Search results

Search for "ferromagnetic" in Full Text gives 176 result(s) in Beilstein Journal of Nanotechnology.

Targeted therapeutic effect against the breast cancer cell line MCF-7 with a CuFe2O4/silica/cisplatin nanocomposite formulation

  • B. Rabindran Jermy,
  • Vijaya Ravinayagam,
  • Widyan A. Alamoudi,
  • Dana Almohazey,
  • Hatim Dafalla,
  • Lina Hussain Allehaibi,
  • Abdulhadi Baykal,
  • Muhammet S. Toprak and
  • Thirunavukkarasu Somanathan

Beilstein J. Nanotechnol. 2019, 10, 2217–2228, doi:10.3762/bjnano.10.214

Graphical Abstract
  • presence of small-sized nanoclusters at the walls of hexagonal-shaped MCM-41 tends to form superparamagnetic interactions among Fe3+ species, while large nanoclusters contribute to ferromagnetic properties [17]. In our study, paramagnetic behavior with narrow hysteresis demonstrates the formation of small
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2019

Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications

  • Alberto Boretti,
  • Lorenzo Rosa,
  • Jonathan Blackledge and
  • Stefania Castelletto

Beilstein J. Nanotechnol. 2019, 10, 2128–2151, doi:10.3762/bjnano.10.207

Graphical Abstract
  • , while producing deep tissue imaging with outstanding contrast, enabling anatomical and functional observation at the same time. Contrast agents are chemical substances used to enhance and improve the quality of the MRI images. The ferromagnetic or paramagnetic nature of a contrast agent determines the
  • NV centers and employed to image thin ferromagnetic films. The accuracy obtained is sub-micrometer over surfaces as wide as 100 × 100 µm2 and the imaging speed is fast enough to obtain a real-time video of the evolution of stray magnetic patterns. It is not necessary to supply a microwave signal to
  • allows imaging of metal spins via the Hall effect [55]. NV center wide-field microscopy was applied in [11] to characterize and image magnetic samples; sample thin ferromagnetic films were used to map and image their sub-micrometer stray magnetic field patterns by using an array of NV center spins. Using
PDF
Album
Review
Published 04 Nov 2019

Oblique angle deposition of nickel thin films by high-power impulse magnetron sputtering

  • Hamidreza Hajihoseini,
  • Movaffaq Kateb,
  • Snorri Þorgeir Ingvarsson and
  • Jon Tomas Gudmundsson

Beilstein J. Nanotechnol. 2019, 10, 1914–1921, doi:10.3762/bjnano.10.186

Graphical Abstract
  • unique properties in ferromagnetic thin films. Earlier we have explored the properties of polycrystalline and epitaxially deposited permalloy thin films deposited under 35° tilt using HiPIMS and compared it with films deposited by dc magnetron sputtering (dcMS). The films prepared by HiPIMS present lower
  • suppress the inclined columnar growth induced by oblique angle deposition. Thus, the ferromagnetic thin films obliquely deposited by HiPIMS deposition exhibit different magnetic properties than dcMS-deposited films. The results demonstrate the potential of the HiPIMS process to tailor the material
  • sputtering; magnetic anisotropy; nickel; Introduction The realization of electronics based on utilizing the electron spin degree of freedom, commonly referred to as spintronics, requires the integration of ferromagnetic films with semiconductors [1]. Nickel is a ferromagnetic heavy 3d transition metal that
PDF
Album
Full Research Paper
Published 20 Sep 2019

Giant magnetoresistance ratio in a current-perpendicular-to-plane spin valve based on an inverse Heusler alloy Ti2NiAl

  • Yu Feng,
  • Zhou Cui,
  • Bo Wu,
  • Jianwei Li,
  • Hongkuan Yuan and
  • Hong Chen

Beilstein J. Nanotechnol. 2019, 10, 1658–1665, doi:10.3762/bjnano.10.161

Graphical Abstract
  • nonmagnetic metal as a spacer that is sandwiched between two ferromagnetic materials. It can produce two distinct states: a low-resistance state, when two electrodes are in parallel magnetization configuration, and a high-resistance state, when they are in antiparallel magnetization configuration. Half
  • –Yosida (RKKY) indirect exchange mechanism. According to the RKKY mechanism, the magnetic coupling among d-electron atoms is transferred through the conduction electrons, and the cooperative magnetic states would exhibit ferromagnetic or antiferromagnetic alignment of the moments largely dependent upon
PDF
Album
Full Research Paper
Published 08 Aug 2019

Magnetic segregation effect in liquid crystals doped with carbon nanotubes

  • Danil A. Petrov,
  • Pavel K. Skokov,
  • Alexander N. Zakhlevnykh and
  • Dmitriy V. Makarov

Beilstein J. Nanotechnol. 2019, 10, 1464–1474, doi:10.3762/bjnano.10.145

Graphical Abstract
  • studied systems in soft condensed matter physics, since they successfully combine fluidity and orientational order with specific properties of impurity particles, such as ferromagnetic, ferroelectric, metallic or dielectric impurities [1][2][3][4][5][6][7][8][9][10]. Adding a small amount of nanoparticles
  • show [28][32][33][34] that in nematic liquid crystal–carbon nanotube (NLC-CNT) mixtures additionally functionalized with ferromagnetic particles, the magneto-optical response increases in comparison with pure LC. Existing theoretical models that describe NLC-CNT suspensions are related to the mean
  • physics of ferronematics and ferrocholesterics (magnetic suspensions of ferromagnetic nanoparticles in LCs) is called the magnetic segregation effect [12]. It has a significant influence on the type of orientation transitions in LC composite materials [40][41][42][43][44], and, as predicted in [39], must
PDF
Album
Full Research Paper
Published 22 Jul 2019

Superconducting switching due to a triplet component in the Pb/Cu/Ni/Cu/Co2Cr1−xFexAly spin-valve structure

  • Andrey Andreevich Kamashev,
  • Nadir Nurgayazovich Garif’yanov,
  • Aidar Azatovich Validov,
  • Joachim Schumann,
  • Vladislav Kataev,
  • Bernd Büchner,
  • Yakov Victorovich Fominov and
  • Ilgiz Abdulsamatovich Garifullin

Beilstein J. Nanotechnol. 2019, 10, 1458–1463, doi:10.3762/bjnano.10.144

Graphical Abstract
  • layers reaches up to 0.5 K (α is the angle between the magnetization of two ferromagnetic layers). For all studied samples the dependence of the superconducting transition temperature Tc on α demonstrates a deep minimum in the vicinity of the perpendicular configuration of the magnetizations. This
  • heterostructures composed of alternating layers of ferromagnetic and nonmagnetic metallic layers, which opened a new era of electronics, the so-called spin electronics or, in short, spintronics [1][2][3]. A new, more recent development in spintronics was based on the idea of integrating superconducting layers into
  • construction suggested by Oh et al. was an F1/F2/S structure, where F1 and F2 are the ferromagnetic (F) layers and S is the SC layer, whereas Tagirov proposed a different stacking of the layers F1/S/F2. In both cases the “handle” that switches the SC current in the trilayer is the exchange field from two F
PDF
Album
Letter
Published 19 Jul 2019

Fabrication of phase masks from amorphous carbon thin films for electron-beam shaping

  • Lukas Grünewald,
  • Dagmar Gerthsen and
  • Simon Hettler

Beilstein J. Nanotechnol. 2019, 10, 1290–1302, doi:10.3762/bjnano.10.128

Graphical Abstract
  • magnetic states in ferromagnetic materials [3]. The non-diffracting behavior of Bessel beams could be used as an electron probe with enhanced depth of focus [4] as for conventional (sub-angstrom) electron probes the depth of focus is reduced to a few nanometers due to the large convergence angles used in
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

On the relaxation time of interacting superparamagnetic nanoparticles and implications for magnetic fluid hyperthermia

  • Andrei Kuncser,
  • Nicusor Iacob and
  • Victor E. Kuncser

Beilstein J. Nanotechnol. 2019, 10, 1280–1289, doi:10.3762/bjnano.10.127

Graphical Abstract
  • not depend explicitly on φ. However, both experimental evidence and Monte Carlo modeling have been provided in [20] to understand the influence of the dipolar interparticle interactions on P*, leading to a reduction of the heating power and consequently on the hyperthermia effects of ferromagnetic
PDF
Album
Full Research Paper
Published 24 Jun 2019

Tailoring the magnetic properties of cobalt ferrite nanoparticles using the polyol process

  • Malek Bibani,
  • Romain Breitwieser,
  • Alex Aubert,
  • Vincent Loyau,
  • Silvana Mercone,
  • Souad Ammar and
  • Fayna Mammeri

Beilstein J. Nanotechnol. 2019, 10, 1166–1176, doi:10.3762/bjnano.10.116

Graphical Abstract
  • magnetostrictive, and the second one being sub-stoichiometric and presenting a higher magnetization, that are appropriate to be used as ferromagnetic building blocks in nanostructured magnetoelectric materials, particularly materials based on polymers. We show that the polyol solvent and the reaction time are two
  • nanoelectronics [1] and energy harvesting [2][3]. They consist of two components, one being ferromagnetic, and the other being ferroelectric. A wide range of inorganic nanostructures, defined by their connectivity, have been prepared using different synthetic approaches. Andrew et al. published a critical
  • knowledge, the best improvements made in this sense were those achieved by Zheng et al., who succeeded in designing self-assembled ferromagnetic CoFe2O4 nanopillars embedded in a ferroelectric BaTiO3 matrix [6], and by Acevedo et al. and Liu et al., who prepared CoFe2O4 and BaTiO3 nanoparticles (NPs
PDF
Album
Full Research Paper
Published 04 Jun 2019

Electronic and magnetic properties of doped black phosphorene with concentration dependence

  • Ke Wang,
  • Hai Wang,
  • Min Zhang,
  • Yan Liu and
  • Wei Zhao

Beilstein J. Nanotechnol. 2019, 10, 993–1001, doi:10.3762/bjnano.10.100

Graphical Abstract
  • with ferromagnetic order. The orbit coupling between S and neighboring P atoms in a small supercell, such as 2 × 2 × 1, is much stronger than that in a large supercell. This indicates strong bonds and short bond lengths, consistent with the negative deviation of in-plane bond length shown in Figure 1a
PDF
Album
Full Research Paper
Published 02 May 2019

Co-doped MnFe2O4 nanoparticles: magnetic anisotropy and interparticle interactions

  • Bagher Aslibeiki,
  • Parviz Kameli,
  • Hadi Salamati,
  • Giorgio Concas,
  • Maria Salvador Fernandez,
  • Alessandro Talone,
  • Giuseppe Muscas and
  • Davide Peddis

Beilstein J. Nanotechnol. 2019, 10, 856–865, doi:10.3762/bjnano.10.86

Graphical Abstract
  • ]. Such interactions can be due to a strong influence on the overall magnetic behavior of the ensembles, inducing co-operative regimes showing super ferromagnetic (SFM) and superspin glass (SSG) behavior [13][15][16]. Among nanostructured materials, magnetic ferrite nanoparticles (MeIIFe2O4; MeII = Fe2
  • were investigated by 57Fe Mössbauer spectroscopy at room temperature to estimate the superparamagnetic fraction of the sample at a given temperature. Figure 4 shows the spectra with the fit of the total signal and the subcomponents due to the ferromagnetic ordered (six lines) and superparamagnetic non
PDF
Album
Supp Info
Full Research Paper
Published 12 Apr 2019

Periodic Co/Nb pseudo spin valve for cryogenic memory

  • Nikolay Klenov,
  • Yury Khaydukov,
  • Sergey Bakurskiy,
  • Roman Morari,
  • Igor Soloviev,
  • Vladimir Boian,
  • Thomas Keller,
  • Mikhail Kupriyanov,
  • Anatoli Sidorenko and
  • Bernhard Keimer

Beilstein J. Nanotechnol. 2019, 10, 833–839, doi:10.3762/bjnano.10.83

Graphical Abstract
  • memory applications. As a basis for a weak link we propose to use a periodic structure composed of ferromagnetic (F) layers spaced by thin superconductors (s). Our calculations based on the Usadel equations show that switching from parallel (P) to antiparallel (AP) alignment of neighboring F layers can
  • in the field. The utilization of the competition and coexistence of superconducting (S) and ferromagnetic (F) correlations could provide an increase in the performance and degree of integration for cryogenic memory storage devices and synaptic elements [1][5][6][7][8][9][10][11][12][13][14][15][16
  • , we have generalized the S/[F/N]n model [25] to the case of the existence of intrinsic superconductivity in its non-ferromagnetic parts. To make the model more realistic we consider a case of a periodic pseudo-spin-valve structure, where two neighboring F layers have slightly different thicknesses d1
PDF
Album
Letter
Published 09 Apr 2019

Heating ability of magnetic nanoparticles with cubic and combined anisotropy

  • Nikolai A. Usov,
  • Mikhail S. Nesmeyanov,
  • Elizaveta M. Gubanova and
  • Natalia B. Epshtein

Beilstein J. Nanotechnol. 2019, 10, 305–314, doi:10.3762/bjnano.10.29

Graphical Abstract
  • dependence of the ferromagnetic resonance absorption indicates that the magnetite nanoparticles used in the experiment [13] possess not cubic, but combined or effective uniaxial anisotropy. This behavior may be a consequence of random deviations of the nanoparticle shapes. It was recently shown [23] that for
PDF
Album
Full Research Paper
Published 29 Jan 2019

Magnetic-field sensor with self-reference characteristic based on a magnetic fluid and independent plasmonic dual resonances

  • Kun Ren,
  • Xiaobin Ren,
  • Yumeng He and
  • Qun Han

Beilstein J. Nanotechnol. 2019, 10, 247–255, doi:10.3762/bjnano.10.23

Graphical Abstract
  • fluids (MFs) or ferrofluids have attracted a lot of research interest in recent years [1]. A MF is a stable colloidal suspension of ferromagnetic nanoparticles in certain suitable liquid carriers. It has the remarkable property that the refractive index can be tuned in an applied magnetic field [2][3
PDF
Album
Full Research Paper
Published 22 Jan 2019

Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films

  • Alexander Gaul,
  • Daniel Emmrich,
  • Timo Ueltzhöffer,
  • Henning Huckfeldt,
  • Hatice Doğanay,
  • Johanna Hackl,
  • Muhammad Imtiaz Khan,
  • Daniel M. Gottlob,
  • Gregor Hartmann,
  • André Beyer,
  • Dennis Holzinger,
  • Slavomír Nemšák,
  • Claus M. Schneider,
  • Armin Gölzhäuser,
  • Günter Reiss and
  • Arno Ehresmann

Beilstein J. Nanotechnol. 2018, 9, 2968–2979, doi:10.3762/bjnano.9.276

Graphical Abstract
  • ferromagnetic (F) layer has been initialized by heating at 573 K for 90 min and subsequent cooling at a rate of 1 K·min−1 for 300 min to room temperature in an external magnetic field of 80 kA·m−1. HIM patterning A commercial HIM (Zeiss Orion Plus) has been modified with a sample holder allowing for the
PDF
Album
Full Research Paper
Published 03 Dec 2018

Magnetic and luminescent coordination networks based on imidazolium salts and lanthanides for sensitive ratiometric thermometry

  • Pierre Farger,
  • Cédric Leuvrey,
  • Mathieu Gallart,
  • Pierre Gilliot,
  • Guillaume Rogez,
  • João Rocha,
  • Duarte Ananias,
  • Pierre Rabu and
  • Emilie Delahaye

Beilstein J. Nanotechnol. 2018, 9, 2775–2787, doi:10.3762/bjnano.9.259

Graphical Abstract
  • different fields and at given temperature confirm the absence of ferromagnetic impurities. Data were corrected for the sample holder and eicosane and diamagnetism was estimated from Pascal constants. The powder XRD patterns were collected with a Bruker D8 diffractometer (Cu Kα1, λ = 1.540598 Å) operating at
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2018

Disorder in H+-irradiated HOPG: effect of impinging energy and dose on Raman D-band splitting and surface topography

  • Lisandro Venosta,
  • Noelia Bajales,
  • Sergio Suárez and
  • Paula G. Bercoff

Beilstein J. Nanotechnol. 2018, 9, 2708–2717, doi:10.3762/bjnano.9.253

Graphical Abstract
  • , explaining why we observe that D2 is mainly affected by the irradiation dose rather than by the impinging energy. In order to correlate structural defects with ferromagnetic ordering in our samples, magnetization measurements were carried out. Magnetic characterization In view that the defects responsible
  • when no magnetic impurities were determined in the pristine HOPG within the detection limit of PIXE measurements, a small ferromagnetic contribution is noticed in this sample. This is expected in ZYB-grade HOPG and has been reported in previous papers [24][38][39][40]. A significant enhancement in both
  • impinging ions. This result is in agreement with other works [25][39][40][41][42], in which the authors prove that it is possible to induce magnetic ordering in graphite by controlled ion irradiation. Some authors suggest that the most likely mechanism involved in the ferromagnetic ordering induced in H
PDF
Album
Full Research Paper
Published 19 Oct 2018

Pattern generation for direct-write three-dimensional nanoscale structures via focused electron beam induced deposition

  • Lukas Keller and
  • Michael Huth

Beilstein J. Nanotechnol. 2018, 9, 2581–2598, doi:10.3762/bjnano.9.240

Graphical Abstract
  • the chosen process parameters, a wide range of different materials can be obtained. On the one hand, polycrystalline metals can be realized, mainly of ferromagnetic type like Fe, Co or Fe–Co alloys [12][13] or noble metals, such as Pt, Au and Ag [14][15][16]. On the other hand, granular metals [17
  • -quality complex ferromagnetic 3D nanoarchitectures for studying magnetically frustrated systems can be fabricated by FEBID [25][26]. From a practical point of view, one needs to have a suitable pattern-definition file fed to the pattern generator of the SEM that controls the electron beam’s deflection and
  • previously deposited pillar and corresponding beam shift before the actual 3D deposition commences. Special care has to be taken to minimize parasitic deposition during image acquisition for this fine alignment. An example of a successfully deposited two-material 3D structure (ferromagnetic Co3Fe and
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2018

High-temperature magnetism and microstructure of a semiconducting ferromagnetic (GaSb)1−x(MnSb)x alloy

  • Leonid N. Oveshnikov,
  • Elena I. Nekhaeva,
  • Alexey V. Kochura,
  • Alexander B. Davydov,
  • Mikhail A. Shakhov,
  • Sergey F. Marenkin,
  • Oleg A. Novodvorskii,
  • Alexander P. Kuzmenko,
  • Alexander L. Vasiliev,
  • Boris A. Aronzon and
  • Erkki Lahderanta

Beilstein J. Nanotechnol. 2018, 9, 2457–2465, doi:10.3762/bjnano.9.230

Graphical Abstract
  • doped by Mn [1][2][3]. Among these systems, the most well-known and extensively studied is Ga1−xMnxAs. Here Mn atoms substitute Ga atoms and establish a ferromagnetic state realized through carrier-induced indirect exchange between Mn atoms by a Zener–RKKY mechanism accompanied by the spin polarization
  • create a granular system with two phases, i.e., ferromagnetic nanoinclusions embedded into a semiconductor matrix. Although such systems are studied less frequently, in some of the related works the observed Tc values exceeded room temperature [7][8][9][10][11][12][13]. An additional advantage of
  • was suggested [9] that the ferromagnetic ordering in this case is induced by the interaction of MnSb magnetic clusters with carriers inside the matrix. It should induce carrier spin-polarization and lead to the formation of a long-range ferromagnetic percolation cluster, which includes both MnSb
PDF
Album
Full Research Paper
Published 14 Sep 2018

Magnetism and magnetoresistance of single Ni–Cu alloy nanowires

  • Andreea Costas,
  • Camelia Florica,
  • Elena Matei,
  • Maria Eugenia Toimil-Molares,
  • Ionel Stavarache,
  • Andrei Kuncser,
  • Victor Kuncser and
  • Ionut Enculescu

Beilstein J. Nanotechnol. 2018, 9, 2345–2355, doi:10.3762/bjnano.9.219

Graphical Abstract
  • and associated magnetoresistive properties of nanowires can be further modified in multiple segment nanowires consisting of ferromagnetic (e.g., Ni) and nonmagnetic (e.g., Cu) successive segments making such systems interesting for spintronic applications [6][7]. Another possibility to control the
  • scattering of conduction electrons on magnetic configurations is through composition-dependent magnetic properties in binary or ternary alloy nanowires. Efforts in obtaining multilayered nanowires with optimized giant magnetoresistance (GMR) effects by changing the composition of the ferromagnetic segments
  • the membrane (along the wires) and with the field applied along the membrane plane (perpendicular to the wires). The thickness of the segments (either conductive or ferromagnetic) was of a few nanometers, involving monodomain-like configurations and possible exchange couplings of magnetic segments
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2018

Influence of the thickness of an antiferromagnetic IrMn layer on the static and dynamic magnetization of weakly coupled CoFeB/IrMn/CoFeB trilayers

  • Deepika Jhajhria,
  • Dinesh K. Pandya and
  • Sujeet Chaudhary

Beilstein J. Nanotechnol. 2018, 9, 2198–2208, doi:10.3762/bjnano.9.206

Graphical Abstract
  • of the antiferromagnetic (AF) IrMn layer is investigated using magnetization hysteresis (M–H) and ferromagnetic resonance (FMR) measurements. The study shows that the two CoFeB layers are coupled via a long-range dynamic exchange effect through the IrMn layer up to a thickness of 6 nm. It is found
  • . Keywords: ferromagnetic resonance; interlayer exchange coupling; magnetic damping; magnetic thin films; spin pumping; Introduction Traditionally, antiferromagnets (AF) are known to play only a static role by pinning adjacent ferromagnetic (FM) layers via exchange bias in spin-valve devices [1]. Recently
  • between two FM layers through an AF layer. Motivated by this, we chose a rather uncommon CoFeB(10 nm)/IrMn(tIrMn)/CoFeB(10 nm) trilayer system to investigate the interlayer exchange coupling, spin transport, magnetic damping and magnetization reversal by carrying out ferromagnetic resonance (FMR) and
PDF
Album
Full Research Paper
Published 20 Aug 2018

Increasing the performance of a superconducting spin valve using a Heusler alloy

  • Andrey A. Kamashev,
  • Aidar A. Validov,
  • Joachim Schumann,
  • Vladislav Kataev,
  • Bernd Büchner,
  • Yakov V. Fominov and
  • Ilgiz A. Garifullin

Beilstein J. Nanotechnol. 2018, 9, 1764–1769, doi:10.3762/bjnano.9.167

Graphical Abstract
  • Abstract We have studied superconducting properties of spin-valve thin-layer heterostructures CoOx/F1/Cu/F2/Cu/Pb in which the ferromagnetic F1 layer was made of Permalloy while for the F2 layer we have taken a specially prepared film of the Heusler alloy Co2Cr1−xFexAl with a small degree of spin
  • manipulate the transition temperature Tc of a superconductor by sandwiching it between two ferromagnetic insulators was thought of by de Gennes [1]. Regarding the case of metallic ferromagnets, the physical principle of a superconducting spin valve (SSV) is based on the idea proposed by Oh et al. in 1997 [2
  • ] who calculated the pairing wave-function amplitude in a trilayer F1/F2/S (where F1 and F2 are ferromagnetic layers and S is a superconducting layer) and found out that the superconducting (SC) transition temperature Tc depends on the mutual orientation of the magnetizations M1 and M2 of the layers F1
PDF
Album
Supp Info
Letter
Published 12 Jun 2018

Magnetic properties of Fe3O4 antidot arrays synthesized by AFIR: atomic layer deposition, focused ion beam and thermal reduction

  • Juan L. Palma,
  • Alejandro Pereira,
  • Raquel Álvaro,
  • José Miguel García-Martín and
  • Juan Escrig

Beilstein J. Nanotechnol. 2018, 9, 1728–1734, doi:10.3762/bjnano.9.164

Graphical Abstract
  • properties of the film [13][14][15][16][17][18][19]. Thus, the antidot geometry can also be used to tailor the coercivity and the frequencies of the ferromagnetic resonance modes [20][21][22]. It is well known that there are numerous techniques for attaining magnetic antidot arrays such as e-beam [6][16], UV
PDF
Album
Full Research Paper
Published 11 Jun 2018

Josephson effect in junctions of conventional and topological superconductors

  • Alex Zazunov,
  • Albert Iks,
  • Miguel Alvarado,
  • Alfredo Levy Yeyati and
  • Reinhold Egger

Beilstein J. Nanotechnol. 2018, 9, 1659–1676, doi:10.3762/bjnano.9.158

Graphical Abstract
  • for concreteness, we here imagine the field B as independent local field coupled only to the QD spin. One could use, e.g., a ferromagnetic grain near the QD to generate it. This field here plays a crucial role because for B = 0, the S+QD part is spin rotation [SU(2)] invariant and the arguments of [31
PDF
Album
Full Research Paper
Published 06 Jun 2018

Nanocomposites comprised of homogeneously dispersed magnetic iron-oxide nanoparticles and poly(methyl methacrylate)

  • Sašo Gyergyek,
  • David Pahovnik,
  • Ema Žagar,
  • Alenka Mertelj,
  • Rok Kostanjšek,
  • Miloš Beković,
  • Marko Jagodič,
  • Heinrich Hofmann and
  • Darko Makovec

Beilstein J. Nanotechnol. 2018, 9, 1613–1622, doi:10.3762/bjnano.9.153

Graphical Abstract
  • -oxide nanoparticles with a size close to the superparamagnetic limit have been extensively studied because of their unique properties that can be exploited in a variety of applications. When the size of a single-domain ferromagnetic material is reduced below a certain critical value, the transition to
PDF
Album
Supp Info
Full Research Paper
Published 01 Jun 2018
Other Beilstein-Institut Open Science Activities