Search results

Search for "dielectric constant" in Full Text gives 177 result(s) in Beilstein Journal of Nanotechnology.

Impact of the anodization time on the photocatalytic activity of TiO2 nanotubes

  • Jesús A. Díaz-Real,
  • Geyla C. Dubed-Bandomo,
  • Juan Galindo-de-la-Rosa,
  • Luis G. Arriaga,
  • Janet Ledesma-García and
  • Nicolas Alonso-Vante

Beilstein J. Nanotechnol. 2018, 9, 2628–2643, doi:10.3762/bjnano.9.244

Graphical Abstract
  • dielectric constant of the material. From the CV curves, an increase in the capacitive current was observed towards lower potential values, which is typical for a transition to the accumulation region of n-type semiconductors. The calculated values for Eg and ND are summarized in Table 3, and compared to the
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2018

Enhancement of X-ray emission from nanocolloidal gold suspensions under double-pulse excitation

  • Wei-Hung Hsu,
  • Frances Camille P. Masim,
  • Armandas Balčytis,
  • Hsin-Hui Huang,
  • Tetsu Yonezawa,
  • Aleksandr A. Kuchmizhak,
  • Saulius Juodkazis and
  • Koji Hatanaka

Beilstein J. Nanotechnol. 2018, 9, 2609–2617, doi:10.3762/bjnano.9.242

Graphical Abstract
  • [26], respectively. Theory: Epsilon-Near-Zero (ENZ)-Material A strong generation of X-rays is related to a large amount of absorbed energy and a high temperature [3][4]. In terms of relative permittivity (dielectric constant), εr, a transparent medium (water) with colloidal gold nanoparticles
PDF
Album
Full Research Paper
Published 01 Oct 2018

Filling nanopipettes with apertures smaller than 50 nm: dynamic microdistillation

  • Evelyne Salançon and
  • Bernard Tinland

Beilstein J. Nanotechnol. 2018, 9, 2181–2187, doi:10.3762/bjnano.9.204

Graphical Abstract
  • . Results and Discussion Quartz capillaries, being of pure silica, have certain intrinsic properties (low dielectric constant, low loss factor, high volume resistivity, strength and chemical purity) that make them appropriate for the reproducible electrical measurements described below. Notably, they
PDF
Album
Full Research Paper
Published 16 Aug 2018

Interaction-induced zero-energy pinning and quantum dot formation in Majorana nanowires

  • Samuel D. Escribano,
  • Alfredo Levy Yeyati and
  • Elsa Prada

Beilstein J. Nanotechnol. 2018, 9, 2171–2180, doi:10.3762/bjnano.9.203

Graphical Abstract
  • intrinsic part of the potential satisfies an analogous equation with a uniform ε equal to that of the nanowire. The geometry depicted in Figure 1a is taken into account through a piecewise function where each material is characterized by a different dielectric constant, so that changes abruptly at the
  • interfaces have on average the same sign as the free charges. We consider in Section 4 of Supporting Information File 1 the generality of our results as a function of the dielectric constant of the SC and the location of the charge density within the nanowire section. Below, in Figure 4c we show that, when
PDF
Album
Supp Info
Full Research Paper
Published 15 Aug 2018

Synthesis of hafnium nanoparticles and hafnium nanoparticle films by gas condensation and energetic deposition

  • Irini Michelakaki,
  • Nikos Boukos,
  • Dimitrios A. Dragatogiannis,
  • Spyros Stathopoulos,
  • Costas A. Charitidis and
  • Dimitris Tsoukalas

Beilstein J. Nanotechnol. 2018, 9, 1868–1880, doi:10.3762/bjnano.9.179

Graphical Abstract
  • cross section in neutron absorption [32]. Hafnium alloys are used in medical applications because they are biocompatible and exhibit high corrosion resistance as well as in aerospace technology because it can increase the mechanical strength of materials [33]. Furthermore, because of its high dielectric
  • constant HfO2 and its compounds are used in the field of microelectronics for the manufacturing of integrated circuits and more particularly as gate dielectrics of metal-oxide semiconductor transistors having replaced the traditional thermally grown SiO2 dielectric [34]. More recently, HfO2 was also
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2018

Photoluminescence of CdSe/ZnS quantum dots in nematic liquid crystals in electric fields

  • Margarita A. Kurochkina,
  • Elena A. Konshina and
  • Daria Khmelevskaia

Beilstein J. Nanotechnol. 2018, 9, 1544–1549, doi:10.3762/bjnano.9.145

Graphical Abstract
  • because of a change of the boundary conditions. The luminescence quenching of QDs in the active LC matrix with an increase in the electric field strength occurs when the position of the LC director with respect to the electric field vector changes. The parallel component of the dielectric constant of the
PDF
Album
Full Research Paper
Published 23 May 2018

Surface characterization of nanoparticles using near-field light scattering

  • Eunsoo Yoo,
  • Yizhong Liu,
  • Chukwuazam A. Nwasike,
  • Sebastian R. Freeman,
  • Brian C. DiPaolo,
  • Bernardo Cordovez and
  • Amber L. Doiron

Beilstein J. Nanotechnol. 2018, 9, 1228–1238, doi:10.3762/bjnano.9.114

Graphical Abstract
  • altering the salt concentration of the suspension solution affected the velocity of particles due to the change of dielectric constant and viscosity of the solution. These findings suggest that this technique is suitable for studying particle surface changes and perhaps can be used to dynamically study
  • microscope is efficient in characterization of polymer-coated nanoparticles. However, due to the fact that the nanoparticle scattering intensity depends on the dielectric constant of the material, multicomponent particle coatings, especially those on metallic or metal oxide materials such as those studied
  • studies of reaction kinetics at the particle surface that result in changes in particle size, dielectric constant, or surface chemistry, which is of particular interest in protein adsorption to nanoparticles for biomedical applications. Results and Discussion Size, morphology, and elemental analysis of
PDF
Album
Full Research Paper
Published 18 Apr 2018

Electrostatic force spectroscopy revealing the degree of reduction of individual graphene oxide sheets

  • Yue Shen,
  • Ying Wang,
  • Yuan Zhou,
  • Chunxi Hai,
  • Jun Hu and
  • Yi Zhang

Beilstein J. Nanotechnol. 2018, 9, 1146–1155, doi:10.3762/bjnano.9.106

Graphical Abstract
  • (EFM) phase with high resolution as a function of the electrical direct current bias applied either to the probe or sample. Based on the dielectric constant difference of graphene oxide (GO) sheets (reduced using various methods), EFS can be used to characterize the degree of reduction of uniformly
  • or valley EFM phases) and the EFM phase contrast at a certain tip bias less than the peak value can all indicate the degree of reduction of rGO samples, which is positively correlated with the dielectric constant. In addition, we gave the ranking of degree for reduction on thermally or chemically
  • graphene domains and optimize EFM imaging [27]. The EFS is a method monitoring the EFM phases with high resolution as a function of the electrical DC bias applied either to the probe or sample. Based on the dielectric constant difference of rGO sheets reduced using various methods, EFS can characterize the
PDF
Album
Full Research Paper
Published 11 Apr 2018

Electro-optical interfacial effects on a graphene/π-conjugated organic semiconductor hybrid system

  • Karolline A. S. Araujo,
  • Luiz A. Cury,
  • Matheus J. S. Matos,
  • Thales F. D. Fernandes,
  • Luiz G. Cançado and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2018, 9, 963–974, doi:10.3762/bjnano.9.90

Graphical Abstract
  • region of the image is proportional to the dielectric constant of the material underneath the EFM tip, surface potential differences and to any accumulated charges/permanent polarization at the surface [34]. Equation 2 was used to fit all experimental data in Figure 4c–e (blue or brown solid lines in
  • these plots) and Table 1 shows the respective fitting parameters. Considering, initially, parameter α in Table 1, which is related to the geometric capacitance and dielectric constant, there is no significant variation, as expected, since the geometric capacitance should remain the same. The minor
  • variation of α for both functionalized graphene (Gf) and RA upon illumination may reflect slight changes on the hybrid dielectric constant upon charge transfer (doping). Such charge transfer, including photo-generated charges, may also account for the observed variation of parameter γ in Table 1, which is
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2018

Nanoscale mapping of dielectric properties based on surface adhesion force measurements

  • Ying Wang,
  • Yue Shen,
  • Xingya Wang,
  • Zhiwei Shen,
  • Bin Li,
  • Jun Hu and
  • Yi Zhang

Beilstein J. Nanotechnol. 2018, 9, 900–906, doi:10.3762/bjnano.9.84

Graphical Abstract
  • both of the wetting and dielectric properties of the sample. Based on this principle, a quantitative analysis on the dielectric constant of macroscopic film has been realized by measuring the surface–water contact angle and adhesion force between the dielectric layer and a biased AFM tip [38]. Recently
  • , Fadh, will increase due to sample polarization (Figure 1b), which is positively correlated to its dielectric constant. Therefore, adhesion force mapping under a biased AFM tip can be expected to characterize the local dielectric property distribution. An example of adhesion force mapping with a biased
  • after being chemically reduced by removing some oxygen-containing groups and has a similar thickness but a larger dielectric constant than GO [21][45]. Figure 3a shows a representative height image of a mixture of GO and CRGO on a mica substrate under the tip biased at 0 V under ambient conditions (room
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2018

Effect of ferroelectric BaTiO3 particles on the threshold voltage of a smectic A liquid crystal

  • Abbas R. Imamaliyev,
  • Mahammadali A. Ramazanov and
  • Shirkhan A. Humbatov

Beilstein J. Nanotechnol. 2018, 9, 824–828, doi:10.3762/bjnano.9.76

Graphical Abstract
  • dielectric constant of the colloid consisting of liquid crystal and ferroelectric particles can be represented in the form Here, f is the volume fraction of ferroelectric particles, εLC(E) and εFP(E) are the permittivity values of LC and ferroelectric particles both depending on the electric field strength E
  • field, that leads to an increase in the dielectric constant of the colloid (the first section of the curve in Figure 3). If the applied field exceeds the threshold value, εLC(E) significantly increases, which is reflected in the dielectric permittivity of the colloid (third segment). Figure 3 shows that
  • the dielectric constant of the colloid after the planar–homeotropic transition is much lower than that of the pure LC. This is due to the imperfection of the final homeotropic state (Figure 2,c). The decrease in the permittivity in the voltage range from 6 to 16 V (the second part of the curve in
PDF
Album
Full Research Paper
Published 07 Mar 2018

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • allow the enhanced absorption of photon energy from the visible light spectrum. Larger metallic nanoparticles (>5 nm) produce a robust surface plasmon emission in the visible spectrum [10]. The intensity of the plasmon band is highly dependent on the morphology, surrounding medium dielectric constant
PDF
Album
Review
Published 19 Feb 2018

Facile synthesis of ZnFe2O4 photocatalysts for decolourization of organic dyes under solar irradiation

  • Arjun Behera,
  • Debasmita Kandi,
  • Sanjit Manohar Majhi,
  • Satyabadi Martha and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 436–446, doi:10.3762/bjnano.9.42

Graphical Abstract
  • the band edge of the prepared materials. The Mott–Schottky graphs were plotted according to Equation 2: where C, Vfb, k, T, e, ND, ε, ε0 and A are capacitance of the sample, flat-band potential, Boltzmann constant, absolute temperature, electron charge, donor density, semiconductor dielectric constant
  • , dielectric constant in vacuum and area, respectively. C−2 was plotted as a function of the applied potential, Vapp. The extrapolation of the graph leads to the intersection point at the Y-axis, which gives the flat-band potential of the sample [33]. Figure 8 shows the Mott–Schottky plot of ZFO-500. The
PDF
Album
Full Research Paper
Published 05 Feb 2018

Dynamic behavior of nematic liquid crystal mixtures with quantum dots in electric fields

  • Emil Petrescu,
  • Cristina Cirtoaje and
  • Octavian Danila

Beilstein J. Nanotechnol. 2018, 9, 399–406, doi:10.3762/bjnano.9.39

Graphical Abstract
  • dielectric constant of the QDs (εQD) and the volumetric fraction of the quantum dots (cv). The intraction free energy between nematic molecules and a quantum dot can be calculated from the Rapini formula [21]. Considering an elliptical quantum dot with one of the axes just a little bit longer than the others
PDF
Album
Full Research Paper
Published 01 Feb 2018

The nanofluidic confinement apparatus: studying confinement-dependent nanoparticle behavior and diffusion

  • Stefan Fringes,
  • Felix Holzner and
  • Armin W. Knoll

Beilstein J. Nanotechnol. 2018, 9, 301–310, doi:10.3762/bjnano.9.30

Graphical Abstract
  • interaction energy U(h) of a charged spherical particle at a distance h to a charged plane is given by [23][36]: where κ−1 is the Debye length, ε is the dielectric constant of the medium, ε0 is the vacuum permittivity, a is the radius, and ψP,eff and ψS,eff are the effective surface potentials of plane and
PDF
Album
Full Research Paper
Published 26 Jan 2018

Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

  • Liga Jasulaneca,
  • Jelena Kosmaca,
  • Raimonds Meija,
  • Jana Andzane and
  • Donats Erts

Beilstein J. Nanotechnol. 2018, 9, 271–300, doi:10.3762/bjnano.9.29

Graphical Abstract
PDF
Album
Review
Published 25 Jan 2018

Al2O3/TiO2 inverse opals from electrosprayed self-assembled templates

  • Arnau Coll,
  • Sandra Bermejo,
  • David Hernández and
  • Luís Castañer

Beilstein J. Nanotechnol. 2018, 9, 216–223, doi:10.3762/bjnano.9.23

Graphical Abstract
  • opals is challenging, requiring large size, three-dimensional ordered layers of high dielectric constant ratio. In this article, alumina/TiO2–air inverse opals with a 98.2% reflectivity peak at 798 nm having an area of 2 cm2 and a thickness of 17 µm are achieved using a sacrificial self-assembled
PDF
Album
Full Research Paper
Published 19 Jan 2018

Dielectric properties of a bisimidazolium salt with dodecyl sulfate anion doped with carbon nanotubes

  • Doina Manaila Maximean,
  • Viorel Cîrcu and
  • Constantin Paul Ganea

Beilstein J. Nanotechnol. 2018, 9, 164–174, doi:10.3762/bjnano.9.19

Graphical Abstract
  • studies while the corresponding phase transition enthalpies were obtained by DSC. The ILC was doped with CNT in concentration of 0.05% w/w and 0.5% w/w. The dielectric spectra were recorded in the frequency range from 10−1 to 107 Hz. The dependence of the dielectric constant and electric energy loss on
PDF
Album
Full Research Paper
Published 16 Jan 2018

Electrical properties of a liquid crystal dispersed in an electrospun cellulose acetate network

  • Doina Manaila Maximean,
  • Octavian Danila,
  • Pedro L. Almeida and
  • Constantin Paul Ganea

Beilstein J. Nanotechnol. 2018, 9, 155–163, doi:10.3762/bjnano.9.18

Graphical Abstract
  • techniques, such as polarized optical microscopy, dielectric spectroscopy and impedance measurements. Dielectric constant and electric energy loss were studied as a function of frequency and temperature. The activation energy was evaluated and the relaxation time was obtained by fitting the spectra of the
  • dielectric constant, and the imaginary part, iε″(ω), is the dielectric loss [37]. Figure 4 shows dielectric constant and dielectric loss as functions of the temperature at two constant representative frequencies, 1 Hz and 10 Hz, for (a) the cell with CA fibers before filling in the LC, and (b) for the same
  • fitting parameters of the Vogel–Fulcher–Tammann law (see below in Figure 6 and Table 1). Figure 5 presents dielectric constant and dielectric loss as functions of the frequency for the CA cell (a) before and (b) after filling in the LC, at three constant temperatures. For the CA sample without LC measured
PDF
Album
Full Research Paper
Published 15 Jan 2018

Nematic topological defects positionally controlled by geometry and external fields

  • Pavlo Kurioz,
  • Marko Kralj,
  • Bryce S. Murray,
  • Charles Rosenblatt and
  • Samo Kralj

Beilstein J. Nanotechnol. 2018, 9, 109–118, doi:10.3762/bjnano.9.13

Graphical Abstract
  • representative characteristic elastic constant in the single elastic constant approximation, is the external electric field, ε0 is the permittivity of free space, and Δε is the dielectric constant anisotropy. We model conditions at the LC confining boundaries either by [15][16]: or where w is the surface
PDF
Album
Full Research Paper
Published 10 Jan 2018

Impact of titanium dioxide nanoparticles on purification and contamination of nematic liquid crystals

  • Dmitrii Pavlovich Shcherbinin and
  • Elena A. Konshina

Beilstein J. Nanotechnol. 2017, 8, 2766–2770, doi:10.3762/bjnano.8.275

Graphical Abstract
  • ]: where сi – ion density, q – elementary charge, D – average diffusion coefficient, ε0 – dielectric constant, d – thickness of the cell gap, kB – Boltzmann factor, T – temperature, f – frequency, and ε∞ – high-frequency dielectric permittivity. We have evaluated the ion density and the average diffusion
PDF
Album
Letter
Published 21 Dec 2017

Enhanced photoelectrochemical water splitting performance using morphology-controlled BiVO4 with W doping

  • Xin Zhao and
  • Zhong Chen

Beilstein J. Nanotechnol. 2017, 8, 2640–2647, doi:10.3762/bjnano.8.264

Graphical Abstract
  • [22]: where e0 is the electron charge (1.60·10−19 C), ε is the dielectric constant of BiVO4 (68) [23][24], ε0 is the electrical permittivity of vacuum (8.85·10−12 F·m−1), A is the electrode area, Nd is the donor density, V is the potential applied at the electrode, and C is the surface capacitance
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2017

Refractive index sensing and surface-enhanced Raman spectroscopy using silver–gold layered bimetallic plasmonic crystals

  • Somi Kang,
  • Sean E. Lehman,
  • Matthew V. Schulmerich,
  • An-Phong Le,
  • Tae-woo Lee,
  • Stephen K. Gray,
  • Rohit Bhargava and
  • Ralph G. Nuzzo

Beilstein J. Nanotechnol. 2017, 8, 2492–2503, doi:10.3762/bjnano.8.249

Graphical Abstract
  • effect which limits the degree of conformal coverage realized in the sputter coating metallization step. In the calculation, we used a Drude plus two-pole Lorentzian model to obtain the dielectric constant of the metal as a function of wavelength [48][61]. Figure 2 presents the experimentally measured
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2017

Synthesis of metal-fluoride nanoparticles supported on thermally reduced graphite oxide

  • Alexa Schmitz,
  • Kai Schütte,
  • Vesko Ilievski,
  • Juri Barthel,
  • Laura Burk,
  • Rolf Mülhaupt,
  • Junpei Yue,
  • Bernd Smarsly and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2017, 8, 2474–2483, doi:10.3762/bjnano.8.247

Graphical Abstract
  • important technical applications [15][16][17][18][19][20][21][22]. They can be used as composite materials [23][24], in chemical sensors [25], electrodes for fuel cells [26][27][28], for catalysis [29][30][31][32] or for hydrogen storage [33]. Because of their high ionic charge, polarity and dielectric
  • constant, ILs are an ideal media for microwave reactions and for the stabilization of M-NPs [34][35][36][37]. Soft wet-chemical synthesis in organic solvents from metal-organic complexes is an essential method to obtain metal or metal alloy nanoparticles [38][39][40][41][42][43][44][45][46][47][48][49][50
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2017

Substrate and Mg doping effects in GaAs nanowires

  • Perumal Kannappan,
  • Nabiha Ben Sedrine,
  • Jennifer P. Teixeira,
  • Maria R. Soares,
  • Bruno P. Falcão,
  • Maria R. Correia,
  • Nestor Cifuentes,
  • Emilson R. Viana,
  • Marcus V. B. Moreira,
  • Geraldo M. Ribeiro,
  • Alfredo G. de Oliveira,
  • Juan C. González and
  • Joaquim P. Leitão

Beilstein J. Nanotechnol. 2017, 8, 2126–2138, doi:10.3762/bjnano.8.212

Graphical Abstract
  • capacitance (C) can be estimated considering a metallic cylinder-plane system from [19]: where L is the length of the FET channel, ε0 the vacuum permittivity, εr = 3.9 the relative dielectric constant of the SiO2 insulator layer, h = 300 nm the thickness of the SiO2 layer, and d the nanowire diameter. From
PDF
Album
Supp Info
Full Research Paper
Published 11 Oct 2017
Other Beilstein-Institut Open Science Activities