Search results

Search for "energy storage" in Full Text gives 146 result(s) in Beilstein Journal of Nanotechnology.

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • -dimensional CuO petal assemblies (by Abe and co-workers [133]), perovskite nanosheets and their layer-by-layer assemblies as high-k dielectric/ferroelectric materials (by Osada and Sasaki [134]), the manipulation of transition-metal dichalcogenides nanosheets for the usage in energy storage/conversion
  • their potential for wide-ranging applications, such as electronics, sensing, catalysis, separation, and energy storage and conversion. However, most reported two-dimensional MOFs and COFs have been synthesised as powders, which are not easily processed into more useful forms due to their nature as cross
PDF
Album
Review
Published 30 Jul 2019

Flexible freestanding MoS2-based composite paper for energy conversion and storage

  • Florian Zoller,
  • Jan Luxa,
  • Thomas Bein,
  • Dina Fattakhova-Rohlfing,
  • Daniel Bouša and
  • Zdeněk Sofer

Beilstein J. Nanotechnol. 2019, 10, 1488–1496, doi:10.3762/bjnano.10.147

Graphical Abstract
  • -1) Materials Synthesis and Processing, Wilhelm-Johnen-Straße, 52425 Jülich, Germany 10.3762/bjnano.10.147 Abstract The construction of flexible electrochemical devices for energy storage and generation is of utmost importance in modern society. In this article, we report on the synthesis of
  • and delivers specific capacity of 740 mA·h·g−1 at a current density of 0.1 A·g−1. After 40 cycles at this current density the material still reached a capacity retention of 91%. Our findings show that this composite material could find application in electrochemical energy storage and generation
  • , energy storage and conversion continues to be an important and urgent issue [1][2]. Lithium ion batteries (LIBs) are one of the most promising energy storage devices, combining high energy density and extremely low self-discharge. Nevertheless, in order to fulfill the (prospective) requirements and to
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Hierarchically structured 3D carbon nanotube electrodes for electrocatalytic applications

  • Pei Wang,
  • Katarzyna Kulp and
  • Michael Bron

Beilstein J. Nanotechnol. 2019, 10, 1475–1487, doi:10.3762/bjnano.10.146

Graphical Abstract
  • discovery in 1991 [1] due to their high electrical conductivity, large surface area, good chemical stability, high mechanical strength and high aspect ratio and are considered as promising materials for diverse applications such as field emission displays, energy storage devices, sensors, and so on [2][3][4
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

BiOCl/TiO2/diatomite composites with enhanced visible-light photocatalytic activity for the degradation of rhodamine B

  • Minlin Ao,
  • Kun Liu,
  • Xuekun Tang,
  • Zishun Li,
  • Qian Peng and
  • Jing Huang

Beilstein J. Nanotechnol. 2019, 10, 1412–1422, doi:10.3762/bjnano.10.139

Graphical Abstract
  • [10]. As one of the most promising photocatalysts, in terms of its chemical stability, non-toxicity, photo-corrosion resistance in aqueous media and advanced oxidation properties, titanium dioxide (TiO2) has been widely studied [11][12] and employed for water splitting [13], energy storage [14], and
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2019

Playing with covalent triazine framework tiles for improved CO2 adsorption properties and catalytic performance

  • Giulia Tuci,
  • Andree Iemhoff,
  • Housseinou Ba,
  • Lapo Luconi,
  • Andrea Rossin,
  • Vasiliki Papaefthimiou,
  • Regina Palkovits,
  • Jens Artz,
  • Cuong Pham-Huu and
  • Giuliano Giambastiani

Beilstein J. Nanotechnol. 2019, 10, 1217–1227, doi:10.3762/bjnano.10.121

Graphical Abstract
  • , such as their semiconducting behaviour, their inherent porosity, high specific surface area, chemical versatility, including their thermal and chemical resistance make them ideal candidates for a number of energy storage and conversion technologies [2][3]. The scope of carbon-based nanomaterials
  • therefore covers a wide range of applications in (photo-/electro-)catalysis, gas storage and separation technologies as well as energy storage devices. Among nanocarbons, (nano)porous organic polymers (POPs) have gained a significant popularity because of their unique features [4][5][6][7][8]. Indeed, the
  • as N, S and O) [14][15]. Major application fields of CTFs are represented by energy storage and conversion [16][17][18], gas storage and separation (e.g., H2, CO2 and CH4) [19][20][21] as well as various catalytic uses [22][23][24][25][26][27][28][29][30]. The exceptional performance of CTFs in
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2019

Porous N- and S-doped carbon–carbon composite electrodes by soft-templating for redox flow batteries

  • Maike Schnucklake,
  • László Eifert,
  • Jonathan Schneider,
  • Roswitha Zeis and
  • Christina Roth

Beilstein J. Nanotechnol. 2019, 10, 1131–1139, doi:10.3762/bjnano.10.113

Graphical Abstract
  • (Center for Electrochemical Energy Storage Ulm-Karlsruhe).
PDF
Album
Full Research Paper
Published 28 May 2019

An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite

  • Mamta Sham Lal,
  • Thirugnanam Lavanya and
  • Sundara Ramaprabhu

Beilstein J. Nanotechnol. 2019, 10, 781–793, doi:10.3762/bjnano.10.78

Graphical Abstract
  • nanoparticles, which together open up new opportunities for energy storage and conversion applications. Keywords: composite; electrochemical performance; porous carbon nanofiber; solid-state hybrid supercapacitor; supercapacitor; TiO2 nanoparticles; Introduction To meet the rapidly growing demand for energy
  • , more reliable, low cost, highly efficient and environmentally benign energy storage devices must be explored. Among many energy storage devices, supercapacitors are an ideal option for fast energy storage due to their high specific power (>10 kW kg−1), fast charge–discharge kinetics (in units of
  • , and stand-by power systems [4][5]. Supercapacitors may be categorized by their energy storage mechanism into (i) electrochemical double-layer capacitors (EDLCs) and (ii) pseudo-supercapacitors. EDLCs, electrostatically store energy in a non-faradaic manner at the electrode–electrolyte interface, where
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Trapping polysulfide on two-dimensional molybdenum disulfide for Li–S batteries through phase selection with optimized binding

  • Sha Dong,
  • Xiaoli Sun and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2019, 10, 774–780, doi:10.3762/bjnano.10.77

Graphical Abstract
  • batteries. Keywords: Li–S batteries; molybdenum disulfide; phase transformation; Introduction To satisfy the increasing demand for high-capacity energy storage systems, rechargeable lithium–sulfur (Li–S) batteries have attracted much attention in recent years due to a high theoretical specific energy
PDF
Album
Full Research Paper
Published 26 Mar 2019

Renewable energy conversion using nano- and microstructured materials

  • Harry Mönig and
  • Martina Schmid

Beilstein J. Nanotechnol. 2019, 10, 771–773, doi:10.3762/bjnano.10.76

Graphical Abstract
  • ; energy storage; light harvesting; renewable energy; solar cells; The imposing environmental and economic challenges due to climate change have become a major topic of discussion on the global political agenda. Effectively reducing greenhouse gases in the atmosphere and decreasing air pollution in
  • - and microstructures for energy conversion: materials and devices” provides insights into the latest developments in the related fields. Besides a focus on solar-cell concepts [1][2][3][4][5], it also addresses light harvesting by solar fuel production [6][7], and energy storage by batteries [8
PDF
Editorial
Published 26 Mar 2019

A porous 3D-RGO@MWCNT hybrid material as Li–S battery cathode

  • Yongguang Zhang,
  • Jun Ren,
  • Yan Zhao,
  • Taizhe Tan,
  • Fuxing Yin and
  • Yichao Wang

Beilstein J. Nanotechnol. 2019, 10, 514–521, doi:10.3762/bjnano.10.52

Graphical Abstract
  • nanotubes; energy storage and conversion; Li–S batteries; nanocomposites; Introduction Li–S batteries are notable for their high theoretical specific capacity (1675 mAh·g−1) and energy density (2600 Wh·kg−1). Sulfur is an abundant element, enabling Li–S batteries to be highly competitive among the various
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2019

Widening of the electroactivity potential range by composite formation – capacitive properties of TiO2/BiVO4/PEDOT:PSS electrodes in contact with an aqueous electrolyte

  • Konrad Trzciński,
  • Mariusz Szkoda,
  • Andrzej P. Nowak,
  • Marcin Łapiński and
  • Anna Lisowska-Oleksiak

Beilstein J. Nanotechnol. 2019, 10, 483–493, doi:10.3762/bjnano.10.49

Graphical Abstract
  • , Poland 10.3762/bjnano.10.49 Abstract Composites based on the titania nanotubes were tested in aqueous electrolyte as a potential electrode material for energy storage devices. The nanotubular morphology of TiO2 was obtained by Ti anodization. TiO2 nanotubes were covered by a thin layer of bismuth
  • . Capacitance values higher than 10 mF·cm−2 were maintained even after 10000 galvanostatic cycles (ic = ia = 0.5 mA·cm−2). Keywords: bismuth vanadate (BiVO4); electrochemical activity; PEDOT:PSS; supercapacitors; titania nanotubes; Introduction Energy-storage technologies and sustainable energy production are
  • currently important challenges. There are many ways for energy storage, among them, electrical, chemical and electrochemical storage technologies are of great interest [1][2]. Among the various energy storage devices, such as batteries [3] and supercapacitors [4], supercapacitors are the most promising
PDF
Album
Full Research Paper
Published 15 Feb 2019

Temperature-dependent Raman spectroscopy and sensor applications of PtSe2 nanosheets synthesized by wet chemistry

  • Mahendra S. Pawar and
  • Dattatray J. Late

Beilstein J. Nanotechnol. 2019, 10, 467–474, doi:10.3762/bjnano.10.46

Graphical Abstract
  • , field emitters, battery materials, light harvesting and energy storage devices, catalyst for H2 generation, and drug delivery applications [7][8][9][10][11][12]. Most of the transition metal dichalcogenides (TMDCs) are semiconducting in nature with MX2 type – where M is a metal, M = W, Mo, Sn, Nb, V
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Improving control of carbide-derived carbon microstructure by immobilization of a transition-metal catalyst within the shell of carbide/carbon core–shell structures

  • Teguh Ariyanto,
  • Jan Glaesel,
  • Andreas Kern,
  • Gui-Rong Zhang and
  • Bastian J. M. Etzold

Beilstein J. Nanotechnol. 2019, 10, 419–427, doi:10.3762/bjnano.10.41

Graphical Abstract
  • graphitization; graphitic carbon; pore structure; transition metal; Introduction Carbon is a versatile material that has been widely utilized in many applications such as adsorption [1][2][3], catalysis [4][5], catalyst support [6][7][8], molecular sieves [9][10] and energy storage [11][12][13], owing to its
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2019

A Ni(OH)2 nanopetals network for high-performance supercapacitors synthesized by immersing Ni nanofoam in water

  • Donghui Zheng,
  • Man Li,
  • Yongyan Li,
  • Chunling Qin,
  • Yichao Wang and
  • Zhifeng Wang

Beilstein J. Nanotechnol. 2019, 10, 281–293, doi:10.3762/bjnano.10.27

Graphical Abstract
  • Nowadays, environmental contamination and energy crisis require new energy storage devices. This leads to a considerable interest in the research of supercapacitors because of their higher power density, longer cycling stability and faster charge/discharge periods compared to batteries [1][2][3][4
  • ]. Generally speaking, supercapacitors fall into two categories with different energy storage mechanisms. One is electrical double-layer supercapacitors (EDLCs) dominated by the electrostatic adsorption/desorption of electrolyte ions on the electrode surfaces. In EDLCs carbonaceous materials and their
  • -capacitors possess a higher energy density and are regarded as promising candidates for energy storage systems [10]. Among the various transition metal oxides/hydroxides, Ni(OH)2 is an ideal candidate for pseudo-capacitors due to its unique features such as high theoretical capacity and outstanding redox
PDF
Album
Full Research Paper
Published 25 Jan 2019

Nanoporous water oxidation electrodes with a low loading of laser-deposited Ru/C exhibit enhanced corrosion stability

  • Sandra Haschke,
  • Dmitrii Pankin,
  • Vladimir Mikhailovskii,
  • Maïssa K. S. Barr,
  • Adriana Both-Engel,
  • Alina Manshina and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 157–167, doi:10.3762/bjnano.10.15

Graphical Abstract
  • – most prominently electrical energy storage under nearly reversible conditions. Experimental Materials Chemicals were purchased from Sigma-Aldrich, VWR, or Roth and used as received. Water was purified in a Millipore Direct-Q system for the application in electrolytes. As planar substrates, microscope
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2019

Scanning probe microscopy for energy-related materials

  • Rüdiger Berger,
  • Benjamin Grévin,
  • Philippe Leclère and
  • Yi Zhang

Beilstein J. Nanotechnol. 2019, 10, 132–134, doi:10.3762/bjnano.10.12

Graphical Abstract
  • perfectly reflect the current activities and advances in the field of scanning probe microscopy for energy applications. The term “energy applications” refers to materials that are used for energy conversion, energy transport and energy storage. In these fields, intensive basic and applied research is
  • covalently grafted with a monolayer of poly(3-hexylthiophene) functionalized with carboxylic groups [8]. Their study unravels the physical mechanisms taking place locally during the photovoltaic process and its correlation to the nanoscale morphology. Electrochemical energy storage (i.e., in a battery) is a
PDF
Editorial
Published 10 Jan 2019

Ternary nanocomposites of reduced graphene oxide, polyaniline and hexaniobate: hierarchical architecture and high polaron formation

  • Claudio H. B. Silva,
  • Maria Iliut,
  • Christopher Muryn,
  • Christian Berger,
  • Zachary Coldrick,
  • Vera R. L. Constantino,
  • Marcia L. A. Temperini and
  • Aravind Vijayaraghavan

Beilstein J. Nanotechnol. 2018, 9, 2936–2946, doi:10.3762/bjnano.9.272

Graphical Abstract
  • Nanostructured systems, such as nanocomposites, are potential materials for usage as electrochemical (bio)sensors for analytical purposes, electronics, energy storage devices and corrosion protection because the synergistic effects of their components at the nanoscale range may improve physical/chemical
  • conductivities [15][16][17]. Polyaniline (PANI) is a conducting polymer that has shown promising properties for the development of materials for different fields such as chemical sensing [18][19], memory devices [20][21] and energy storage [22][23]. As schematically shown in Figure 1b, the conducting form of
  • ][49][65]. Although this result does not stimulate studies focusing on the application of rGO/PANI/hexNb in energy-storage devices, the thin film obtained by dropcasting has potential to be explored for other purposes since the amount of charge carriers is increased in the ternary nanocomposite
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2018

Nanostructure-induced performance degradation of WO3·nH2O for energy conversion and storage devices

  • Zhenyin Hai,
  • Mohammad Karbalaei Akbari,
  • Zihan Wei,
  • Danfeng Cui,
  • Chenyang Xue,
  • Hongyan Xu,
  • Philippe M. Heynderickx,
  • Francis Verpoort and
  • Serge Zhuiykov

Beilstein J. Nanotechnol. 2018, 9, 2845–2854, doi:10.3762/bjnano.9.265

Graphical Abstract
  • to fabricate WO3·2H2O electrochemical energy storage electrodes with a higher rate capability than annealed WO3 [38]. The investigation of 2D sheets of WO3 and a rGO–WO3 composite prepared via a one-pot hydrothermal method suggested that the rGO–WO3 composite could be a promising material for
  • injection of electrons as described in the following equation [38]: The transition of W between the valence states of W6+ and W5+ is the basis of both electrochemical energy storage and electrochromic behavior. As shown in Figure 6a, in all cases the cathodic current rises when the potential was scanned to
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2018

Droplet-based synthesis of homogeneous magnetic iron oxide nanoparticles

  • Christian D. Ahrberg,
  • Ji Wook Choi and
  • Bong Geun Chung

Beilstein J. Nanotechnol. 2018, 9, 2413–2420, doi:10.3762/bjnano.9.226

Graphical Abstract
  • ; Introduction Due to their small size and large surface area, nanoparticles offer interactions with biological systems that classical bulk materials cannot provide [1]. Due to these special properties, nanoparticles have become of particular interest for a number of applications in information and energy
  • storage [2], environmental studies [3], or in medicine [4]. In medical applications, a particular focus of research lies on the development of multifunctional nanomaterials, as they allow for the parallel treatment and diagnostic monitoring of a diseases and thus would help to reduce the costs of
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2018

Metal–dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode

  • Valerio F. Gili,
  • Lavinia Ghirardini,
  • Davide Rocco,
  • Giuseppe Marino,
  • Ivan Favero,
  • Iännis Roland,
  • Giovanni Pellegrini,
  • Lamberto Duò,
  • Marco Finazzi,
  • Luca Carletti,
  • Andrea Locatelli,
  • Aristide Lemaître,
  • Dragomir Neshev,
  • Costantino De Angelis,
  • Giuseppe Leo and
  • Michele Celebrano

Beilstein J. Nanotechnol. 2018, 9, 2306–2314, doi:10.3762/bjnano.9.215

Graphical Abstract
  • proposed a nanoantenna composed of a silicon disk core surrounded by an annular plasmonic antenna, which combines the energy-storage capabilities of the anapole mode with the enhanced efficiency of light-coupling in metal–dielectric systems. This allowed them to achieve a THG efficiency enhancement up to
PDF
Album
Full Research Paper
Published 27 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • applications in numerous areas, including healthcare, energy storage, biotechnology, environmental monitoring, and defence/security. Their enhanced specific surface area, superior mechanical properties, nanoporosity and improved surface characteristics (in particular, uniformity and stability) have made them
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Synthesis of carbon nanowalls from a single-source metal-organic precursor

  • André Giese,
  • Sebastian Schipporeit,
  • Volker Buck and
  • Nicolas Wöhrl

Beilstein J. Nanotechnol. 2018, 9, 1895–1905, doi:10.3762/bjnano.9.181

Graphical Abstract
  • vapor deposition (ICP-PECVD) is investigated. The CNWs are electrically conducting and show a large specific surface area, which is a key characteristic to make them interesting for sensors, catalytic applications or energy-storage systems. It was recently discovered that CNW films can be deposited by
PDF
Album
Full Research Paper
Published 29 Jun 2018

Synthesis of rare-earth metal and rare-earth metal-fluoride nanoparticles in ionic liquids and propylene carbonate

  • Marvin Siebels,
  • Lukas Mai,
  • Laura Schmolke,
  • Kai Schütte,
  • Juri Barthel,
  • Junpei Yue,
  • Jörg Thomas,
  • Bernd M. Smarsly,
  • Anjana Devi,
  • Roland A. Fischer and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2018, 9, 1881–1894, doi:10.3762/bjnano.9.180

Graphical Abstract
  • the most important rechargeable energy storage devices in modern electrical appliances such as mobile phones and laptops, but also in electric and hybrid vehicles [51]. The increasing performance of modern lithium-ion batteries is of great interest in current research [52][53][54]. Grey et al. showed
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2018

Synthesis of hafnium nanoparticles and hafnium nanoparticle films by gas condensation and energetic deposition

  • Irini Michelakaki,
  • Nikos Boukos,
  • Dimitrios A. Dragatogiannis,
  • Spyros Stathopoulos,
  • Costas A. Charitidis and
  • Dimitris Tsoukalas

Beilstein J. Nanotechnol. 2018, 9, 1868–1880, doi:10.3762/bjnano.9.179

Graphical Abstract
  • catalysis [25] to energy storage [26][27]. While an increasing number of applications of porous NTFs are proposed in the literature, the poor mechanical stability of these systems is a major drawback that prevents their widespread industrial use. The weak adhesive force between the nanoparticles leads to
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2018

Uniform cobalt nanoparticles embedded in hexagonal mesoporous nanoplates as a magnetically separable, recyclable adsorbent

  • Can Zhao,
  • Yuexiao Song,
  • Tianyu Xiang,
  • Wenxiu Qu,
  • Shuo Lou,
  • Xiaohong Yin and
  • Feng Xin

Beilstein J. Nanotechnol. 2018, 9, 1770–1781, doi:10.3762/bjnano.9.168

Graphical Abstract
  • composite is also expected to have significant potential applications in the other fields, such as energy storage, photo-electrocatalysis, and CO2 capture. XRD patterns of: (a) pure CoAl LDH; (b) LDH@PDA-2.5 composite; (c–e) the NPLs prepared by carbonization of LDH@PDA-2.5 at 500, 650, and 800 °C for 2 h
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2018
Other Beilstein-Institut Open Science Activities