Search results

Search for "FTIR" in Full Text gives 330 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Processing nanoporous organic polymers in liquid amines

  • Jeehye Byun,
  • Damien Thirion and
  • Cafer T. Yavuz

Beilstein J. Nanotechnol. 2019, 10, 1844–1850, doi:10.3762/bjnano.10.179

Graphical Abstract
  • challenging. Herein, we report that nanoporous polymers made via a Knoevenagel-like condensation can be easily processed into nanoparticles (115.7 ± 40.8 nm) or a flawless film by using liquid amines as a solvent at elevated temperatures. FTIR spectra revealed that the carboxyl groups in the nanoporous
  • amines in a few seconds, and the resulting polymer solution was able to be transformed into either nanoparticles or flawless films. This new feature of processibility was underpinned by FTIR, in which the formation of amide groups between the carbonyl units on nanoporous polymers and the alkylamines was
  • of EDA on the nitrile groups by a nucleophilic attack [23], so that the alkylamine chain connected to the nitrile functionality can increase the polarity of the polymeric chains, making COP-100 soluble. However, as shown in Figure 4, FTIR spectra of COP-100, COP-100-Film, and COP-100-Precip. showed
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2019

Biocatalytic oligomerization-induced self-assembly of crystalline cellulose oligomers into nanoribbon networks assisted by organic solvents

  • Yuuki Hata,
  • Yuka Fukaya,
  • Toshiki Sawada,
  • Masahito Nishiura and
  • Takeshi Serizawa

Beilstein J. Nanotechnol. 2019, 10, 1778–1788, doi:10.3762/bjnano.10.173

Graphical Abstract
  • discussed further below. The crystal structure of the representative products was analyzed by X-ray diffraction (XRD) measurements and attenuated total reflection Fourier-transform infrared (ATR-FTIR) absorption spectroscopy. The XRD profiles showed three peaks at 2θ (θ is the Bragg angle) of 12.2, 19.9
  • , and 22.1° (Figure 7), which corresponded to 110, and 020 of the cellulose II allomorph, respectively [30]. In addition, the ATR-FTIR absorption spectra showed two characteristic peaks for the intrachain hydrogen-bonded hydroxyl groups in the cellulose II allomorph [51] at approximately 3441 and 3490
  • dispersions was dried at 105 °C for 24 h, followed by weighing. For 1H NMR spectroscopy, ATR-FTIR absorption spectroscopy, and XRD measurements, as much as possible of the supernatant after the final centrifugation was removed by pipette, followed by adding water to the products. The resultant product aqueous
PDF
Album
Correction
Full Research Paper
Published 26 Aug 2019

TiO2/GO-coated functional separator to suppress polysulfide migration in lithium–sulfur batteries

  • Ning Liu,
  • Lu Wang,
  • Taizhe Tan,
  • Yan Zhao and
  • Yongguang Zhang

Beilstein J. Nanotechnol. 2019, 10, 1726–1736, doi:10.3762/bjnano.10.168

Graphical Abstract
  • after 12 hours. Hence, the TiO2/GO-coated separator effectively adsorbed and blocked the transportation of Li2S6. Raman and Fourier-transform infrared spectroscopy (FTIR) analysis was carried out to understand the interaction between TiO2/GO and polysulfides (Figure 10). The TiO2/GO composite was
  • treated with a Li2S6 electrolyte (1.0 M/0.1 M LiTFSI/LiNO3 in DOL and DME (1:1 v/v)) via immersion for 12 h; the Li2S6-treated TiO2/GO material was then obtained after centrifugal separation and vacuum drying. Raman and FTIR studies of the Li2S6-treated TiO2/GO material clearly show the existence of an S
  • –S stretching band at 470 cm−1, indicating that Li2S6 was absorbed on the surfaces of the TiO2/GO composite [46]. The Raman band at 745 cm−1 relates to a typical characteristic feature of LiTFSI in electrolyte [47]. A band that appeared at 801 cm−1 in the FTIR spectrum can be attributed to the S–O–C
PDF
Album
Full Research Paper
Published 19 Aug 2019

Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria

  • Carol López de Dicastillo,
  • Cristian Patiño,
  • María José Galotto,
  • Yesseny Vásquez-Martínez,
  • Claudia Torrent,
  • Daniela Alburquenque,
  • Alejandro Pereira and
  • Juan Escrig

Beilstein J. Nanotechnol. 2019, 10, 1716–1725, doi:10.3762/bjnano.10.167

Graphical Abstract
  • chemical composition was also performed by Fourier-transform infrared spectroscopy (FTIR) in order to study the main functional groups of the sample (data found in Supporting Information File 1). Thermogravimetric analysis (TGA) curves representing the mass loss with respect to temperature of SPVP, coated
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2019

Layered double hydroxide/sepiolite hybrid nanoarchitectures for the controlled release of herbicides

  • Ediana Paula Rebitski,
  • Margarita Darder and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2019, 10, 1679–1690, doi:10.3762/bjnano.10.163

Graphical Abstract
  • techniques (XRD, FTIR and 29Si NMR spectroscopies, CHN analysis and SEM) that revealed interactions of LDH with the sepiolite fibers through the silanol groups present on the outer surface of sepiolite, together with the intercalation of MCPA in the LDH confirmed by the increase in the basal spacing from
  • is intercalated in the LDH [37][38]. FTIR spectra (Figure 2B) shows bands ascribed to the organic component in all of the hybrid nanoarchitectures, although, as occurs in the MCPAie-LDH intercalation compound, interactions with the inorganic substrate modified the position of the bands. This affects
  • nanoarchitectures [31]. The small differences observed in the FTIR and NMR spectra of hybrid nanoarchitectures prepared by consolidation at 60 and 150 °C indicate the high stability of the prepared materials after both thermal treatments. This confirms the possibility of consolidating the hybrid nanoarchitectures
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2019

Chiral nanostructures self-assembled from nitrocinnamic amide amphiphiles: substituent and solvent effects

  • Hejin Jiang,
  • Huahua Fan,
  • Yuqian Jiang,
  • Li Zhang and
  • Minghua Liu

Beilstein J. Nanotechnol. 2019, 10, 1608–1617, doi:10.3762/bjnano.10.156

Graphical Abstract
  • result indicates that the NCLG assemblies might form a bilayer structure with high interdigitation of the alkyl chains, where the bilayer structure experiences a large tilt. Fourier-transform infrared (FTIR) spectra In order to elucidate the formation mechanism of the helicity and nanostructures of the
  • self-assembled molecules, FTIR spectroscopy was employed to evaluate the formation mechanism of self-assembly. As shown in Figure 5, for the 2NCLG and 4NCLG assemblies, two absorption bands at ≈3330 cm−1 and ≈3284 cm−1 were observed, which can be ascribed to the N–H stretching vibration. While for
  • vibration of the nitro group, respectively. The absorption bands at ≈970–980 cm−1 were assigned to trans-vinylene C–H out-of-plane deformations and the ≈779–785 cm−1 absorption bands were attributed to cis-vinylenene C–H out-of-plane deformations. The detailed information of the FTIR spectra is given in
PDF
Album
Supp Info
Full Research Paper
Published 05 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • water phase, yielding a monolayer sheet of the two-dimensional nickel–iron cyanide grid network. Characterizations of the extended network by X-ray photoelectron spectroscopy (XPS), FTIR spectroscopy, SQUID magnetometry, X-ray absorption fine structure (XAFS), and grazing incidence synchrotron X-ray
PDF
Album
Review
Published 30 Jul 2019

High-temperature resistive gas sensors based on ZnO/SiC nanocomposites

  • Vadim B. Platonov,
  • Marina N. Rumyantseva,
  • Alexander S. Frolov,
  • Alexey D. Yapryntsev and
  • Alexander M. Gaskov

Beilstein J. Nanotechnol. 2019, 10, 1537–1547, doi:10.3762/bjnano.10.151

Graphical Abstract
  • the components in a single homogeneous paste with subsequent thermal annealing. The composition and microstructure of the materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy
  • the SiC peaks naturally increases with increasing silicon carbide content in the nanocomposites. The study of the surface composition of the synthesized materials was carried out using FTIR and XPS methods. Figure 4 shows the IR absorption spectra of ZnO, SiC, and ZnO/SiC nanocomposites. The spectrum
  • vibrations of the C–O bond in CO2 molecules adsorbed on the ZnO surface (2430–2320 cm−1) and C–H bonds (2920–2840 cm−1) in the residues of the organic components used in the synthesis of ZnO nanofibers. The FTIR absorption spectrum of the SiC sample contains two intense peaks with absorption maxima at 900 cm
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles

  • Hajar Jalili,
  • Bagher Aslibeiki,
  • Ali Ghotbi Varzaneh and
  • Volodymyr A. Chernenko

Beilstein J. Nanotechnol. 2019, 10, 1348–1359, doi:10.3762/bjnano.10.133

Graphical Abstract
  • presence of Fe, Co and O in the samples. The atomic ratio Co/Fe obtained from EDX is in a good agreement with the theoretical stoichiometry for all samples (Figure 4d). Infrared spectra The formation of the spinel phase and its crystal structure were verified by Fourier-transform infrared (FTIR) spectra
  • measured at 300 K in the wave number range of 400–4000 cm−1. Figure 5 shows the FTIR spectra of the samples. The absorption band observed at around 3385 cm−1 is attributed to the vibration mode of the O–H groups in the H2O molecules. The peak observed at around 1556 cm−1 is ascribed to amide II (NH2
  • used for FTIR analysis. Two main absorption bands are observed at frequencies below 1000 cm−1. The band around 569 cm−1 and the band around 444 cm−1 are related to the vibration of metal–oxygen (Me–O) bonds at tetrahedral and octahedral sites, respectively [28][29]. The presence of these two bands
PDF
Album
Full Research Paper
Published 03 Jul 2019

Janus-micromotor-based on–off luminescence sensor for active TNT detection

  • Ye Yuan,
  • Changyong Gao,
  • Daolin Wang,
  • Chang Zhou,
  • Baohua Zhu and
  • Qiang He

Beilstein J. Nanotechnol. 2019, 10, 1324–1331, doi:10.3762/bjnano.10.131

Graphical Abstract
  • groups on the surface of the UCNPs were illustrated by Fourier-transform infrared (FTIR) spectroscopy. Figure 1c shows the FTIR spectra of the UCNPs and APTES-UCNPs. Compared with the FTIR spectrum of unmodified UCNPs, a notable transmission band peak at 1128 cm−1 (blue circle), attributable to the Si–O
  • stretching vibration, can be seen in the FTIR spectra of APTES-UCNPs. These results indicate that the UCNPs were successfully modified with APTES. It has been demonstrated that the amine group is important to allow UCNPs to detect TNT. To verify the functionalization of the APTES-UCNPs with amine groups, the
  • observed using a Hitachi H-7650 microscope. UV−vis absorption spectra were recorded using a Hitachi U-4100 spectrophotometer. FTIR spectra were collected in the wavelength range from 4000 to 500 cm−1 by a Thermo Fisher 4700 Fourier transform infrared spectrophotometer with the KBr method. Upconversion
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2019

A biomimetic nanofluidic diode based on surface-modified polymeric carbon nitride nanotubes

  • Kai Xiao,
  • Baris Kumru,
  • Lu Chen,
  • Lei Jiang,
  • Bernhard V. K. J. Schmidt and
  • Markus Antonietti

Beilstein J. Nanotechnol. 2019, 10, 1316–1323, doi:10.3762/bjnano.10.130

Graphical Abstract
  • diameter of about 100 nm, and an inner diameter of about 60 nm. The chemical structure of carbon nitride nanotubes was further analyzed using FTIR (Figure 2b). The bare AAO substrate showed no obvious absorption peaks, while CNNM@AAO showed broad peaks between 3500 and 3000 cm−1, which originate from the
  • shows the existence of sulfur atoms on the surface while unmodified side only contains carbon and nitrogen (Figure S6, Supporting Information File 1). The AHPA modification was also confirmed by FTIR spectra recorded before and after modification (Figure 4c). After modification, there is an obvious peak
  • near 2950 cm−1, which corresponds to the C–H bond stretching, originating from grafted AHPA molecules. In the case of the AA-modified membrane, FTIR spectra showed similar phenomena before and after modification (Figure 4c). The obtained results showed that AHPA and AA molecules are grafted
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2019

Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices

  • Giulia Lo Dico,
  • Bernd Wicklein,
  • Lorenzo Lisuzzo,
  • Giuseppe Lazzara,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2019, 10, 1303–1315, doi:10.3762/bjnano.10.129

Graphical Abstract
  • . The enzyme immobilization was also confirmed by FTIR spectroscopy (Figure S6 and Table S1, Supporting Information File 1). The HNT–GOx spectrum clearly shows the presence of bands assigned to the symmetric stretching of C–H aliphatic groups and the amide groups of GOx [60]. In particular, there is no
  • Philips XL 30 S-FEG microscope. Before examination, the samples were fractured in liquid nitrogen. The FTIR spectra of HNT-GOx samples were acquired with a BRUKER iFS spectrophotometer 66Vs. X-ray diffractograms were obtained with a D8-ADVANCE diffractometer (Bruker), using Cu Kα radiation. The voltage
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

CuInSe2 quantum dots grown by molecular beam epitaxy on amorphous SiO2 surfaces

  • Henrique Limborço,
  • Pedro M.P. Salomé,
  • Rodrigo Ribeiro-Andrade,
  • Jennifer P. Teixeira,
  • Nicoleta Nicoara,
  • Kamal Abderrafi,
  • Joaquim P. Leitão,
  • Juan C. Gonzalez and
  • Sascha Sadewasser

Beilstein J. Nanotechnol. 2019, 10, 1103–1111, doi:10.3762/bjnano.10.110

Graphical Abstract
  • ]/[In] ratio of the samples, and to validate the oxidized nature of the substrate surface. Photoluminescence (PL) experiments were carried out with Bruker IFS 66v Fourier-transform infrared (FTIR) spectrometer, equipped with a liquid nitrogen cooled Ge diode detector for which the spectral range of
PDF
Album
Full Research Paper
Published 22 May 2019

Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles

  • Małgorzata Świętek,
  • Yi-Chin Lu,
  • Rafał Konefał,
  • Liliana P. Ferreira,
  • M. Margarida Cruz,
  • Yunn-Hwa Ma and
  • Daniel Horák

Beilstein J. Nanotechnol. 2019, 10, 1073–1088, doi:10.3762/bjnano.10.108

Graphical Abstract
  • phenolic compounds Physicochemical characterization The effect of the AA/H2O2 redox system and the phenolic compounds on the molecular structure of chitosan was investigated using ATR-FTIR and 1H NMR spectroscopy. The ATR-FTIR spectra of CS and of chitosans modified with phenolic compounds differed from
  • stretching, respectively. In the ATR-FTIR spectra of chitosans modified with phenolic compounds, the peak at 1728 cm−1 was slightly shifted to 1734 cm−1, indicating binding of phenolic compounds to the carbonyl groups of CS. Similar to ATR-FTIR spectra, the 1H NMR spectra of CS and chitosans modified with
  • formed, the AA/H2O2 redox system is convenient for chitosan degradation [19][20]. Hydroxyl radicals attack the polysaccharide, forming macroradicals, which are then prone to covalently bind phenolic compounds. According to the ATR-FTIR and 1H NMR spectroscopy results, the structural similarity between CS
PDF
Album
Full Research Paper
Published 20 May 2019

Tailoring the stability/aggregation of one-dimensional TiO2(B)/titanate nanowires using surfactants

  • Atiđa Selmani,
  • Johannes Lützenkirchen,
  • Kristina Kučanda,
  • Dario Dabić,
  • Engelbert Redel,
  • Ida Delač Marion,
  • Damir Kralj,
  • Darija Domazet Jurašin and
  • Maja Dutour Sikirić

Beilstein J. Nanotechnol. 2019, 10, 1024–1037, doi:10.3762/bjnano.10.103

Graphical Abstract
  • mixed phase, TiO2(B) and trititanate layered TNW structure was confirmed by powder X-ray diffraction (PXRD) as well as Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy. The details can be found in Supporting Information File 1. High-resolution scanning electron microscopy (HR-SEM
  • -Brentano geometry mode using Cu Kα radiation (λ = 0.154056 nm) at room temperature. PXRD patterns were scanned in the range 2θ = 5–70° with a step size of 0.08° and 10 s per step. The PANalytical High Score Plus software suite was used for data treatment. Infrared (FTIR) spectra were recorded on a Perkin
  • Elmer FT-IR C89391 instrument at room temperature in the wavenumber range 4000–400 cm−1. The resolution of the FTIR spectrophotometer was 2 cm−1. Raman spectra were recorded on an EQUINOX 55 device equipped with an Nd:YAG laser (λ = 1064 nm) at room temperature applying a laser power of 100 mW. The
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2019

Nanoscale optical and structural characterisation of silk

  • Meguya Ryu,
  • Reo Honda,
  • Adrian Cernescu,
  • Arturas Vailionis,
  • Armandas Balčytis,
  • Jitraporn Vongsvivut,
  • Jing-Liang Li,
  • Denver P. Linklater,
  • Elena P. Ivanova,
  • Vygantas Mizeikis,
  • Mark J. Tobin,
  • Junko Morikawa and
  • Saulius Juodkazis

Beilstein J. Nanotechnol. 2019, 10, 922–929, doi:10.3762/bjnano.10.93

Graphical Abstract
  • different methods, i.e., (i) a table-top Fourier-transform infrared (FTIR) transmission spectrometer, (ii) a synchrotron-based attenuated total reflection (ATR) FTIR spectrometer, and (iii) an atomic force microscopy (AFM) tip responding to the absorbed IR light (nano-IR [9]), produced comparable spectral
  • shapes of the characteristic silk bands are related to the different sensitivity of R and A to the real and imaginary parts of . The absorbance measured from the far-field transmission directly reflects the imaginary part of the index κ, while the absorbance obtained in the ATR-FTIR mode is affected by
  • tip size independent of the laser wavelength [12]. The nano-FTIR spectra were recorded at a rate of ca. 100 s/spectrum with a spectral resolution of 10 cm−1. Removal of the instrumental response function from the nano-FTIR spectra was done by normalization of the measured spectra to a reference Si
PDF
Album
Full Research Paper
Published 23 Apr 2019

Synthesis of novel C-doped g-C3N4 nanosheets coupled with CdIn2S4 for enhanced photocatalytic hydrogen evolution

  • Jingshuai Chen,
  • Chang-Jie Mao,
  • Helin Niu and
  • Ji-Ming Song

Beilstein J. Nanotechnol. 2019, 10, 912–921, doi:10.3762/bjnano.10.92

Graphical Abstract
  • ) crystallographic planes of the cubic CdIn2S4 (JCPDS no. 27-0060), revealing the presence of CdIn2S4 in the composites. Figure 3 presents the Fourier transform infrared (FTIR) spectra of CCN and the CISCCN photocatalyts. In the case of CCN nanosheets, a series of peaks at 1240, 1320, 1410, 1530 and 1640 cm−1
  • between 1700 cm−1 and 1200 cm−1 are related to the typical stretching vibration of C–N and C=N in the CN heterocycles [38]. The characteristic peak of 812 cm−1 is due to the particular breathing mode for s-triazine (C3N3) units of g-C3N4 [7]. The FTIR absorption band at the region of >3200 cm−1 is
  • ascribed to O–H of absorbed water and the stretching modes of uncondensed amine groups [4]. Obviously, after the combination of CdIn2S4 and CCN, the resulting CISCCN nanocomposites possess similar FTIR spectra as that of the CCN sample. The microstructure and morphology of the as-fabricated CCN and CISCCN3
PDF
Album
Full Research Paper
Published 18 Apr 2019

The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model

  • Qura Tul Ain,
  • Samina Hyder Haq,
  • Abeer Alshammari,
  • Moudhi Abdullah Al-Mutlaq and
  • Muhammad Naeem Anjum

Beilstein J. Nanotechnol. 2019, 10, 901–911, doi:10.3762/bjnano.10.91

Graphical Abstract
  • polyethylene glycol (PEG). PEGylation of nGO was confirmed by Fourier-transform infrared spectroscopy (FTIR), UV spectroscopy and TEM. The average size distribution of nGO and PEG-nGO was determined by using dynamic light scattering (DLS). Subsequently, an in vivo study measuring a marker for oxidative stress
  • ° according to a d-spacing of 2.13 Å, confirming the successful GO synthesis [42]. Fourier-transform infrared spectroscopy The surface functional groups of nGO and PEG-nGO were investigated by Fourier-transform infrared spectroscopy (FTIR). The infrared spectra of nGO and PEG-nGO were processed using Origin
  • Excel, and the values (P* < 0.05) were considered statistically significant. X-ray diffraction (XRD) spectra of pure graphite and synthesized graphene oxide. Deviation of XRD peak at 2θ = 26.5° to 9.9° confirmed the successful oxidation of graphite sheets. FTIR spectra of nGO and PEG-nGO. Additional
PDF
Album
Full Research Paper
Published 18 Apr 2019

Rapid, ultraviolet-induced, reversibly switchable wettability of superhydrophobic/superhydrophilic surfaces

  • Yunlu Pan,
  • Wenting Kong,
  • Bharat Bhushan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2019, 10, 866–873, doi:10.3762/bjnano.10.87

Graphical Abstract
  • nanoparticles were subjected to chemical bonding as Si–O–Ti with hydrolysing PFOS. The chemical bonding is verified by the Fourier transfer infrared (FTIR) spectra of TiO2 and TiO2–PFOS coated glass surfaces, as shown in Figure 2. The asymmetric stretching vibration of the Si–O–Ti species was displayed at the
  • –CF2− and –CF3 groups appeared in the FTIR spectra of Al2O3–PFOS but without the peak at 1065 cm−1, which indicates that there was probably no chemical bonding between Al2O3 and PFOS, suggesting the physical adhesion between Al2O3 nanoparticles and PFOS. Wettability switching by UV illumination and
  • superhydrophobic to superhydrophilic is much faster than in previous works [22][23][24][25][26][27]. The samples in the process of wettability switching were observed by FTIR, as shown in Figure 3a. For the TiO2–PFOS surface, as the UV exposure time increases, the peak intensity at 1629 cm−1 and 3436 cm−1
PDF
Album
Full Research Paper
Published 15 Apr 2019

Tungsten disulfide-based nanocomposites for photothermal therapy

  • Tzuriel Levin,
  • Hagit Sade,
  • Rina Ben-Shabbat Binyamini,
  • Maayan Pour,
  • Iftach Nachman and
  • Jean-Paul Lellouche

Beilstein J. Nanotechnol. 2019, 10, 811–822, doi:10.3762/bjnano.10.81

Graphical Abstract
  • shaken at 10 °C for 72 h. Characterizations ATR-FTIR spectra were obtained on a Nicolet iS5 FT-IR spectrometer (Thermo Scientific, Waltham, MA, US) equipped with an iD5 ATR accessory featuring a laminated diamond crystal. Samples were analyzed without further preparation. The data processing was
  • attachment of polymers to the composite. Figure 3 shows the FTIR absorbance spectra of WS2-NT and its composites. The absorption of the WS2-NTs was so weak that we are not sure that anything can be learned from such absorption. In the spectrum of WS2-NT-CM (and of its two composites), the strong peak at 570
  • nanoparticles. The preparation procedures are facile and make use of readily available reagents and equipment. Electron microscopy, FTIR, zeta potential, TGA, and ICP analyses demonstrated the attachment of CAN-mag nanoparticles to the nanotubes. CAN-mag attachment around the nanotubes was not conformal, and in
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2019

On the transformation of “zincone”-like into porous ZnO thin films from sub-saturated plasma enhanced atomic layer deposition

  • Alberto Perrotta,
  • Julian Pilz,
  • Stefan Pachmajer,
  • Antonella Milella and
  • Anna Maria Coclite

Beilstein J. Nanotechnol. 2019, 10, 746–759, doi:10.3762/bjnano.10.74

Graphical Abstract
  • reported using the same color scales [55]. For chemical analysis of the obtained thin films, Fourier-transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) were performed. For the FTIR analysis, a Bruker IFS 66v/S was adopted. For each spectrum, 1000 scans were recorded in transmission mode
  • gather information about the chemical composition and bonding of the Zn-alkoxide layers, FTIR and XPS measurements were performed. The oxidative environment of the oxygen plasma during the deposition causes the formation of CO2 and water eventually leading to the removal of all the carbon functionalities
  • and formation of pure ZnO. Before saturation, though, the active oxygen species are not sufficient in number to cause the total reaction of the ethyl groups into CO2, leaving in the layer (partially) oxidized organic groups and chain terminating Zn–OH groups. In Figure 1b, the FTIR spectra are
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2019

Outstanding chain-extension effect and high UV resistance of polybutylene succinate containing amino-acid-modified layered double hydroxides

  • Adam A. Marek,
  • Vincent Verney,
  • Christine Taviot-Gueho,
  • Grazia Totaro,
  • Laura Sisti,
  • Annamaria Celli and
  • Fabrice Leroux

Beilstein J. Nanotechnol. 2019, 10, 684–695, doi:10.3762/bjnano.10.68

Graphical Abstract
  • spectroscopy (FTIR) and thermogravimetric analysis (TGA). As expected, the UV–vis spectra showed absorbance in the UVC and UVB regions and the potential role as UV stabilizers. In a second part, PBS composites were prepared with 5 wt % of LDH filler by melt blending and once again fully characterized (XRD, TGA
  • . Characterization methods FTIR spectra of the LDH fillers were recorded using a Nicolet 380 FTIR spectrometer (DTGS detector) equipped with an attenuated total reflection single reflection diamond from Specac, and 32 scans and at a resolution of 4 cm−1 were collected. LDH fillers and PBS–LDH nanocomposites were
  • evidenced by FTIR analysis (see below), can be explained by either the small excess of the organic anion used during the synthesis or the large excess of nitrate anions in the reaction medium introduced by the reactants in the form of nitrate salts. The diffraction pattern obtained for LDH/HIS is poorly
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2019

Commercial polycarbonate track-etched membranes as substrates for low-cost optical sensors

  • Paula Martínez-Pérez and
  • Jaime García-Rupérez

Beilstein J. Nanotechnol. 2019, 10, 677–683, doi:10.3762/bjnano.10.67

Graphical Abstract
  • interferometer and might be useful for sensing purposes as well. Firstly, we checked if PCTE membranes exhibit an interference fringe pattern when exposed to light. For that aim, we performed vertical reflectivity measurements with an FTIR microscope (30 scans were taken for each measurement with a resolution of
  • sensing applications. To this end, we placed a 10 µL drop of pure ethanol on the area of the PCTE membrane illuminated by the light beam of the FTIR microscope and let it evaporate at room temperature. We recorded the spectrum of the sample before the deposition of the drop and during the evaporation
  • process every minute (i.e., the time required by the FTIR to perform a measurement with the configuration previously described). In this way, we can follow the shift experienced by the spectrum at a given point of the PCTE membrane in real time. When the air present in the porous structure is replaced by
PDF
Album
Full Research Paper
Published 07 Mar 2019

Ultrathin hydrophobic films based on the metal organic framework UiO-66-COOH(Zr)

  • Miguel A. Andrés,
  • Clemence Sicard,
  • Christian Serre,
  • Olivier Roubeau and
  • Ignacio Gascón

Beilstein J. Nanotechnol. 2019, 10, 654–665, doi:10.3762/bjnano.10.65

Graphical Abstract
  • OPD/MOF ultrathin films have been fabricated onto glass, calcium fluoride, quartz crystal microbalance (QCM), Si(100) substrates and mica and characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM
  • film fabrication. FTIR was also used to confirm ODP incorporation in the LB films (Supporting Information File 1, Figure S8). C–H stretch bands from ODP (2920 and 2851 cm−1) are observed in the MOF/ODP LB films. This demonstrates that this methodology is useful for modifying the surface of the
  • hydrophilic substrates such as glass and mica and the coverage with just one mixed MOF/ODP layer increases the water contact angle up to 120°. The structure of these highly hydrophobic films has been characterized by GIXRD, FTIR, AFM and SEM, revealing that ODP forms a continuous film, with ODP molecules in
PDF
Album
Supp Info
Full Research Paper
Published 06 Mar 2019

Topochemical engineering of composite hybrid fibers using layered double hydroxides and abietic acid

  • Liji Sobhana,
  • Lokesh Kesavan,
  • Jan Gustafsson and
  • Pedro Fardim

Beilstein J. Nanotechnol. 2019, 10, 589–605, doi:10.3762/bjnano.10.60

Graphical Abstract
  • (λ = 0.15415 nm). Patterns were recorded in the 2θ range of 5–70° in steps of 0.04° with a counting time per step of 8 s. The modified fibers were analyzed by pressing them gently onto a copper sample holder. ATR-FTIR analysis: Attenuated total reflectance Fourier transform infrared (ATR-FTIR
  • : abietic acid). FTIR spectra of pulp fibers (filled circles: fibers, asterisks: LDH, filled diamonds: abietic acid). SEM images showing the hybridization of LDH particles on the fiber surfaces of (a) BKP, (b) BKPR, (c) UBKP and (d) UBKPR. SEM images of the BKP fibers: (a) REF (b) C-F (c) HF (d) C-HF (0.15
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2019
Other Beilstein-Institut Open Science Activities