Search results

Search for "electron diffraction" in Full Text gives 189 result(s) in Beilstein Journal of Nanotechnology.

Direct observation of oxygen-vacancy formation and structural changes in Bi2WO6 nanoflakes induced by electron irradiation

  • Hong-long Shi,
  • Bin Zou,
  • Zi-an Li,
  • Min-ting Luo and
  • Wen-zhong Wang

Beilstein J. Nanotechnol. 2019, 10, 1434–1442, doi:10.3762/bjnano.10.141

Graphical Abstract
  • . Keywords: bismuth tungsten oxide; electron diffraction; electron irradiation; nanoflakes; oxygen vacancies; Introduction Bi2WO6 has drawn great interest regarding its physical properties such as the piezoelectric effect and ferroelectricity with large spontaneous polarization and high Curie temperature [1
  • of high-resolution TEM (HRTEM) imaging and electron diffraction experiments was performed to investigate the electron-induced defects in the Bi2WO6 nanoflakes. Our results reveal that Bi2WO6 nanoflakes can be decomposed into Bi precipitates and WO3 nanosheets after the generation of oxygen vacancies
  • = 1.5406 Å). Morphological analyses were carried out on a field-emission scanning electron microscope (SEM, Hitachi S-4800) equipped with an energy-dispersive X-ray spectroscopy (EDX) detector operating at 10 kV and 10 μA. Selected-area electron diffraction (SAED) and high-resolution transmission electron
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2019

Highly ordered mesoporous silica film nanocomposites containing gold nanoparticles for the catalytic reduction of 4-nitrophenol

  • Mohamad Azani Jalani,
  • Leny Yuliati,
  • Siew Ling Lee and
  • Hendrik O. Lintang

Beilstein J. Nanotechnol. 2019, 10, 1368–1379, doi:10.3762/bjnano.10.135

Graphical Abstract
  • visualization of hexagonal arrangements. This finding was strongly supported by the FFT results which showed intense electron diffraction (top inset figure) and clearly displayed auto-correlation images (bottom inset figure) for the hexagonal honeycomb structure [39]. The high quality of hexagonal arrangement
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2019

Pure and mixed ordered monolayers of tetracyano-2,6-naphthoquinodimethane and hexathiapentacene on the Ag(100) surface

  • Robert Harbers,
  • Timo Heepenstrick,
  • Dmitrii F. Perepichka and
  • Moritz Sokolowski

Beilstein J. Nanotechnol. 2019, 10, 1188–1199, doi:10.3762/bjnano.10.118

Graphical Abstract
  • structures are formed on a surface by molecules that are otherwise typically used for the synthesis of bulk charge-transfer materials. The layers were obtained by vacuum deposition on the Ag(100) surface and analyzed by low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). The
  • a planar orientation on the surface. We discuss the influence of intermolecular charge transfer on the ordering in the mixed structure. Keywords: charge transfer; low-energy electron diffraction; hexathiapentacene; scanning tunneling microscopy; tetracyano-2,6-naphthoquinodimethane; Introduction
  • -energy electron-diffraction (LEED) instrument made by OCI. All LEED measurements were performed at room temperature (RT). Due to the planar screen the LEED patterns obtained with the MCP LEED do not represent undistorted projections of the reciprocal space as it is the case for a conventional
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2019

Synthesis and characterization of quaternary La(Sr)S–TaS2 misfit-layered nanotubes

  • Marco Serra,
  • Erumpukuthickal Ashokkumar Anumol,
  • Dalit Stolovas,
  • Iddo Pinkas,
  • Ernesto Joselevich,
  • Reshef Tenne,
  • Andrey Enyashin and
  • Francis Leonard Deepak

Beilstein J. Nanotechnol. 2019, 10, 1112–1124, doi:10.3762/bjnano.10.111

Graphical Abstract
  • two folding vectors for TaS2. The atomic arrangement of the SrxLa1−xS double layers are better revealed in the nanotube shown in Figure 4d. The structure of this nanotube was further analyzed by a selected area electron diffraction (SAED) pattern as shown in Figure 5. Twelve pairs of spots
  • % Sr in the precursor) nanotube showing 1.157 nm periodicity along the c-axis. b) Selected area electron diffraction showing the orientation relationship between LaS layers (green) and TaS2 layers (red). The nanotube axis is shown as a pink arrow and the basal reflections are marked with blue arrows
PDF
Album
Supp Info
Full Research Paper
Published 24 May 2019

Structural and optical properties of penicillamine-protected gold nanocluster fractions separated by sequential size-selective fractionation

  • Xiupei Yang,
  • Zhengli Yang,
  • Fenglin Tang,
  • Jing Xu,
  • Maoxue Zhang and
  • Martin M. F. Choi

Beilstein J. Nanotechnol. 2019, 10, 955–966, doi:10.3762/bjnano.10.96

Graphical Abstract
  • AuNC product is comprised of spherical particles of various sizes. The insets of Figure 2A show the selected area electron diffraction (SAED) pattern and high-magnification TEM image of a typical particle. The SAED pattern indicates the {111} and {200} planes of the typical face-centered cubic (fcc
  • difficult to obtain similar size fractions in the separation process. This issue can be addressed by accurately and carefully controlling the water/acetone proportion so that the required size fraction may be achieved. Selected-area electron diffraction characteristics of AuNCs fractions The corresponding
PDF
Album
Full Research Paper
Published 25 Apr 2019

Magnetic field-assisted assembly of iron oxide mesocrystals: a matter of nanoparticle shape and magnetic anisotropy

  • Julian J. Brunner,
  • Marina Krumova,
  • Helmut Cölfen and
  • Elena V. Sturm (née Rosseeva)

Beilstein J. Nanotechnol. 2019, 10, 894–900, doi:10.3762/bjnano.10.90

Graphical Abstract
  • provides opportunities in controlled materials design. In order to obtain structural insights, further TEM and electron diffraction (ED) measurements were performed on selected directed superstructures with sizes in between 2–4 µm. The selected TEM images of the directed superstructures together with their
  • nanoparticles (Figure 4e) plays a dominant role and controls the symmetry of packing arrangement and the orientational order of the nanoparticles within the mesocrystals. In contrast to such mesocrystals, the selected area electron diffraction (SAED) patterns of the “directed mesocrystals” (Figure 4b,c,f
PDF
Album
Letter
Published 17 Apr 2019

Enhancement in thermoelectric properties due to Ag nanoparticles incorporated in Bi2Te3 matrix

  • Srashti Gupta,
  • Dinesh Chandra Agarwal,
  • Bathula Sivaiah,
  • Sankarakumar Amrithpandian,
  • Kandasami Asokan,
  • Ajay Dhar,
  • Binaya Kumar Panigrahi,
  • Devesh Kumar Avasthi and
  • Vinay Gupta

Beilstein J. Nanotechnol. 2019, 10, 634–643, doi:10.3762/bjnano.10.63

Graphical Abstract
  • using a commercial instrument (Ulvac, ZEM3). The instrument error during TE measurements is ±5%. Results and Discussion X-ray diffraction and transmission electron microscopy selected area electron diffraction X-ray diffraction (XRD) patterns of Bi2Te3 with different concentrations of Ag (0, 5 and 20 wt
  • ), respectively, can be seen. Bi2Te3 and Ag planes are in good agreement with the literature [20]. Figure 1b shows the XRD of commercially purchased Bi2Te3 and Ag powder without annealing. The XRD results have also been verified by transmission electron microscopy selected area electron diffraction (TEM SAED
PDF
Album
Full Research Paper
Published 04 Mar 2019

Ceria/polymer nanocontainers for high-performance encapsulation of fluorophores

  • Kartheek Katta,
  • Dmitry Busko,
  • Yuri Avlasevich,
  • Katharina Landfester,
  • Stanislav Baluschev and
  • Rafael Muñoz-Espí

Beilstein J. Nanotechnol. 2019, 10, 522–530, doi:10.3762/bjnano.10.53

Graphical Abstract
  • (NC-CeO2). Vertical lines indicates the position and relative intensity of cubic cerium(IV) oxide crystal phase (ICDD card no. 34-0394). TEM micrographs of CeO2/polystyrene hybrid nanocapsules (sample NC-CeO2): a) bright-field image (inset shows the electron diffraction of the shown capsule); b) dark
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2019

Temperature-dependent Raman spectroscopy and sensor applications of PtSe2 nanosheets synthesized by wet chemistry

  • Mahendra S. Pawar and
  • Dattatray J. Late

Beilstein J. Nanotechnol. 2019, 10, 467–474, doi:10.3762/bjnano.10.46

Graphical Abstract
  • -synthesized PtSe2 sample clearly showing the sheet-like morphology with lateral dimension of ≈700 nm. Figure 3d shows a high-resolution TEM image of the PtSe2 nanosheets. The inset of Figure 3d shows the selected area electron diffraction pattern (SAED) which depicts the crystalline nature of the as
  • nanosheets. (a) Typical XRD pattern and (b) Raman spectra recorded at room temperature. (a–d) Typical SEM images for PtSe2 nanosheets synthesized using the wet chemistry method. (a–c) Low-magnification TEM images and (d) a high-magnification TEM image, where the inset shows the selected area electron
  • diffraction (SAED) pattern for the as-synthesized PtSe2 nanosheets. (a) Deconvoluted XPS spectra for Pt and (b) Se elements. (a) AFM image and (b) AFM height profile plot for a PtSe2 nanosheet. Temperature-dependent Raman spectra analysis for PtSe2 nanosheets for the (a) Eg mode and the (b) A1g mode as a
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Sub-wavelength waveguide properties of 1D and surface-functionalized SnO2 nanostructures of various morphologies

  • Venkataramana Bonu,
  • Binaya Kumar Sahu,
  • Arindam Das,
  • Sankarakumar Amirthapandian,
  • Sandip Dhara and
  • Harish C. Barshilia

Beilstein J. Nanotechnol. 2019, 10, 379–388, doi:10.3762/bjnano.10.37

Graphical Abstract
  • corresponding SAED pattern further demonstrates the single crystalline nature of the NWs (Figure 2c). It is indexed with the [020] zone axis of the rutile SnO2 phase. The electron diffraction study reveals crystalline NWs with no obvious extended defects such as dislocations or stacking faults. Figure 3 shows
  • ). The corresponding SAED pattern further demonstrates that the NWs are single crystalline in character, which can be indexed to the [002] zone axis of the rutile SnO2 (Figure 3c). The electron diffraction pattern shows that these NWs, like other cylindrical-shape NWs, are also crystalline and they do
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2019

Site-specific growth of oriented ZnO nanocrystal arrays

  • Rekha Bai,
  • Dinesh K. Pandya,
  • Sujeet Chaudhary,
  • Veer Dhaka,
  • Vladislav Khayrudinov,
  • Jori Lemettinen,
  • Christoffer Kauppinen and
  • Harri Lipsanen

Beilstein J. Nanotechnol. 2019, 10, 274–280, doi:10.3762/bjnano.10.26

Graphical Abstract
  • of the wurtzite phase of ZnO (JCPDS 05-0664), which is well in agreement with the XRD results (Figure 3). Moreover, the selected area electron diffraction (SAED) pattern (Figure 4d) reveals the excellent crystallinity of ZnO NCs and confirms the growth of the c-axis normal to the substrate in these
  • S600 sample. (a, b) Low-resolution TEM image, (c) high-resolution TEM image, and (d) selected area electron diffraction pattern. Acknowledgements S.C. and D.K.P. acknowledge the financial support from DST under the Indo-Finland Project [INT/FIN/P-12]. V.D. and H.L. acknowledge support from the Academy
PDF
Album
Full Research Paper
Published 24 Jan 2019

Wet chemistry route for the decoration of carbon nanotubes with iron oxide nanoparticles for gas sensing

  • Hussam M. Elnabawy,
  • Juan Casanova-Chafer,
  • Badawi Anis,
  • Mostafa Fedawy,
  • Mattia Scardamaglia,
  • Carla Bittencourt,
  • Ahmed S. G. Khalil,
  • Eduard Llobet and
  • Xavier Vilanova

Beilstein J. Nanotechnol. 2019, 10, 105–118, doi:10.3762/bjnano.10.10

Graphical Abstract
  • size distribution for all samples. In addition, HRTEM imaging for the anchored iron oxide nanoparticles on the MWCNTs surface was performed and the selected area electron diffraction (SAED) pattern for was identified, as shown in Figure 4. The image shows the high crystallinity of the prepared iron
  • oxide nanoparticles and the selected area electron diffraction (SAED) pattern of the iron oxide nanoparticles (see inset of Figure 4) clearly shows the diffraction rings of a typical cubic structure. XPS was performed to investigate the chemical composition of the samples and, in particular, to
  • (c) and acetone (d). Different decoration densities for different decoration ratios of 1:1 (a), 1:1.3 (b) and 1:1.5 (c). High magnification HRTEM images of MWCNTs decorated with Fe2O3 nanoparticles. The inset shows the electron diffraction pattern (SAED) for the selected area. XPS core level spectra
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Zn/F-doped tin oxide nanoparticles synthesized by laser pyrolysis: structural and optical properties

  • Florian Dumitrache,
  • Iuliana P. Morjan,
  • Elena Dutu,
  • Ion Morjan,
  • Claudiu Teodor Fleaca,
  • Monica Scarisoreanu,
  • Alina Ilie,
  • Marius Dumitru,
  • Cristian Mihailescu,
  • Adriana Smarandache and
  • Gabriel Prodan

Beilstein J. Nanotechnol. 2019, 10, 9–21, doi:10.3762/bjnano.10.2

Graphical Abstract
  • the crystalline domains by selected area electron diffraction (SAED) analysis. Energy dispersion X-ray spectroscopy (EDX) was performed using a scanning electron microscopy (SEM-Inspect TM S50) with an acceleration voltage of 15 kV, using a SiLi detector cooled with liquid nitrogen. This method can
PDF
Album
Full Research Paper
Published 02 Jan 2019

Improved catalytic combustion of methane using CuO nanobelts with predominantly (001) surfaces

  • Qingquan Kong,
  • Yichun Yin,
  • Bing Xue,
  • Yonggang Jin,
  • Wei Feng,
  • Zhi-Gang Chen,
  • Shi Su and
  • Chenghua Sun

Beilstein J. Nanotechnol. 2018, 9, 2526–2532, doi:10.3762/bjnano.9.235

Graphical Abstract
  • transmission electron microscopy (TEM). Figure 2a,b shows the NWs which have a diameter of 20–100 nm and length of 1–3 μm, and Figure 2c shows the thin NBs, with a width of 200–300 nm and a length of ≈1 μm. The selected area electron diffraction patterns (SAED), projected from the [1] zone axis of the yellow
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2018

High-temperature magnetism and microstructure of a semiconducting ferromagnetic (GaSb)1−x(MnSb)x alloy

  • Leonid N. Oveshnikov,
  • Elena I. Nekhaeva,
  • Alexey V. Kochura,
  • Alexander B. Davydov,
  • Mikhail A. Shakhov,
  • Sergey F. Marenkin,
  • Oleg A. Novodvorskii,
  • Alexander P. Kuzmenko,
  • Alexander L. Vasiliev,
  • Boris A. Aronzon and
  • Erkki Lahderanta

Beilstein J. Nanotechnol. 2018, 9, 2457–2465, doi:10.3762/bjnano.9.230

Graphical Abstract
  • studied areas unambiguously indicates that the structure of the film is cubic and corresponds to the GaSb crystal structure (space group ). Moreover, the images clearly show twins and stacking faults, which are typcal for cubic GaSb crystals. At the same time, the electron diffraction data obtained for
PDF
Album
Full Research Paper
Published 14 Sep 2018

Droplet-based synthesis of homogeneous magnetic iron oxide nanoparticles

  • Christian D. Ahrberg,
  • Ji Wook Choi and
  • Bong Geun Chung

Beilstein J. Nanotechnol. 2018, 9, 2413–2420, doi:10.3762/bjnano.9.226

Graphical Abstract
  • ). To confirm the elemental composition of the nanoparticles energy-dispersive X-ray spectroscopy (EDS) was conducted after TEM imaging (Figure S2A,B in Supporting Information File 1), confirming that the particles consisted of Fe3O4. Moreover, the electron diffraction patterns were analyzed (Figure S2C
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2018

Defect formation in multiwalled carbon nanotubes under low-energy He and Ne ion irradiation

  • Santhana Eswara,
  • Jean-Nicolas Audinot,
  • Brahime El Adib,
  • Maël Guennou,
  • Tom Wirtz and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2018, 9, 1951–1963, doi:10.3762/bjnano.9.186

Graphical Abstract
  • ][21], C+ [21][22], N+ [22], Si+ [22], Kr+ [23], and Ar+ irradiation [21][22]. The same is true for defects produced by electron irradiation [24]. Electron diffraction pattern can be used to quantify the degree of amorphisation [13]. Raman spectroscopy has also been widely used to investigate different
PDF
Album
Supp Info
Full Research Paper
Published 09 Jul 2018

Synthesis of rare-earth metal and rare-earth metal-fluoride nanoparticles in ionic liquids and propylene carbonate

  • Marvin Siebels,
  • Lukas Mai,
  • Laura Schmolke,
  • Kai Schütte,
  • Juri Barthel,
  • Junpei Yue,
  • Jörg Thomas,
  • Bernd M. Smarsly,
  • Anjana Devi,
  • Roland A. Fischer and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2018, 9, 1881–1894, doi:10.3762/bjnano.9.180

Graphical Abstract
  • IL [BMIm][BF4] for RE = Pr, Eu, Gd and Er. The crystalline phases and the absence of significant oxide impurities in RE-NPs and REF3-NPs were verified by powder X-ray diffraction (PXRD), selected area electron diffraction (SAED) and high-resolution X-ray photoelectron spectroscopy (XPS). The size
  • area electron diffraction (SAED). The results are summarized in Table 1. REF3-NPs from RE(amd)3 and Eu(dpm)3 in [BMIm][BF4] The microwave-induced decomposition of the rare-earth metal amidinates RE(amd)3 with RE = Pr(III), Gd(III), Er(III) and Eu(dpm)3 in the fluorine-containing IL [BMIm][BF4] gave
  • -NPs (Figure 2) were assigned by selected area electron diffraction (SAED). The characterization was completed by energy-dispersive X-ray spectroscopy (EDX, in combination with TEM) for the qualitative element composition. EDX spectroscopy (Figure 3 and Figures S5b, S6c, Supporting Information File 1
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2018

Nitrogen-doped carbon nanotubes coated with zinc oxide nanoparticles as sulfur encapsulator for high-performance lithium/sulfur batteries

  • Yan Zhao,
  • Zhengjun Liu,
  • Liancheng Sun,
  • Yongguang Zhang,
  • Yuting Feng,
  • Xin Wang,
  • Indira Kurmanbayeva and
  • Zhumabay Bakenov

Beilstein J. Nanotechnol. 2018, 9, 1677–1685, doi:10.3762/bjnano.9.159

Graphical Abstract
  • observed in the HRTEM image of the ZnO@NCNT composite (Figure 3a), which correspond to the (002) and (101) planes of ZnO, respectively. Figure 3b shows the selected area electron diffraction (SAED) patterns of the ZnO@NCNT composite. The diffraction rings represent different planes of ZnO, revealing the
PDF
Album
Full Research Paper
Published 06 Jun 2018

Friction force microscopy of tribochemistry and interfacial ageing for the SiOx/Si/Au system

  • Christiane Petzold,
  • Marcus Koch and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2018, 9, 1647–1658, doi:10.3762/bjnano.9.157

Graphical Abstract
  • cantilevers before use. A Au(111) single crystal (MaTeck GmbH, Jülich, Germany) was prepared by repeating a sputter–heating cycle (20 min Ar sputtering at 25 μA/1 keV followed by 1 h annealing at 850 °C) until a sharp (111) pattern was observed by low-energy electron diffraction (LEED). The n-Si(100) sample
PDF
Album
Full Research Paper
Published 05 Jun 2018

Sheet-on-belt branched TiO2(B)/rGO powders with enhanced photocatalytic activity

  • Huan Xing,
  • Wei Wen and
  • Jin-Ming Wu

Beilstein J. Nanotechnol. 2018, 9, 1550–1557, doi:10.3762/bjnano.9.146

Graphical Abstract
  • in Figure 3a). Figure 3b shows more clearly the radially growing nanosheets along the nanobelt trunk. The average length of the nanosheet branches is ≈100 nm. The selected area electron diffraction (SAED) pattern collected from several “sheet-on-belt” nanostructures indicates diffraction rings
PDF
Album
Supp Info
Full Research Paper
Published 24 May 2018

A novel copper precursor for electron beam induced deposition

  • Caspar Haverkamp,
  • George Sarau,
  • Mikhail N. Polyakov,
  • Ivo Utke,
  • Marcos V. Puydinger dos Santos,
  • Silke Christiansen and
  • Katja Höflich

Beilstein J. Nanotechnol. 2018, 9, 1220–1227, doi:10.3762/bjnano.9.113

Graphical Abstract
  • deposits, with crystallites below ≈20 nm in diameter. Selected area electron diffraction (SAED) of the deposit (Figure 2e) yields diffraction rings which fully correspond to pure Cu, with no rings corresponding to Cu oxides. SAED was carried out for different regions within the deposit covering a
PDF
Album
Supp Info
Full Research Paper
Published 18 Apr 2018

Magnetic characterization of cobalt nanowires and square nanorings fabricated by focused electron beam induced deposition

  • Federico Venturi,
  • Gian Carlo Gazzadi,
  • Amir H. Tavabi,
  • Alberto Rota,
  • Rafal E. Dunin-Borkowski and
  • Stefano Frabboni

Beilstein J. Nanotechnol. 2018, 9, 1040–1049, doi:10.3762/bjnano.9.97

Graphical Abstract
  • , they consist of nanocrystalline Co grains embedded in a carbonaceous matrix. Selected area electron diffraction shows a mixture of hexagonal close-packed (HCP) and face-centered cubic (FCC) Co crystal structures [23]. Magnetic characterization in the TEM was carried out using off-axis EH and L-TEM in
PDF
Album
Full Research Paper
Published 03 Apr 2018

Single-crystalline FeCo nanoparticle-filled carbon nanotubes: synthesis, structural characterization and magnetic properties

  • Rasha Ghunaim,
  • Maik Scholz,
  • Christine Damm,
  • Bernd Rellinghaus,
  • Rüdiger Klingeler,
  • Bernd Büchner,
  • Michael Mertig and
  • Silke Hampel

Beilstein J. Nanotechnol. 2018, 9, 1024–1034, doi:10.3762/bjnano.9.95

Graphical Abstract
  • on carbon tape. Transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) measurements and nanobeam electron diffraction patterns were performed using a Tecnai F30 (FEI) instrument operated at 300 kV or a Tecnai G2 (FEI) instrument operated at 200 kV. Both were
  • white parallel lines in Figure 3c), in which the bcc structure of Fe–Co can be identified from the interplanar distance of 0.202 nm (110). However, the need to anneal these samples arose from the magnetic property measurements (see Figure 7). TEM-based nanobeam electron diffraction carried out on
  • nanoparticles The crystallinity of the Fe–Co nanoparticles was verified by powder XRD, HRTEM and nanobeam electron diffraction. No indication of oxide or carbide phases were detected, which means that the synthesis approaches guarantee CNTs as protective shells for the MNPs. The additional annealing step is
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2018

Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

  • Mengyuan Zhang,
  • Jiaqian Qin,
  • Pengfei Yu,
  • Bing Zhang,
  • Mingzhen Ma,
  • Xinyu Zhang and
  • Riping Liu

Beilstein J. Nanotechnol. 2018, 9, 789–800, doi:10.3762/bjnano.9.72

Graphical Abstract
  • the sample particle displayed here highly agrees with the results of the SEM image, where ZnO aggregates are decorated on the exfoliated BiOI nanolayers. The selected area electron diffraction (SAED) pattern of BiOI (Figure S2c, Supporting Information File 1) reveals that the sample is highly
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2018
Other Beilstein-Institut Open Science Activities