Search results

Search for "mechanical" in Full Text gives 1094 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Determining by Raman spectroscopy the average thickness and N-layer-specific surface coverages of MoS2 thin films with domains much smaller than the laser spot size

  • Felipe Wasem Klein,
  • Jean-Roch Huntzinger,
  • Vincent Astié,
  • Damien Voiry,
  • Romain Parret,
  • Houssine Makhlouf,
  • Sandrine Juillaguet,
  • Jean-Manuel Decams,
  • Sylvie Contreras,
  • Périne Landois,
  • Ahmed-Azmi Zahab,
  • Jean-Louis Sauvajol and
  • Matthieu Paillet

Beilstein J. Nanotechnol. 2024, 15, 279–296, doi:10.3762/bjnano.15.26

Graphical Abstract
  • flakes In this part, we report and discuss the advantages and limits of some Raman criteria that were found to be efficient to derive the thickness (i.e., the number of layers N) of large MoS2 flakes prepared by different ways, namely mechanical exfoliation and standard CVD (including twisted CVD 2L-MoS2
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2024

Ultrasensitive and ultrastretchable metal crack strain sensor based on helical polydimethylsiloxane

  • Shangbi Chen,
  • Dewen Liu,
  • Weiwei Chen,
  • Huajiang Chen,
  • Jiawei Li and
  • Jinfang Wang

Beilstein J. Nanotechnol. 2024, 15, 270–278, doi:10.3762/bjnano.15.25

Graphical Abstract
  • gauge factor of 107, a broad strain range of 300%, a rapid response time of 158 ms, minimal hysteresis, and outstanding durability. (The GF serves as a means to assess the sensitivity of stretchable strain sensors; it is defined as the ratio of the relative change in resistance to the applied mechanical
  • strain, expressed as GF = [(R − R0)/R0]/ε. Here, R represents the resistance observed during stretching, R0 denotes the initial resistance, and ε signifies the magnitude of the mechanical strain applied.) This versatile sensor not only accurately detects small physiological signals such as human joint
  • movement and identifies variations in ambient temperature, but it can also monitor diverse large deformation movements in real time, such as those involved in the mechanical control of security alert systems. To the best of our knowledge, this study represents the first examination of a metal film with
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2024

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • . We present design simulations including mechanical finite-element modeling of surface strain and electromagnetic simulations of meandering nanowires with large kinetic inductance. We discuss a lumped-element model of the force sensor and describe the role of an additional shunt inductance for tuning
  • -induced deposition of platinum. Finally, we present measurements that characterize the spread of mechanical resonant frequency, the temperature dependence of the microwave resonance, and the sensor’s operation as an electromechanical transducer of force. Keywords: atomic force microscopy; force sensing
  • (KIMEC) sensors. A force sensor designed specifically for scanning probe microscopy must have a sharp tip that is readily positioned and scanned over a surface. We operate the sensor near a mechanical resonance with a high quality factor Q for enhanced responsivity to force. The mechanical resonator is a
PDF
Album
Full Research Paper
Published 15 Feb 2024

Exploring disorder correlations in superconducting systems: spectroscopic insights and matrix element effects

  • Vyacheslav D. Neverov,
  • Alexander E. Lukyanov,
  • Andrey V. Krasavin,
  • Alexei Vagov,
  • Boris G. Lvov and
  • Mihail D. Croitoru

Beilstein J. Nanotechnol. 2024, 15, 199–206, doi:10.3762/bjnano.15.19

Graphical Abstract
  • superconducting order parameter Δi and the Hartree potential Ui are determined through the self-consistency equations [6]: where the angular brackets ⟨…⟩ denote quantum mechanical averages, and the sum goes over the eigenfunctions of the BdG equations, labeled by index n. The Hartree self-consistency condition
PDF
Album
Full Research Paper
Published 12 Feb 2024

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • extraordinary mechanical and electronic properties. Although many years have passed since its discovery, manipulating single graphene layers is still challenging using standard resist-based lithography techniques. Recently, it has been shown that it is possible to etch graphene directly in water-assisted
PDF
Album
Full Research Paper
Published 07 Feb 2024

Modification of graphene oxide and its effect on properties of natural rubber/graphene oxide nanocomposites

  • Nghiem Thi Thuong,
  • Le Dinh Quang,
  • Vu Quoc Cuong,
  • Cao Hong Ha,
  • Nguyen Ba Lam and
  • Seiichi Kawahara

Beilstein J. Nanotechnol. 2024, 15, 168–179, doi:10.3762/bjnano.15.16

Graphical Abstract
  • nanocomposites prepared with the same amount of GO, GO-VTES(a), and GO-VTES(b) were characterized with tensile tests and dynamic mechanical tests. The stress at break of DPNR/GO-VTES(a) and DPNR/GO-VTES(b) was 5.2 MPa and 4.3 MPa, respectively, which were lower than that of DPNR/GO. However, it exhibited higher
  • desire to enhance the green strength of NR to achieve the comparable mechanical properties of vulcanized natural rubber (VNR) [1][2][3]. VNR is commonly utilized for NR commercial products. However, due to its crosslinked structure, VNR products cannot be recycled or degraded after diposal [4][5
  • significant impacts on improving the mechanical properties of NR. Numerous studies have utilized suitable monomers to graft onto NR via radical routes. For instance, graft copolymerization of styrene [11][12], methyl methacrylate [13][14], and hydroxyethyl methacrylate [15][16] onto NR enhances the green
PDF
Album
Full Research Paper
Published 05 Feb 2024

Enhanced feedback performance in off-resonance AFM modes through pulse train sampling

  • Mustafa Kangül,
  • Navid Asmari,
  • Santiago H. Andany,
  • Marcos Penedo and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2024, 15, 134–143, doi:10.3762/bjnano.15.13

Graphical Abstract
  • force, as well as reduced lateral force. Simultaneously, they enable mechanical property mapping of the sample. However, ORT modes have an intrinsic drawback: a low scan speed due to the limited ORT rate, generally in the low-kilohertz range. Here, we analyze how the conventional ORT control method
  • rate and therefore enables higher scan rates while refining the mechanical property mapping. Keywords: atomic force microscopy (AFM); feedback control; off-resonance tapping (ORT); pulsed-force mode; Introduction Constant force mode, a widely used AFM imaging mode, utilizes a feedback controller that
  • . describe an improvement upon jumping mode, where, instead of performing a force curve, they turn on the feedback to bring the cantilever into contact with the sample to minimize the tip–sample forces [7]. In this approach, however, no mechanical properties are extracted from the force curve. In addition
PDF
Album
Supp Info
Full Research Paper
Published 01 Feb 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • metabolites), flexibility with high mechanical strength, chemical and thermal resistance, high rate of reversible fluid absorption, and low interfacial tension with water [6][7]. A very desirable property of hydrogels is the ability to incorporate or suspend various particles in their structure, such as dyes
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

TEM sample preparation of lithographically patterned permalloy nanostructures on silicon nitride membranes

  • Joshua Williams,
  • Michael I. Faley,
  • Joseph Vimal Vas,
  • Peng-Han Lu and
  • Rafal E. Dunin-Borkowski

Beilstein J. Nanotechnol. 2024, 15, 1–12, doi:10.3762/bjnano.15.1

Graphical Abstract
  • away from the nanostructures can affect the overall mechanical stability of the membrane. Dry etching is generally better suited for bulk substrate applications as discussed in section “Preparation of nanostructures starting from a bulk substrate”. Stencil lithography Stencil lithography was
  • etching can yield nanodisks as small as 200 nm with high precision. However, it is important to consider that the IBE process may result in thinner SiN membranes, potentially compromising their mechanical stability. Furthermore, IBE, which is a physical etching process, redeposits a non-volatile metal
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

Determination of the radii of coated and uncoated silicon AFM sharp tips using a height calibration standard grating and a nonlinear regression function

  • Perawat Boonpuek and
  • Jonathan R. Felts

Beilstein J. Nanotechnol. 2023, 14, 1200–1207, doi:10.3762/bjnano.14.99

Graphical Abstract
  • Perawat Boonpuek Jonathan R. Felts School of Manufacturing Engineering, Institute of Engineering, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand Advanced Manufacturing Laboratory, J. Mike Walker ’66 Department of Mechanical Engineering, College
  • of Engineering, Texas A&M University, College Station, Texas, 77843, USA 10.3762/bjnano.14.99 Abstract AFM sharp tips are used to characterize nanostructures and quantify the mechanical properties of the materials in several areas of research. The analytical results can show unpredicted errors if we
  • nanostructured materials, for example, graphene, carbon nanotubes, nanoscale semiconductors, biomaterials, and molecules. Mechanical properties such as surface stiffness, adhesion, friction, electrostatics, and electrowetting can be measured [1][2][3][4]. In contact mode scanning, the contact area between the
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2023

A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2

  • Elif Bilgilisoy,
  • Ali Kamali,
  • Thomas Xaver Gentner,
  • Gerd Ballmann,
  • Sjoerd Harder,
  • Hans-Peter Steinrück,
  • Hubertus Marbach and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2023, 14, 1178–1199, doi:10.3762/bjnano.14.98

Graphical Abstract
  • gas-phase experiments under single-collision conditions and quantum mechanical calculations for data interpretation, in combination with FEBID in an UHV setup. The results of this study demonstrated that at 5 keV electron energy, FEBID deposits with 31–34 atom % Au content were attainable with this
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

Elasticity, an often-overseen parameter in the development of nanoscale drug delivery systems

  • Agnes-Valencia Weiss and
  • Marc Schneider

Beilstein J. Nanotechnol. 2023, 14, 1149–1156, doi:10.3762/bjnano.14.95

Graphical Abstract
  • drug delivery can be achieved, are mechanical properties of nanoparticles. Even though this is often not even considered during formulation development, and it is not requested for approval, an increasing number of studies show that it is important to have knowledge about these characteristics. In this
  • article, we discuss examples highlighting the influence of elasticity in nanoscale biological interactions focusing on mucosal delivery and on tumor targeting. Besides this, we discuss the influence of different measurement settings using atomic force microscopy for the determination of mechanical
  • properties of drug carriers. Keywords: atomic force microscopy; drug delivery; elasticity; mechanical properties; nanomedicine; nanoparticles; stiffness measurement; tissue/body distribution; Introduction Drug delivery systems are developed with the aim to transport a given drug to the site of action
PDF
Album
Perspective
Published 23 Nov 2023

A multi-resistance wide-range calibration sample for conductive probe atomic force microscopy measurements

  • François Piquemal,
  • Khaled Kaja,
  • Pascal Chrétien,
  • José Morán-Meza,
  • Frédéric Houzé,
  • Christian Ulysse and
  • Abdelmounaim Harouri

Beilstein J. Nanotechnol. 2023, 14, 1141–1148, doi:10.3762/bjnano.14.94

Graphical Abstract
  • commonly observed in C-AFM because of highly localized electric fields at the tip apex leading to structural damage considerably affecting the measurement reliability. These effects are further amplified during scanning in contact mode due to shear forces and strong mechanical stress imposed on the tip
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2023

Dual-heterodyne Kelvin probe force microscopy

  • Benjamin Grévin,
  • Fatima Husainy,
  • Dmitry Aldakov and
  • Cyril Aumaître

Beilstein J. Nanotechnol. 2023, 14, 1068–1084, doi:10.3762/bjnano.14.88

Graphical Abstract
  • time-periodic surface electrostatic potential generated under optical (or electrical) pumping with an atomic force microscope. The modulus and phase coefficients are probed by exploiting a double heterodyne frequency mixing effect between the mechanical oscillation of the cantilever, modulated
  • measurements [16], which consists in analysing the intermodulation products between the mechanical oscillation of the cantilever and the photogenerated surface potential. In short, intermodulation spectroscopy allows working in the frequency domain (instead of the time domain) by extracting, during a single
  • effect between the cantilever mechanical oscillation, the surface photovoltage harmonics, and an ac bias modulation signal. The frequency of the modulated bias can be set so that any given spectral component of the surface potential (or intermodulation product) can be “transferred” to the second
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2023

Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination

  • Zeinab Eftekhari,
  • Nasim Rezaei,
  • Hidde Stokkel,
  • Jian-Yao Zheng,
  • Andrea Cerreta,
  • Ilka Hermes,
  • Minh Nguyen,
  • Guus Rijnders and
  • Rebecca Saive

Beilstein J. Nanotechnol. 2023, 14, 1059–1067, doi:10.3762/bjnano.14.87

Graphical Abstract
  • mechanical oscillation of the piezoelectric membrane with vertical atomic resolution in real-time. This technique offers the opportunity to measure concurrently the optoelectronic and mechanical response of the device at the nanoscale. Furthermore, time-dependent atomic force microscopy (AFM) was employed to
  • ); time-dependent AFM; Introduction Light has been recognized as a versatile external energy source to actuate micro/nanorobots with outstanding merits of wireless, remote, and precise controllability [1][2][3][4]. Light-driven micro/nanorobots convert light into mechanical motion and are able to perform
  • ]. However, the working principle of these techniques is based on optical interferometry mapping which can be challenging for light-sensitive devices. Furthermore, it can be advantageous to employ a method that also allows for mechanical contact and manipulation. Atomic force microscopy (AFM) [11][12][13][14
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2023

Experimental investigation of usage of POE lubricants with Al2O3, graphene or CNT nanoparticles in a refrigeration compressor

  • Kayhan Dağıdır and
  • Kemal Bilen

Beilstein J. Nanotechnol. 2023, 14, 1041–1058, doi:10.3762/bjnano.14.86

Graphical Abstract
  • Kayhan Dagidir Kemal Bilen Department of Mechanical Engineering, Tarsus University, Mersin, Turkey Department of Mechanical Engineering, Ankara Yıldırım Beyazıt University, Ankara, Turkey 10.3762/bjnano.14.86 Abstract In this study, the use of nanolubricants containing Al2O3, graphene, and carbon
  • . Firstly, the POE oil and nanoparticles were stirred in a mechanical stirrer, then the mixture was stirred with an ultrasonic stirrer. The mechanical mixing process was applied with the TOPTION MX-S mechanical mixer. Also, an ultrasonic mixing process was applied with the TOPTION TU-900E4 sonic mixer. The
  • . The a) FE-SEM micrograph with a scale bar of 200 nm, b) FE-SEM micrograph with a scale bar of 400 nm, and c) EDS analysis of the CNT nanoparticles. XRD pattern of the CNT nanoparticles. The devices used to implement the two-step method are a) mechanical stirrer, b) ultrasonic stirrer, and c) precision
PDF
Album
Full Research Paper
Published 02 Nov 2023

Exploring internal structures and properties of terpolymer fibers via real-space characterizations

  • Michael R. Roenbeck and
  • Kenneth E. Strawhecker

Beilstein J. Nanotechnol. 2023, 14, 1004–1017, doi:10.3762/bjnano.14.83

Graphical Abstract
  • microscope mapping to characterize the internal structure and local mechanical properties within Technora® fibers. We find a highly fibrillated structure that appears to connect with both the fiber’s molecular chemistry and full-fiber mechanical properties. In addition, through detailed comparisons with
  • ; structure–property relationships; Technora®; Introduction High-performance polymer fibers have enabled groundbreaking advancements in numerous applications, from personal armor to tires to sports equipment, that aim to maximize mechanical performance while minimizing weight. The successes achieved with
  • molecular chains rather than optimizing crystallites. This strategy aimed to explore new chemistries that could enhance multifunctional aspects of fibers without adversely affecting fiber mechanical properties. Indeed, in developing Technora®, Teijin Ltd. had four principal aims: to manufacture a (i) cost
PDF
Album
Full Research Paper
Published 05 Oct 2023

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • highest photothermal conversion efficiency. In addition, these materials also possess high thermal and electrical conductivity, high aspect ratio, light weight, and high mechanical strength, because of which these materials are used for photothermal applications [36]. Polyhydroxylated fullerenes were
PDF
Album
Review
Published 04 Oct 2023

Metal-organic framework-based nanomaterials for CO2 storage: A review

  • Ha Huu Do,
  • Iqra Rabani and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 964–970, doi:10.3762/bjnano.14.79

Graphical Abstract
  • fabrication of MOF/graphene-based composites. Figure 5 was reproduced from [41], R. Kumar et al., “Remarkable Improvement in the Mechanical Properties and CO2 Uptake of MOFs Brought About by Covalent Linking to Graphene”, Angew. Chem., Int. Ed., with permission from John Wiley and Sons. Copyright © 2016 WILEY
PDF
Album
Review
Published 20 Sep 2023

Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO2 with periodic table descriptors using machine learning approaches

  • Joyita Roy,
  • Souvik Pore and
  • Kunal Roy

Beilstein J. Nanotechnol. 2023, 14, 939–950, doi:10.3762/bjnano.14.77

Graphical Abstract
  • random forest algorithm and the AdaBoost algorithm for QSAR modeling using quantum mechanical descriptors. In contrast, the present study involved the random forest algorithm, the AdaBoost algorithm along with Gradient Boost and XGBoost algorithms using simple periodic table descriptors that are easy to
  • -effective and have a clear and straightforward physical meaning, which facilitates the mechanical interpretation of the QSAR models. A direct comparison was not possible due to different dataset division and descriptors but the results obtained in the present work for the RF method was superior to that of
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2023

Industrial perspectives for personalized microneedles

  • Remmi Danae Baker-Sediako,
  • Benjamin Richter,
  • Matthias Blaicher,
  • Michael Thiel and
  • Martin Hermatschweiler

Beilstein J. Nanotechnol. 2023, 14, 857–864, doi:10.3762/bjnano.14.70

Graphical Abstract
  • microneedles are most often directly printed onto the medical device and aligned to specific features, such as pores, on the device. Direct microneedle printing has its own set of extensive requirements (e.g., biocompatibility of the material, mechanical robustness, and surface adhesion). Also, FDA’s 510(k
PDF
Album
Perspective
Published 15 Aug 2023

Biomimetics on the micro- and nanoscale – The 25th anniversary of the lotus effect

  • Matthias Mail,
  • Kerstin Koch,
  • Thomas Speck,
  • William M. Megill and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 850–856, doi:10.3762/bjnano.14.69

Graphical Abstract
  • pest insects by reducing the frictional forces experienced when they walk on the leaves. This structure might also provide mechanical stability to the growing plant organs and has an impact on the wettability of the leaves. Using polymer replicas of adaxial leaf surfaces at various scales, the surface
  • treatment on the elastic modulus of locust cuticle obtained by nanoindentation”, investigate the mechanical properties of the cuticle that builds the surface of insects and related groups of animals. The cuticle is one of the most abundant, but least studied biological composites. In their study, the
  • authors use a nanoindentation technique to investigate the effect of freezing, desiccation, and rehydration on the elastic modulus of the hind tibial cuticle of locusts. All of the treatments significantly influenced the mechanical properties of the latter. Gorb et al. [7], in the paper “Hierachical
PDF
Album
Editorial
Published 03 Aug 2023

A wearable nanoscale heart sound sensor based on P(VDF-TrFE)/ZnO/GR and its application in cardiac disease detection

  • Yi Luo,
  • Jian Liu,
  • Jiachang Zhang,
  • Yu Xiao,
  • Ying Wu and
  • Zhidong Zhao

Beilstein J. Nanotechnol. 2023, 14, 819–833, doi:10.3762/bjnano.14.67

Graphical Abstract
  • mechanical vibration signals into voltage signals, have become one of the primary materials for creating heart sound sensors [9]. Piezoelectric materials are essential components in heart sound auscultation equipment. When pressure is applied to piezoelectric materials, they generate a voltage, a phenomenon
  • area (S), and the applied mechanical stress (ΔF) [35]: Under short-circuit conditions, the current can be expressed by Equation 3 [35]: To determine the piezoelectric coefficient of the piezoelectric film, a dynamic measurement method was utilized in this study. The piezoelectric film was exposed to
PDF
Album
Full Research Paper
Published 31 Jul 2023

Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone

  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Ni Luh Wulan Septiani and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2023, 14, 741–750, doi:10.3762/bjnano.14.61

Graphical Abstract
  • Muhammad Hilmi Ibrahim Norikhwan Hamzah Mohd Zamri Mohd Yusop Ni Luh Wulan Septiani Mohd Fairus Mohd Yasin Department of Thermo-Fluids, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia High Speed Reacting Flow Laboratory (HiREF), Universiti Teknologi
  • ; synthesis control; Introduction Carbon nanotubes have been a research topic for a few decades since their discovery by Iijima in 1991 [1]. The CNT structure enables remarkable mechanical, electrical, and thermal properties. Studies of CNT syntheses using different methods yielding nanotubes with varying
  • multi-walled CNTs (MWCNTs) with carboxyl functionalization [3]. The aerospace industry utilizes CNTs with high thermal, chemical, mechanical, and electrical performance as a nanocomposite additive to overcome problems in aircraft coatings, such as corrosion, ice accretion, lightning strike, and erosion
PDF
Album
Full Research Paper
Published 21 Jun 2023

Cross-sectional Kelvin probe force microscopy on III–V epitaxial multilayer stacks: challenges and perspectives

  • Mattia da Lisca,
  • José Alvarez,
  • James P. Connolly,
  • Nicolas Vaissiere,
  • Karim Mekhazni,
  • Jean Decobert and
  • Jean-Paul Kleider

Beilstein J. Nanotechnol. 2023, 14, 725–737, doi:10.3762/bjnano.14.59

Graphical Abstract
  • + dc potential is applied, the KPFM tip scans across a surface. The ac signal is sinusoidal with a frequency that equals the mechanical resonance of the cantilever. The four-quadrant detector gives feedback in order to minimize cantilever oscillation modifying the dc signal providing the sample surface
PDF
Album
Full Research Paper
Published 14 Jun 2023
Other Beilstein-Institut Open Science Activities