Search results

Search for "catalysts" in Full Text gives 306 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nanoporous water oxidation electrodes with a low loading of laser-deposited Ru/C exhibit enhanced corrosion stability

  • Sandra Haschke,
  • Dmitrii Pankin,
  • Vladimir Mikhailovskii,
  • Maïssa K. S. Barr,
  • Adriana Both-Engel,
  • Alina Manshina and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 157–167, doi:10.3762/bjnano.10.15

Graphical Abstract
  • artificial water splitting, catalysts are required for the rate-limiting half reaction, the dioxygen evolution, which must be driven at low overpotential (for maximizing conversion efficiency) [2]. The most active catalyst materials for this transformation are metallic iridium and ruthenium particles, the
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2019

Amorphous NixCoyP-supported TiO2 nanotube arrays as an efficient hydrogen evolution reaction electrocatalyst in acidic solution

  • Yong Li,
  • Peng Yang,
  • Bin Wang and
  • Zhongqing Liu

Beilstein J. Nanotechnol. 2019, 10, 62–70, doi:10.3762/bjnano.10.6

Graphical Abstract
  • bottleneck for HER is the high overpotential associated with the process that takes place at a significant rate due to the high activation barrier and the sluggish multiple-proton-coupled electron transfer [4][5][6]. Noble metal Pt-based catalysts are widely used for HER to circumvent the overpotential
  • .) demonstrate a superior electrochemical performance. Because the ternary phases provide a synergistic effect, these bi-metal phosphides provide good electrical conductivity and electronic structure [15][16][17]. Among the bi-metal phosphides, Ni–Co–P catalysts have been intensively investigated. The similar
  • to large-scale industrial application. Amorphous catalysts intrinsically contain more defect sites which probably work as active centers compared to the crystalline counterparts. A representative work is that by Zhang et al. where they synthesized Ni–Co–P/nickel foam electrodes via a facile
PDF
Album
Supp Info
Full Research Paper
Published 07 Jan 2019

Co-intercalated layered double hydroxides as thermal and photo-oxidation stabilizers for polypropylene

  • Qian Zhang,
  • Qiyu Gu,
  • Fabrice Leroux,
  • Pinggui Tang,
  • Dianqing Li and
  • Yongjun Feng

Beilstein J. Nanotechnol. 2018, 9, 2980–2988, doi:10.3762/bjnano.9.277

Graphical Abstract
  • Qian Zhang Qiyu Gu Fabrice Leroux Pinggui Tang Dianqing Li Yongjun Feng State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing 100029, China Université Clermont
PDF
Album
Full Research Paper
Published 05 Dec 2018

Ternary nanocomposites of reduced graphene oxide, polyaniline and hexaniobate: hierarchical architecture and high polaron formation

  • Claudio H. B. Silva,
  • Maria Iliut,
  • Christopher Muryn,
  • Christian Berger,
  • Zachary Coldrick,
  • Vera R. L. Constantino,
  • Marcia L. A. Temperini and
  • Aravind Vijayaraghavan

Beilstein J. Nanotechnol. 2018, 9, 2936–2946, doi:10.3762/bjnano.9.272

Graphical Abstract
  • K4Nb6O17) and protons (acidic form H2K2Nb6O17) [28][29]. Due to their high acidic surfaces, protonic niobates and titanoniobates have been reported as promising solid acid catalysts for various chemical reactions [30][31]. Moreover, hexaniobate can be exfoliated by treatment with a number of species such
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2018

Graphene-enhanced metal oxide gas sensors at room temperature: a review

  • Dongjin Sun,
  • Yifan Luo,
  • Marc Debliquy and
  • Chao Zhang

Beilstein J. Nanotechnol. 2018, 9, 2832–2844, doi:10.3762/bjnano.9.264

Graphical Abstract
  • structure with a high surface area to volume ratio. The porous structure promoted the diffusion of gases, improving the reaction of gases with oxygen species on the surface of the hybrid material. The Cu2O–rGO composites exhibited exceptional catalytic activity and acted as high-efficiency catalysts for the
PDF
Album
Review
Published 09 Nov 2018

Comparative biological effects of spherical noble metal nanoparticles (Rh, Pd, Ag, Pt, Au) with 4–8 nm diameter

  • Alexander Rostek,
  • Marina Breisch,
  • Kevin Pappert,
  • Kateryna Loza,
  • Marc Heggen,
  • Manfred Köller,
  • Christina Sengstock and
  • Matthias Epple

Beilstein J. Nanotechnol. 2018, 9, 2763–2774, doi:10.3762/bjnano.9.258

Graphical Abstract
  • ]. Platinum nanoparticles can be obtained by metal carbonyl-mediated synthesis in organic solvents [81]. Nanoscale platinum catalysts were synthesized using NaBH4 in octylamine [82]. Small gold nanoparticles (<10 nm) can be produced by wet-chemical approaches using strong reductants (e.g., NaBH4) in the
PDF
Album
Full Research Paper
Published 29 Oct 2018

Improved catalytic combustion of methane using CuO nanobelts with predominantly (001) surfaces

  • Qingquan Kong,
  • Yichun Yin,
  • Bing Xue,
  • Yonggang Jin,
  • Wei Feng,
  • Zhi-Gang Chen,
  • Shi Su and
  • Chenghua Sun

Beilstein J. Nanotechnol. 2018, 9, 2526–2532, doi:10.3762/bjnano.9.235

Graphical Abstract
  • underlines the need to develop high-performance catalysts for CH4 oxidation at low temperature. Except as fuel in natural gas, much of the CH4 that is released is from industrial applications, such as ventilation air methane (VAM) from underground coal mining. This is a serious issue because CH4 has severe
  • been reported as effective catalysts for the complete oxidation of methane [2][5][9][10][11][12][13][14][15][16][17], particularly supported Pd nanoparticles [15][16][17], while the high price and poor thermal stability limit their large scale application. To address this issue, low-cost alternatives
  • , such as transition metal (TM) oxides and various complex structures (e.g., perovskite, spinel and hexaaluminate) have been tested as catalysts for CH4 oxidation. But so far their performance is still much lower than noble metals. An ideal catalyst for CH4 oxidation should have a high capacity to adsorb
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2018

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
  • morphologies and have various functions (e.g., adsorbents, catalysts, or membranes). The high reactivity and high surface area of nanomaterials are some of the notable features which provide an advantage in environmental remediation over other conventional alternatives [1]. Promising materials such as
  • been used to fabricate catalysts for the reduction of 4-nitrophenol [52] and microfiltration membranes for bacteria, virus, and heavy metal ion removal [53]. In addition, bleached birch fibres from Betula verrucosa and B. pendula were also investigated in a study led by Suopajärvi et al. [54] to
PDF
Album
Review
Published 19 Sep 2018

Hierarchical heterostructures of Bi2MoO6 microflowers decorated with Ag2CO3 nanoparticles for efficient visible-light-driven photocatalytic removal of toxic pollutants

  • Shijie Li,
  • Wei Jiang,
  • Shiwei Hu,
  • Yu Liu,
  • Yanping Liu,
  • Kaibing Xu and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 2297–2305, doi:10.3762/bjnano.9.214

Graphical Abstract
  • . Also, the photocatalytic mechanism of pollutant degradation over Ag2CO3/Bi2MoO6 was discussed. Results and Discussion Characterization of catalysts A series of flowerlike Ag2CO3/Bi2MoO6 heterostructures with different weight ratios (0.1/1, 0.2/1, 0.3/1, and 0.5/1) were constructed and labeled ACO/BMO
  • [32]. To visually study the microstructure and morphology of Ag2CO3/Bi2MoO6, SEM images of the as-prepared catalysts were taken. Bare Bi2MoO6 presents a hierarchical microsphere structure (diameter: 1.6–3.5 μm, Figure 2a,b). After Ag2CO3 was loaded onto Bi2MoO6, the resulting Ag2CO3/Bi2MoO6 retained
  • under visible light was measured. Figure 6a displays the degradation of RhB as a function of the time. The RhB concentration remains unchanged in the absence of catalysts. In the presence of bare Bi2MoO6 and Ag2CO3 only 39.8% and 58.7% of RhB were degraded after 90 min of reaction time. The degradation
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • oxide catalysts and have been evaluated for toluene sensing [1]. WO3 NFs are functionalized by Pd-loaded ZnO nanocubes that result in multi-heterojunction Pd–ZnO and ZnO–WO3 interfaces. The as-spun Pd@ZnO-WO3 NFs have average diameter in the range 500–950 nm that reduces to 400–850 nm after calcination
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Localized photodeposition of catalysts using nanophotonic resonances in silicon photocathodes

  • Evgenia Kontoleta,
  • Sven H. C. Askes,
  • Lai-Hung Lai and
  • Erik C. Garnett

Beilstein J. Nanotechnol. 2018, 9, 2097–2105, doi:10.3762/bjnano.9.198

Graphical Abstract
  • promising for the design of lithography-free and efficient hierarchical nanostructures for the generation of solar fuels. Keywords: catalysts; nanomaterials; nanophotonics; photodeposition; solar fuels; Introduction The relentless rise of CO2 levels in the atmosphere as well as the growth of the world
  • semiconductor–solution interface, directly at the location of the hot spots. Placing the catalyst exclusively at the hot spots would reduce both the catalyst loading (lowering the cost) and the average time between charge generation and chemical reaction (increasing the efficiency). However, current catalysts
PDF
Album
Supp Info
Full Research Paper
Published 03 Aug 2018

Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view

  • Mattia Scardamaglia and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2018, 9, 2015–2031, doi:10.3762/bjnano.9.191

Graphical Abstract
  • splitting of water to molecular hydrogen via hydrogen and oxygen evolution reaction (HER and OER, respectively) are fundamental working mechanisms at the cathode of fuel cells, metal–air batteries and dye-sensitized solar cells [2]. However, the current working catalysts are based on expensive metals, such
  • as platinum or its alloys, or metal oxides, which affect the engineering cost of fuel cells being also energy consuming and not highly selective [3]. Therefore, research efforts have been devoted towards alternative highly active catalysts from non-precious metals [4]. Repeatedly reported potential
  • absorption of H2 on the catalyst lowering the cell performance [6]. In parallel, the research on the catalytic activity of low-cost and metal-free catalysts has proceeded for decades. The discovery of catalytic properties of carbon alloys with nitrogen dates back to 1926 when Rideal and Wright reported their
PDF
Album
Review
Published 18 Jul 2018

Synthesis of a MnO2/Fe3O4/diatomite nanocomposite as an efficient heterogeneous Fenton-like catalyst for methylene blue degradation

  • Zishun Li,
  • Xuekun Tang,
  • Kun Liu,
  • Jing Huang,
  • Yueyang Xu,
  • Qian Peng and
  • Minlin Ao

Beilstein J. Nanotechnol. 2018, 9, 1940–1950, doi:10.3762/bjnano.9.185

Graphical Abstract
  • .9.185 Abstract Heterogeneous Fenton-like catalysts with the activation of peroxymonosulfate (PMS), which offer the advantages of fast reaction rate, wide functional pH range and cost efficiency, have attracted great interest in wastewater treatment. In this study, a novel magnetic MnO2/Fe3O4/diatomite
  • diatomite, which can be readily magnetically separated from the solution. The as-prepared catalyst, compared with other Fenton-like catalysts, shows a superb MB degradation rate of nearly 100% in 45 min in the pH range of 4 to 8 and temperature range of 25 to 55 °C. Moreover, the nanocomposite shows a good
  • considered as the most promising method because of the high removal efficiency and wide application scopes [6][7]. Iron-based homogeneous and heterogeneous Fenton or Fenton-like catalysts with the activation of H2O2 can effectively generate hydroxyl radicals (•OH, the main reactive species for the
PDF
Album
Supp Info
Full Research Paper
Published 06 Jul 2018

Synthesis of rare-earth metal and rare-earth metal-fluoride nanoparticles in ionic liquids and propylene carbonate

  • Marvin Siebels,
  • Lukas Mai,
  • Laura Schmolke,
  • Kai Schütte,
  • Juri Barthel,
  • Junpei Yue,
  • Jörg Thomas,
  • Bernd M. Smarsly,
  • Anjana Devi,
  • Roland A. Fischer and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2018, 9, 1881–1894, doi:10.3762/bjnano.9.180

Graphical Abstract
  • obtained rare-earth fluoride particles were not phase-pure [8]. An alternative method for synthesizing rare-earth metal-fluoride nanoparticles is the use of rare-earth metal amidinates as precursors [9][10][11][12]. Metal amidinates are coordination compounds [13][14] and used, for example, as catalysts in
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2018

Improving the catalytic activity for hydrogen evolution of monolayered SnSe2(1−x)S2x by mechanical strain

  • Sha Dong and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2018, 9, 1820–1827, doi:10.3762/bjnano.9.173

Graphical Abstract
  • ; however, the high cost and limited resources of these types of catalyst restrict their usage in the mass production of hydrogen [8][9][10]. Therefore, exploring non-noble and earth-abundant elements as catalysts for hydrogen production is one of the most promising pathways for the mass production of
  • in recent decades to the development of inexpensive catalysts for the electrochemical HER. Some of the recent studies have focused on monolayer SnX2 (X = S, Se). Liu et al. [43] investigated SnS2 nanosheets regarding their electrochemical behaviour and electrocatalytic properties for HER by examining
  • the electronic properties of the catalyst, they will affect the catalytic behaviour. Several TMD alloy systems have been investigated as catalysts for HER, including Mo1−xWxSe2 nanoflowers [44], WS2(1−x)Se2x nanotubes [45] and MoS2(1−x)Se2x nanobelts [46]. It was reported that alloying provides an
PDF
Album
Full Research Paper
Published 18 Jun 2018

Direct AFM-based nanoscale mapping and tomography of open-circuit voltages for photovoltaics

  • Katherine Atamanuk,
  • Justin Luria and
  • Bryan D. Huey

Beilstein J. Nanotechnol. 2018, 9, 1802–1808, doi:10.3762/bjnano.9.171

Graphical Abstract
  • micro-scale. Such novel SPM-based measurements can be crucial to advancing the fundamental understanding, and ultimately performance and reliability, of a wide range of photosensors, photoactivated catalysts, and photovoltaics. pcAFM measurement of a CdTe/CdS solar cell, during specimen illumination
PDF
Album
Supp Info
Full Research Paper
Published 14 Jun 2018

Cryochemical synthesis of ultrasmall, highly crystalline, nanostructured metal oxides and salts

  • Elena A. Trusova and
  • Nikolai S. Trutnev

Beilstein J. Nanotechnol. 2018, 9, 1755–1763, doi:10.3762/bjnano.9.166

Graphical Abstract
  • important for creating fine-grained ceramics with specified structure and properties. Fine-grained ceramics need a homogenous structure to provide its unique properties of plasticity, high strength, wear-resistance, etc. [12]. We previously reported on the synthesis of nanostructured catalysts consisting of
PDF
Album
Full Research Paper
Published 12 Jun 2018

Controllable one-pot synthesis of uniform colloidal TiO2 particles in a mixed solvent solution for photocatalysis

  • Jong Tae Moon,
  • Seung Ki Lee and
  • Ji Bong Joo

Beilstein J. Nanotechnol. 2018, 9, 1715–1727, doi:10.3762/bjnano.9.163

Graphical Abstract
  • Uniform colloidal TiO2 particles can be synthesized by a modified sol–gel synthesis followed by calcination under atmospheric conditions. The synthesis is conducted in the ethanol–acetonitrile mixed solvent phase in the presence of a surfactant and base catalysts for the hydrolysis and condensation of the
  • . Before UV-light irradiation, the reaction mixture containing the catalyst and RhB was stirred for 30 min to ensure saturation of the RhB adsorption on the surface of the TiO2 particles. All of the TiO2 catalysts showed a similar adsorption capacity in the range of ≈9% of C/C0. In the blank experiment
  • (i.e., no catalyst), the C/C0 of RhB was decreased by only ≈2% after UV–vis irradiation for 60 min, while the degradation of RhB significantly improved when the TiO2 catalysts were used. The TiO2 sample calcined at 350 °C (TiO2-350) exhibited the lowest catalytic activity among all of the catalysts
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
  • chemical synthesis Photocatalytic, selective, organic transformations are currently preferred over the conventional processes for synthesis of fine chemicals basically due to two reasons. The first one is to restrict the use of environmentally detrimental chemical reagents such as heavy metal catalysts
  • as co-catalysts because of their intriguing properties such as small size, high dispersion, abundant surface functional groups, unique photoluminescence and good electron transfer ability [141][142]. Carbon dot–TiO2 (CD–TiO2) nanosheet composites synthesized by a hydrothermal route were studied for
PDF
Album
Review
Published 16 May 2018

Ag2WO4 nanorods decorated with AgI nanoparticles: Novel and efficient visible-light-driven photocatalysts for the degradation of water pollutants

  • Shijie Li,
  • Shiwei Hu,
  • Wei Jiang,
  • Yanping Liu,
  • Yu Liu,
  • Yingtang Zhou,
  • Liuye Mo and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 1308–1316, doi:10.3762/bjnano.9.123

Graphical Abstract
  • ]. However, achieving high efficiency for photocatalytic conversion under natural sunlight irradiation is still a great challenge because many catalysts only respond to ultraviolet (UV) light [5][12]. Exploring photocatalysts that can be driven by visible light, which comprises 43% of solar energy, is
  • possible photocatalytic mechanism over AgI/Ag2WO4 was also elucidated in this work. Results and Discussion Preparation and characterization of catalysts Ag2WO4 nanorods decorated with AgI nanoparticles were prepared via an in situ anion-exchange method. Ag2WO4 nanorods were first synthesized by mixing
  • AgNO3 and Na2WO4 aqueous solutions at room temperature [37]. Subsequently, AgI nanoparticles were readily anchored onto Ag2WO4 nanorods via an in situ anion-exchange between I− in the solution and the lattice W2O42− in Ag2WO4. The resulting catalysts were denoted as 0.1AgI/Ag2WO4, 0.2AgI/Ag2WO4, 0.3AgI
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2018

Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane

  • Nor Fazila Khairudin,
  • Mohd Farid Fahmi Sukri,
  • Mehrnoush Khavarian and
  • Abdul Rahman Mohamed

Beilstein J. Nanotechnol. 2018, 9, 1162–1183, doi:10.3762/bjnano.9.108

Graphical Abstract
  • developments on the use of Mg as a support or promoter for DRM catalysts. Its high basicity and high thermal stability make Mg suitable for introduction into the highly endothermic reaction of DRM. The introduction of Mg as a support or promoter for Ni-based catalysts allows for good metal dispersion on the
  • conditions, influence the dry reforming reactions and product yields. In this review, different strategies for enhancing catalytic activity and the effect of metal dispersion on Mg-containing oxide catalysts are highlighted. Keywords: carbon formation; catalyst development; dry reforming of methane
  • support and active metal particles [16][17][18]. The loss of catalytic activity or selectivity over time of production affects the cost of catalyst replacement, process shutdown, and product quality and quantity. Numerous researchers have reported that noble metal-based catalysts, such as Pt, Rh, Pd, Ru
PDF
Album
Review
Published 13 Apr 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • living organism inside host cells. Generally, they are considered to be harmful as they cause disease in bacteria [121], plants [122], animals [123] and humans [124]. Advances in molecular biology have increased the possibility to genetically tailor viruses for use as catalysts and bio-scaffolds
PDF
Album
Review
Published 03 Apr 2018

Facile chemical routes to mesoporous silver substrates for SERS analysis

  • Elina A. Tastekova,
  • Alexander Y. Polyakov,
  • Anastasia E. Goldt,
  • Alexander V. Sidorov,
  • Alexandra A. Oshmyanskaya,
  • Irina V. Sukhorukova,
  • Dmitry V. Shtansky,
  • Wolgang Grünert and
  • Anastasia V. Grigorieva

Beilstein J. Nanotechnol. 2018, 9, 880–889, doi:10.3762/bjnano.9.82

Graphical Abstract
  • long time in air. Mesoporous noble metals are mostly used as catalysts for high surface energy, gas sensor components, cell imaging mediators, etc. [5]. The most popular methods for mesoporous metal processing include acidic etching of bimetallic molts [6], electrochemical dealloying [7
  • enhancement factor of 105. It was also evident that the mesoporous silver particles are of great functionality and could likely be promising not only as SERS substrates for liquid analysis, but also for gas phase SERS analysis and as catalysts in combustion and mild selective oxidation processes. This same
PDF
Album
Supp Info
Full Research Paper
Published 14 Mar 2018

Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

  • Mengyuan Zhang,
  • Jiaqian Qin,
  • Pengfei Yu,
  • Bing Zhang,
  • Mingzhen Ma,
  • Xinyu Zhang and
  • Riping Liu

Beilstein J. Nanotechnol. 2018, 9, 789–800, doi:10.3762/bjnano.9.72

Graphical Abstract
  • significant improvement in the degradation of rhodamine B under visible light (λ ≥ 420 nm) irradiation as compared to ZnO and BiOI. The obtained catalysts with a Zn/Bi ratio of 3:1 exhibited the highest photocatalytic activity. The band gap structure and charge transfer properties are investigated by XPS in
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2018

A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

  • Shahreen Binti Izwan Anthonysamy,
  • Syahidah Binti Afandi,
  • Mehrnoush Khavarian and
  • Abdul Rahman Bin Mohamed

Beilstein J. Nanotechnol. 2018, 9, 740–761, doi:10.3762/bjnano.9.68

Graphical Abstract
  • (ZSM-5), TiO2, and Al2O3 supported materials, were identified as the most up-to-date and recently used catalysts for the removal of NO gas. The main focus of this review is the study of catalyst preparation methods, as this is highly correlated to the behaviour of NO removal. The general mechanisms
  • can cause the deactivation of the catalyst. In addition, the catalyst also has a limited temperature window (300–400 °C) and poor thermal stability [7][8]. Hence, there is an urgent need to find other catalysts that can overcome these drawbacks and also have high resistance to water (H2O) and
  • temperature window of 150–500 °C in a diesel engine as well as the low energy consumption and economy of NH3-SCR [9]. In the literature, abundant catalysts at low temperature have been explored such as transitional metals (Mn, Cu, Ce, Fe, Co, Mo) [10][11][12][13], novel metals (Pt, Pd) [14], and metal ion
PDF
Review
Published 27 Feb 2018
Other Beilstein-Institut Open Science Activities