosting of photocatalytic hydrogen evolution via chlorine doping of polymeric carbon nitride

  • Malgorzata Aleksandrzak,
  • Michalina Kijaczko,
  • Wojciech Kukulka,
  • Daria Baranowska,
  • Martyna Baca,
  • Beata Zielinska and
  • Ewa Mijowska

Beilstein J. Nanotechnol. 2021, 12, 473–484, doi:10.3762/bjnano.12.38

Graphical Abstract
  • hydrogen [1][2][3][4], environmental remediation [5][6], decomposition of organic pollutants [7], CO2 reduction into hydrocarbon fuels [8][9][10], disinfection [11][12], and selective organic transformations [13][14]. One of the most studied catalysts is polymeric carbon nitride (PCN). This graphite-like
  • visible light compared to catalysts doped with one heteroatom [39]. Other studies showed that S- and P-doped photocatalysts showed significantly increased photocatalytic activity in the degradation of methylene blue under visible light compared to bulk PCN. The improvement was attributed to lone-pair
  • the H2 evolution rate after three cycles, indicating the stability of the catalyst. Table 4 presents a comparative study of Cl-PCN with catalysts doped with Cl and other elements which have been reported in the literature. The table presents a broad range of the enhancement factor of the hydrogen
PDF
Album
Full Research Paper
Published 19 May 2021

Towards 3D self-assembled rolled multiwall carbon nanotube structures by spontaneous peel off

  • Jonathan Quinson

Beilstein J. Nanotechnol. 2020, 11, 1865–1872, doi:10.3762/bjnano.11.168

Graphical Abstract
  • forest, structures compatible with relatively large nanoparticles (approx. 100 nm) are identified. These are attributed to Fe metal catalysts formed during the synthesis and from which MWCNTs grow, assuming a root-growth mechanism [16][26]. For N1/C2 structures, it is not straightforward to observe the
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2020

Unravelling the interfacial interaction in mesoporous SiO2@nickel phyllosilicate/TiO2 core–shell nanostructures for photocatalytic activity

  • Bridget K. Mutuma,
  • Xiluva Mathebula,
  • Isaac Nongwe,
  • Bonakele P. Mtolo,
  • Boitumelo J. Matsoso,
  • Rudolph Erasmus,
  • Zikhona Tetana and
  • Neil J. Coville

Beilstein J. Nanotechnol. 2020, 11, 1834–1846, doi:10.3762/bjnano.11.165

Graphical Abstract
  • metal oxides, such as ZrO2 [16] and SiO2 [17], influence the morphology and surface features of the resulting binary metal oxide semiconductors. Moreover, these binary metal oxide semiconductors act as charge-transfer catalysts and significantly reduce the electron–hole recombination [18][19]. Another
  • phyllosilicate can be obtained either by a hydrothermal method or a deposition-precipitation method, the 2:1 nickel phyllosilicate is only formed under hydrothermal conditions [32][33][34]. Recently, several researchers have reported on the generation of nickel phyllosilicate catalysts for hydrogenation
  • obtained via a hydrothermal treatment method using solid SiO2 spheres, urea, and nickel nitrate hexahydrate. Although NiPS compounds are extensively used as catalysts, to our knowledge, reports on the use of core–shell based nickel–phyllosilicate composites in dye photodegradation are yet to be reported
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2020
Other Beilstein-Institut Open Science Activities